JPH09328566A - Porous thermoplastic fluoroplastic body, its production and production of battery - Google Patents

Porous thermoplastic fluoroplastic body, its production and production of battery

Info

Publication number
JPH09328566A
JPH09328566A JP9040392A JP4039297A JPH09328566A JP H09328566 A JPH09328566 A JP H09328566A JP 9040392 A JP9040392 A JP 9040392A JP 4039297 A JP4039297 A JP 4039297A JP H09328566 A JPH09328566 A JP H09328566A
Authority
JP
Japan
Prior art keywords
battery
thermoplastic fluororesin
sheet
porous material
cold
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP9040392A
Other languages
Japanese (ja)
Inventor
Takatoshi Kuratsuji
孝俊 倉辻
Kazuyoshi Ohashi
和義 大橋
Yoshiyuki Miyaki
義行 宮木
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Arkema KK
Original Assignee
Elf Atochem Japan KK
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Elf Atochem Japan KK filed Critical Elf Atochem Japan KK
Priority to JP9040392A priority Critical patent/JPH09328566A/en
Priority to PCT/EP1997/004885 priority patent/WO1998038029A1/en
Publication of JPH09328566A publication Critical patent/JPH09328566A/en
Pending legal-status Critical Current

Links

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries

Abstract

PROBLEM TO BE SOLVED: To obtain a porous thermoplastic fluoroplastic body being lightweight and having improved chemical resistance, mechanical strength and mass transfer by melt-extruding a thermoplastic fluoroplastic containing vinylidene fluoride and cold-stretching the extrudate to form flat pores therein. SOLUTION: A thermoplastic fluoroplastic containing at least 90wt.% vinylidene fluoride and having and MFR of 0.1-500g/10min is mole-extruded into a sheet or a hollow body, and this sheet or body is heat-treated at 70-155 deg.C to increase its degree of crystallinity to 40% or above. It is then cold-stretched at a draw ratio of 1.1-6 to obtain a porous thermoplastic fluoroplastic body having a large number of flat pores having a width of 0.1-3μm and a length of 0.5-20μm and an apparent specific gravity of 1.7 or below.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【産業上の利用分野】本発明は熱可塑性フッ素系樹脂多
孔体、その製造方法、および電池の製造方法に関する。
その目的とする所は、耐薬品性に優れ、軽量で且つ機械
的強度及び物質移動性に優れた熱可塑性フッ素系樹脂多
孔体及びその製造方法、さらにその多孔体を用いた電池
の製造方法を提供することにある。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a thermoplastic fluororesin porous material, a method for producing the same, and a method for producing a battery.
Its purpose is to provide a thermoplastic fluororesin porous body excellent in chemical resistance, lightweight and excellent in mechanical strength and mass transfer, a method for producing the same, and a method for producing a battery using the porous body. To provide.

【0002】[0002]

【従来の技術】熱可塑性フッ素系樹脂は耐候性や耐薬品
性等の優れた樹脂として、塗料や電気・電子部品、鋼管
ライニング、化学プラント部品、耐候・防汚フィルム等
に用いられている。しかしフッ素系樹脂は一般に比重が
高いために成形品とした場合、重いという欠点がある。
他方耐薬品性を利用して分離膜として多孔化する事が試
みられている。例えばポリフッ化ビニリデン(以下PV
DFと略記する)を溶剤に溶かして湿式製膜した後、溶
剤を除去して多孔体とする方法(特公昭59−1269
1号公報等)、無機粒子を混合して製膜した後無機粒子
を除去する方法(特公昭62−17614号公報、特開
昭61−242602号公報、特開平3−215535
号公報等)、抽出可能な樹脂を配合して製膜後該樹脂を
抽出する方法(特公昭57−10888号公報等)、溶
出可能な充填剤を混合して焼結成形した後、充填剤を溶
出する方法(特開昭51−134761号公報等)、難
相溶性樹脂を配合して製膜後、延伸して該難相溶性樹脂
とマトリックス樹脂の界面に亀裂を生じさせて多孔性と
する方法(特公昭52−26788号公報等)、PVD
Fに発泡剤を混合して成形、発泡させる方法(特開昭6
1−53336号公報、特開平1−268730号公報
等)、PVDFを厚さ2分の1以下に圧延した後延伸す
る方法(特開昭58−157831号公報等)、PVD
F製膜を活性ガス雰囲気中で荷電粒子照射し、ついで化
学的にエッチングする方法(特公昭60−29742号
公報、特開平3−38228号公報等)など、多数の方
法及びそれからの多孔体が提案されている。
2. Description of the Related Art Thermoplastic fluorinated resins are used in paints, electric / electronic parts, steel pipe linings, chemical plant parts, weather / fouling resistant films, etc. as resins having excellent weather resistance and chemical resistance. However, since a fluororesin generally has a high specific gravity, it has a drawback that it is heavy when formed into a molded product.
On the other hand, it has been attempted to make porous as a separation membrane by utilizing chemical resistance. For example, polyvinylidene fluoride (hereinafter PV
(Hereinafter abbreviated as DF) is dissolved in a solvent to form a wet film, and then the solvent is removed to form a porous body (Japanese Patent Publication No. 59-1269).
No. 1), a method of mixing inorganic particles to form a film, and then removing the inorganic particles (Japanese Patent Publication No. 62-17614, Japanese Patent Publication No. 61-242602, Japanese Patent Laid-Open No. 3-215535).
(Japanese Patent Publication No. JP-A-2003-101, etc.), a method of blending an extractable resin and extracting the resin after film formation (Japanese Patent Publication No. 57-10888, etc.), and mixing a leasable filler and sinter-molding, followed by filling the filler. (For example, JP-A-51-134761), a poorly compatible resin is blended to form a film, which is then stretched to form a crack at the interface between the poorly compatible resin and the matrix resin, thereby providing porosity. Method (Japanese Patent Publication No. 52-26788), PVD
A method in which F is mixed with a foaming agent to be molded and foamed (Japanese Patent Application Laid-open No. Sho 6-96).
1-533336, JP-A-1-268730, etc.), a method of rolling PVDF to a thickness of ½ or less and then stretching (JP-A-58-157831, etc.), PVD
A large number of methods and porous bodies made from them, such as a method of irradiating the F film with charged particles in an active gas atmosphere and then chemically etching it (Japanese Patent Publication No. 60-29742, Japanese Patent Laid-Open No. 3-38228, etc.) Proposed.

【0003】しかしこれらは湿式製膜のために多量の溶
剤を使用したり、他の成分を添加した後それを除去した
り、或いは特殊な手段によってエッチングするために、
溶剤や添加剤の回収のための設備や特殊な装置が必要で
あったり、マトリックスポリマー中に残存する溶剤や添
加剤による性能や物性の低下等が問題となる。
However, these use a large amount of solvent for wet film formation, remove other components after adding them, or etch them by special means.
There is a problem that equipment and a special device for collecting the solvent and the additive are required, and that the performance and the physical properties are deteriorated by the solvent and the additive remaining in the matrix polymer.

【0004】一方、リチウム電池等非水系の電池に用い
られるセパレータは、正負電極間の短絡を防止したり、
セパレータに無数に開いている孔中に電解液を保持する
ことにより導電性を確保する役割を担っている。その代
表的なものとして、ポリエチレン(PE)やポリプロピ
レン(PP)製の多孔質膜、PEとPPを張り合わせた
二層膜、PPの間にPEを挟んだ三層膜などがある。し
かし、PEやPPは可燃性材料であり、特にリチウム電
池においては、より安全性の高い材料が要望されてい
る。
On the other hand, separators used in non-aqueous batteries such as lithium batteries prevent short circuit between positive and negative electrodes,
By holding the electrolytic solution in the innumerable holes formed in the separator, it plays a role of ensuring conductivity. Typical examples thereof include a porous film made of polyethylene (PE) or polypropylene (PP), a two-layer film in which PE and PP are bonded together, and a three-layer film in which PE is sandwiched between PP. However, PE and PP are flammable materials, and particularly in lithium batteries, materials with higher safety are required.

【0005】さらに、最近、フッ化ビニリデン系共重合
体フィルムにLiPF6等のLi塩をカーボネート系溶
媒に溶かしてなる溶液を膨潤させてセパレータとして用
いるリチウム電池が提案された(公表特許公報、平8−
507407および平8−509100)。しかしなが
ら、溶媒で膨潤したフッ化ビニリデン系共重合体フィル
ムは、高温(50℃以上)での耐温度性が不十分となっ
たり、低温(0℃以下)での容量等の電池特性が低下し
易い。
Furthermore, recently, a lithium battery has been proposed in which a vinylidene fluoride-based copolymer film is swollen with a solution prepared by dissolving a Li salt such as LiPF 6 in a carbonate-based solvent to be used as a separator (Japanese Patent Laid-Open Publication No. 8-
507407 and flats 8-509100). However, a vinylidene fluoride-based copolymer film swollen with a solvent has insufficient temperature resistance at high temperature (50 ° C. or higher), or has poor battery characteristics such as capacity at low temperature (0 ° C. or lower). easy.

【0006】[0006]

【発明が解決しようとする課題】本発明は、従来のPV
DF系多孔体および電池セパレータにおける欠点を除去
するため、溶剤や添加剤を用いることなく、物理的手段
によって軽量且つ機械的強度の優れたPVDF多孔体お
よびそれからなるバッテリーセパレータセパレータおよ
び電池を得るべく検討の結果、本発明に到達した。
The present invention is based on the conventional PV.
In order to eliminate the defects in the DF-based porous body and the battery separator, a study has been made to obtain a PVDF porous body which is light in weight and excellent in mechanical strength and a battery separator / separator and a battery made of the same by a physical means without using a solvent or an additive. As a result, the present invention has been reached.

【0007】[0007]

【課題を解決するための手段】本発明は、樹脂の構成単
位としてフッ化ビニリデンを少なくとも90重量%含有
する熱可塑性フッ素系樹脂からなり、巾(短径)0.1
〜3μm、長さ(長径)0.5〜20μmの扁平状細孔
を有することを特徴とする熱可塑性フッ素系樹脂多孔
体、及びポリフッ化ビニリデンをシート状或いは中空状
に溶融押し出した後、場合により熱処理をして結晶化度
を40%以上とした後、冷延伸して多数の扁平状細孔を
生じさせることによって見かけ比重を1.7以下とする
ことを特徴とする熱可塑性フッ素系樹脂多孔体の製造方
法、該多孔体からなるバッテリーセパレータ、およびそ
れを用いた電池の製造方法である。
The present invention comprises a thermoplastic fluororesin containing at least 90% by weight of vinylidene fluoride as a constitutional unit of resin, and has a width (minor axis) of 0.1.
~ 3 μm, length (major axis) 0.5 to 20 μm of flat fluororesin, characterized by having a porous fluororesin porous body, and polyvinylidene fluoride melt extruded into a sheet or hollow, A thermoplastic fluorine-based resin characterized by having an apparent specific gravity of 1.7 or less by heat-treating to obtain a crystallinity of 40% or more and then cold drawing to generate a large number of flat pores. A method for producing a porous body, a battery separator comprising the porous body, and a method for producing a battery using the same.

【0008】本発明において「熱可塑性フッ素系樹脂」
とは、樹脂の構成単位としてフッ化ビニリデンを少なく
とも90重量%以上、好ましくは95重量%以上含有す
る熱可塑性フッ素系樹脂である。従って、一種のモノマ
−から成るホモポリマ−に限定されず、熱可塑性フッ素
系樹脂としての特性を損なわなければ、10重量%以下
の範囲で他の成分を含有する共重合ポリマーであっても
よい。共重合率が10重量%を越えると、本発明の多孔
体を得ることは困難である。共重合可能な成分として
は、四フッ化エチレン、三フッ化エチレン、三フッ化塩
化エチレン、フッ化ビニル、六フッ化プロピレン、エチ
レン、パ−フルオロアルキルビニルエ−テル等が例示さ
れる。本熱可塑性フッ素系樹脂は、乳化重合、懸濁重合
等一般に行われている重合方法によって得られ、MFR
値が0.1〜500g/10分のものが好ましい。
In the present invention, "thermoplastic fluorocarbon resin"
Is a thermoplastic fluorine-based resin containing at least 90% by weight, preferably 95% by weight or more, of vinylidene fluoride as a structural unit of the resin. Therefore, the copolymer is not limited to a homopolymer composed of one kind of monomer, and may be a copolymer containing other components in an amount of 10% by weight or less as long as the characteristics of the thermoplastic fluororesin are not impaired. When the copolymerization rate exceeds 10% by weight, it is difficult to obtain the porous body of the present invention. Examples of the copolymerizable component include ethylene tetrafluoride, ethylene trifluoride, ethylene trifluoride chloride, vinyl fluoride, propylene hexafluoride, ethylene, and perfluoroalkyl vinyl ether. The thermoplastic fluororesin is obtained by a commonly used polymerization method such as emulsion polymerization or suspension polymerization.
A value of 0.1 to 500 g / 10 minutes is preferable.

【0009】本発明の熱可塑フッ素樹脂には、改質のた
め他種のポリマーを少量ブレンドすることが出来るほ
か、従来公知の酸化防止剤、熱分解防止剤、紫外線吸収
剤、耐加水分解改良剤、着色剤(染料、顔料)、帯電防
止剤、導電剤、結晶核剤、結晶促進剤、可塑剤、易滑
剤、潤滑剤、離型剤、難燃剤、難燃助剤、補強剤、充填
剤、接着助剤、粘着剤等を任意に含有せしめることが出
来る。
The thermoplastic fluororesin of the present invention can be blended with a small amount of another type of polymer for modification, and also has conventionally known antioxidants, thermal decomposition inhibitors, ultraviolet absorbers and hydrolysis resistance improvement. Agent, colorant (dye, pigment), antistatic agent, conductive agent, crystal nucleating agent, crystallization accelerator, plasticizer, lubricant, lubricant, mold release agent, flame retardant, flame retardant aid, reinforcing agent, filling An agent, an adhesion aid, a pressure sensitive adhesive, etc. can be optionally contained.

【0010】本発明の多孔体は、巾(短径)0.1〜3
μm、長さ(長径)0.5〜20μmの扁平状細孔を有
する。細孔径が小さすぎると比重低下効果を出すことが
難しく、逆に大きすぎると濾過効果や機械的強度が低下
する。巾0.2〜2μm、長さ0.5〜15μmが好ま
しい。
The porous body of the present invention has a width (minor diameter) of 0.1 to 3.
It has flat pores with a diameter of 0.5 μm and a length (major axis) of 0.5 to 20 μm. If the pore size is too small, it is difficult to exert the effect of lowering the specific gravity, and conversely, if it is too large, the filtering effect and the mechanical strength decrease. A width of 0.2 to 2 μm and a length of 0.5 to 15 μm are preferable.

【0011】本発明の多孔体の見かけ比重は、1.7以
下が好ましい。更に好ましくは1.6以下1.2以上で
ある。細孔径を大きくしたり、細孔数を多くすることに
よって更に見かけ比重を下げることもできるが、技術的
に困難であるばかりでなく、膜の性能や強度の点から好
ましくない。
The apparent specific gravity of the porous material of the present invention is preferably 1.7 or less. More preferably, it is 1.6 or less and 1.2 or more. Although the apparent specific gravity can be further reduced by increasing the pore size or increasing the number of pores, it is not only technically difficult, but it is not preferable from the viewpoint of membrane performance and strength.

【0012】本発明の多孔体は、形状としてシート状又
は中空状物を主とする。「シート状物」とは、厚い(m
mオーダー)のプレートから薄い(μmオーダー)フィ
ルムまでを含み、また「中空状物」とは、太いパイプか
ら細いチューブ、中空繊維、インフレーションフィルム
等を意味する。もちろんインフレーションフィルムをカ
ットしたシート状物を含むことは言うまでもない。
The porous body of the present invention is mainly in the form of a sheet or hollow. "Sheet" means thick (m
m-order) plates to thin (μm-order) films are included, and "hollow" means thick pipes to thin tubes, hollow fibers, blown films, and the like. Needless to say, it includes a sheet-shaped product obtained by cutting an inflation film.

【0013】本発明の多孔体は、該熱可塑性フッ素系樹
脂を融点以上、分解温度以下で溶融押出し、冷却固化し
た後、注意深く冷延伸することによって製造することが
出来る。もちろん押出成形の他、射出成形、回転成形
等、他の方法によることもできる。延伸倍率は、樹脂の
種類(共重合率)、押出・冷却条件にもよるが、1.1
〜6倍且つ破断延伸倍率未満、好ましくは1.2〜4倍
である。延伸は一軸でも二軸(同時、逐次)でも良い
が、多段延伸の場合は一段目の条件によって細孔の形状
の大部分が決定される傾向にあるので、注意を要する。
熱延伸によっては本発明の多孔体は得られにくい。
The porous body of the present invention can be produced by melt-extruding the thermoplastic fluororesin above the melting point and below the decomposition temperature, cooling and solidifying, and then carefully cold-drawing. Of course, other than extrusion molding, other methods such as injection molding and rotational molding can be used. The draw ratio depends on the type of resin (copolymerization rate) and extrusion / cooling conditions, but is 1.1
˜6 times and less than the breaking stretch ratio, preferably 1.2 to 4 times. Stretching may be uniaxial or biaxial (simultaneous or sequential), but in the case of multi-stage stretching, the shape of the pores tends to be largely determined by the conditions of the first stage, so caution is required.
It is difficult to obtain the porous body of the present invention by hot stretching.

【0014】本発明の多孔体は、冷延伸前に熱処理し、
結晶化度を40%以上とすることによって、更に容易に
製造することが出来、冷延伸後再熱処理することによっ
てその構造を固定することは更に好ましい。推奨される
熱処理温度は、70〜155℃、好ましくは100〜1
50℃である。熱処理はフリー状態でも制限収縮、定
長、或いは緊張状態でも良いが、緊張状態の場合は10
%以下、好ましくは5%以下の緊張率が良い。要は溶融
固化されたときに発生した球晶が破壊されない範囲であ
り、破壊されて微結晶に移行する以前の状態で成長させ
ることが好ましい。
The porous body of the present invention is heat treated before cold drawing,
When the crystallinity is 40% or more, it can be more easily produced, and it is more preferable to fix the structure by re-heat treatment after cold drawing. Recommended heat treatment temperature is 70-155 ° C, preferably 100-1
50 ° C. The heat treatment may be in a free state, limited contraction, constant length, or a tensioned state, but in the case of a tensioned state, 10
% Or less, preferably 5% or less. The point is that the spherulites generated when melted and solidified are not destroyed, and it is preferable to grow them in a state before they are destroyed and transferred to fine crystals.

【0015】本発明の多孔体は高エネルギー(通常、2
から40メガラッド)の電子線やγ線の照射あるいは化
学的な脱HF反応により架橋を導入することが可能であ
る。これにより、多孔体の耐熱性や機械的強度の向上が
可能となる。
The porous material of the present invention has a high energy (usually 2
It is possible to introduce crosslinks by irradiation with electron beams or γ-rays from 1 to 40 megarads or by chemical de-HF reaction. This makes it possible to improve the heat resistance and mechanical strength of the porous body.

【0016】[0016]

【作用】本発明の多孔体は、各種成型品の他、フィルタ
ー等の濾過材料、電池用セパレータ等の分離膜等に有用
であるほか、イオン交換基や吸着性物質を担持させて機
能性を付加した膜の原料としても期待される。
The porous material of the present invention is useful not only for various molded products, but also for filtration materials such as filters and separation membranes such as battery separators, and also has functionality by supporting ion-exchange groups and adsorptive substances. It is also expected as a raw material for the added film.

【0017】特に、リチウム電池へ応用する場合、本発
明の多孔体(通常、フィルム状)は、セパレータあるい
は電極活性物質と複合化された電極として用いることが
できる。セパレータにおいては、LiPF6、LiBF4、LiCl
O4、LiAsF6、LiN(CF3SO2)2、LiCF3SO3、LiSbF6等から選
ばれる少なくとも1種類のリチウム塩を、適切な溶媒
(主に、エチレンカーボネート、プロピレンカーボネー
ト、ジメチルカーボネート等のカーボネート系)に溶解
させてなる電解質溶液を多孔質フィルムに含浸させ、そ
の孔の部分に電解質溶液を満たした状態で使用される。
また、本多孔体は、ゲル電解質(電解質を含有する溶液
で膨潤した高分子ゲル)の支持体として用いることもで
きる。
In particular, when applied to a lithium battery, the porous body (usually in the form of a film) of the present invention can be used as a separator or an electrode complexed with an electrode active substance. In the separator, LiPF 6 , LiBF 4 , LiCl
At least one lithium salt selected from O 4 , LiAsF 6 , LiN (CF 3 SO 2 ) 2 , LiCF 3 SO 3 , LiSbF 6 and the like is mixed with a suitable solvent (mainly ethylene carbonate, propylene carbonate, dimethyl carbonate, etc.). It is used in a state where the porous film is impregnated with an electrolyte solution prepared by dissolving it in a carbonate system) and the pores are filled with the electrolyte solution.
The present porous body can also be used as a support for a gel electrolyte (polymer gel swollen with a solution containing an electrolyte).

【0018】さらに、本発明の多孔体は、ニッケル−水
素電池、銀−亜鉛電池、鉛−酸電池、亜鉛−空気電池、
ニッケル−カドニウム電池、アルカリ電池、臭化亜鉛電
池等において、セパレータあるいは電極支持体として用
いることができる。
Further, the porous body of the present invention is a nickel-hydrogen battery, a silver-zinc battery, a lead-acid battery, a zinc-air battery,
It can be used as a separator or an electrode support in nickel-cadmonium batteries, alkaline batteries, zinc bromide batteries and the like.

【0019】[0019]

【実施例】以下、実施例によって本発明を具体的に説明
するが、本発明はこれだけに限定されるものでないこと
は言うまでもない。尚、実施例中各種特性は、以下の方
法によって測定、評価したものである。 (1)熱可塑性フッ素系樹脂のメルトインデックス(M
FR) ASTM D1238に準じ、230℃、12.5kg
荷重にて測定した。単位g/10分。 (2)見かけ比重 試料の重量を、試料の巾*長さ*厚みで除した値を見か
け比重とした。 (3)結晶化度 差動熱量計(DSC)を用い、10℃/分で昇温した時
の結晶融解エンタルピーを、104.5J/g(ポリフ
ッ化ビニリデン100%結晶の文献値)で除した値の百
分率で示した。 (4)引張強伸度 試料を15mm巾に切断した短冊状とし、チャック間5
0mm、引張速度50mm/分で引っ張った時の破断強
さを、引張前の断面積で除した値を引張強度とした。引
張伸度は破断伸度を意味する。
EXAMPLES Hereinafter, the present invention will be described in detail with reference to examples, but it goes without saying that the present invention is not limited to these examples. The various characteristics in the examples are measured and evaluated by the following methods. (1) Melt index (M
FR) According to ASTM D1238, 230 ℃, 12.5kg
The load was measured. Unit g / 10 minutes. (2) Apparent specific gravity The value obtained by dividing the weight of the sample by the width * length * thickness of the sample was taken as the apparent specific gravity. (3) Crystallinity Using a differential calorimeter (DSC), the enthalpy of crystal fusion when heated at 10 ° C./min was divided by 104.5 J / g (reference value for 100% polyvinylidene fluoride crystals). It is shown as a percentage of the value. (4) Tensile strength and elongation The sample was cut into a strip with a width of 15 mm, and the gap between chucks was 5
The value obtained by dividing the breaking strength when pulled at 0 mm and a pulling speed of 50 mm / min by the cross-sectional area before pulling was taken as the tensile strength. Tensile elongation means elongation at break.

【0020】[0020]

【実施例1】MFR11のフッ化ビニリデンホモポリマ
ーを、先端に15cm巾のTダイを付けた一軸押出機を
用いて240℃にて溶融し、表面温度20℃の冷却ドラ
ム上に約200μm厚さのシートとして押し出した。本
シートの結晶化度は38%であった。(以下これを「原
反シート」という)該シートを2本のロール間で室温
(23℃)にて2.5倍に一軸延伸した。両端は少しネ
ックインしたが、厚さ105μmの多少白化したフィル
ムが得られた。本フィルムを顕微鏡観察したところ、巾
約0.5〜1μm、長さ約1〜10μmの扁平状細孔が
多数存在することが確認された。また見かけ比重は1.
6、引張強伸度130MPa、150%であり、延伸前
の原反シートの物性がそれぞれ1.78、60MPa、
250%であるのに比べ、比重は10%以上低くなった
上、強度は2倍以上向上し、しかも十分な伸度を保持し
ていることが分かった。
Example 1 A vinylidene fluoride homopolymer of MFR11 was melted at 240 ° C. using a uniaxial extruder with a T-die having a width of 15 cm, and the thickness was about 200 μm on a cooling drum having a surface temperature of 20 ° C. Extruded as a sheet of. The crystallinity of this sheet was 38%. The sheet was uniaxially stretched 2.5 times between the two rolls at room temperature (23 ° C.). Both ends were slightly necked in, but a slightly whitened film having a thickness of 105 μm was obtained. When the film was observed under a microscope, it was confirmed that a large number of flat pores having a width of about 0.5 to 1 μm and a length of about 1 to 10 μm were present. The apparent specific gravity is 1.
6. Tensile strength and elongation are 130 MPa and 150%, and the physical properties of the raw sheet before stretching are 1.78 and 60 MPa, respectively.
It was found that the specific gravity was 10% or more lower than that of 250%, the strength was more than doubled, and sufficient elongation was maintained.

【0021】[0021]

【実施例2】実施例1で得た原反シートを130℃で3
0分間定長熱処理したところ、結晶化度は45%となっ
た。このシートを室温で2.1倍に延伸して得た厚さ約
120μmのフィルムは、見かけ比重1.58、引張強
伸度140MPa、110%で、顕微鏡で見ると巾約1
μm、長さ5〜10μmの大きさの比較的そろった扁平
状細孔が多数観察された。
Example 2 The raw sheet obtained in Example 1 was heated at 130 ° C. for 3 days.
After performing a constant length heat treatment for 0 minutes, the crystallinity was 45%. A film having a thickness of about 120 μm obtained by stretching this sheet 2.1 times at room temperature has an apparent specific gravity of 1.58, a tensile strength and elongation of 140 MPa, 110%, and a width of about 1 when viewed with a microscope.
A large number of relatively uniform flat pores having a size of μm and a length of 5 to 10 μm were observed.

【0022】[0022]

【比較例1】実施例1で得た原反シートを120℃で3
倍に熱延伸したところ、引張強度は190MPaと飛躍
的に向上したが、見かけ比重は1.79であり、細孔は
観察されなかった。この熱延伸フィルムを更に1.3倍
に冷延伸しても細孔は観察されなかった。
[Comparative Example 1] The raw sheet obtained in Example 1 was heated at 120 ° C for 3 days.
When stretched twice, the tensile strength was dramatically improved to 190 MPa, but the apparent specific gravity was 1.79, and no pores were observed. No pores were observed when the hot-stretched film was cold-stretched 1.3 times.

【0023】[0023]

【実施例3、比較例2】ヘキサフルオロプロピレンを4
%共重合したMFR5のポリフッ化ビニリデン(実施例
3)、及びヘキサフルオロプロピレンを14%共重合し
たMFR7のポリフッ化ビニリデン(比較例2)を、実
施例1で用いた同じ設備でそれぞれ230℃、220℃
で押し出し、原反シートを得た。ともに3.5倍に冷延
伸したが、実施例3のフィルムは巾0.3〜3μm、長
さ0.8〜8μmの細孔が観察されたのに対して、比較
例2のフィルムは細孔が観察されなかった。
Example 3, Comparative Example 2 Hexafluoropropylene 4
% Polyvinylidene fluoride of MFR5 copolymerized (Example 3) and polyvinylidene fluoride of MFR7 copolymerized with 14% of hexafluoropropylene (Comparative Example 2) at 230 ° C. in the same equipment used in Example 1, respectively. 220 ° C
Then, it was extruded to obtain a raw sheet. Both were cold-stretched 3.5 times, but in the film of Example 3, pores having a width of 0.3 to 3 μm and a length of 0.8 to 8 μm were observed, whereas the film of Comparative Example 2 was thin. No holes were observed.

【0024】[0024]

【実施例4】負極活性物質担持体として石炭ピッチコー
クスをボールミルで粉砕したもの100重量部を、結着
剤としてポリフッ化ビニリデン(エルフ・アトケム社
製、カイナー500、230℃、2.16kg荷重下で
のMFRが0.03g/10分)10重量部をN−メチ
ルピロリドンに溶解してなる溶液に添加してスラリー
(ペースト)状にした。このスラリーを、厚さ20μm
の銅箔の両面に塗布し、120℃で1時間放置した後、
減圧乾燥、プレスを行い厚さ140μm、幅20mmの
負極を得た。
Example 4 100 parts by weight of coal pitch coke crushed by a ball mill as a negative electrode active material-supporting material was used as a binder, polyvinylidene fluoride (manufactured by Elf Atchem, Kainer 500, 230 ° C., under 2.16 kg load). 10 parts by weight (having an MFR of 0.03 g / 10 min.) Was added to a solution of N-methylpyrrolidone to form a slurry (paste). This slurry has a thickness of 20 μm
After applying on both sides of the copper foil of, and left for 1 hour at 120 ℃,
It was dried under reduced pressure and pressed to obtain a negative electrode having a thickness of 140 μm and a width of 20 mm.

【0025】次に、正極を次のようにして得た。正極活
性物質としてのLiCoO2100重量部と導電剤とし
てのグラファイト6重量部とを、結着剤としてのポリフ
ッ化ビニリデン10重量部をN−メチルピロリドン中に
分散させてスラリー(ペースト)状にした。このスラリ
ーを、厚さ20μmのアルミニウム箔の両面に塗布し、
120℃で1時間放置した後、減圧乾燥、プレスを行
い、厚さ175μm、幅20mmの正極を得た。
Next, a positive electrode was obtained as follows. 100 parts by weight of LiCoO 2 as a positive electrode active material and 6 parts by weight of graphite as a conductive agent were dispersed in 10 parts by weight of polyvinylidene fluoride as a binder in N-methylpyrrolidone to form a slurry (paste). . This slurry is applied to both sides of an aluminum foil having a thickness of 20 μm,
After leaving at 120 ° C. for 1 hour, vacuum drying and pressing were performed to obtain a positive electrode having a thickness of 175 μm and a width of 20 mm.

【0026】また、得られた負極、正極、およびセパレ
ータとして実施例1と同様の方法で作製した厚さ30μ
mの多孔性フィルムを用い、セパレータ、負極、セパレ
ータ、正極、セパレータの順に積層した後、この積層体
を渦巻状に巻回することにより渦巻式の電極体を作製し
た。ついでこの電極体のそれぞれの極にリード線を付け
た後、ステンレスの缶に収容し、これに電解液としてプ
ロピレンカーボネートと1,2−ジメトキシエタンとの
等容量混合溶媒中にLiPF6を1M溶解した溶液を注
入した。
Further, the obtained negative electrode, positive electrode, and separator were manufactured in the same manner as in Example 1 and had a thickness of 30 μm.
Using a porous film of m, a separator, a negative electrode, a separator, a positive electrode, and a separator were laminated in this order, and then the spirally wound electrode body was produced by spirally winding the laminated body. Then, after attaching a lead wire to each electrode of the electrode body, the electrode body was housed in a stainless steel can, and 1 M of LiPF 6 was dissolved in an equal volume mixed solvent of propylene carbonate and 1,2-dimethoxyethane as an electrolytic solution. The injected solution was injected.

【0027】充放電試験は、炭素1gあたり30mAの
電流密度で、初めに4.1Vまで充電を行い、続いて同
じ電流で2.5Vまで放電を行った。2回目以降もこれ
と同じ条件で充放電を繰り返し、放電容量にて電池の評
価を行った。その結果、100サイクル目の放電容量
は、10サイクル目のそれの60%以上と良好であっ
た。
In the charge / discharge test, a current density of 30 mA / g of carbon was used to initially charge the battery to 4.1 V, and then the same current was discharged to 2.5 V. After the second time, charging and discharging were repeated under the same conditions, and the battery was evaluated by the discharge capacity. As a result, the discharge capacity at the 100th cycle was as good as 60% or more of that at the 10th cycle.

【0028】[0028]

【発明の効果】以上説明したように、本発明の多孔体は
軽量且つ機械的特性に優れ、各種濾過材料、分離膜等に
有用である。さらにリチウム電池等のセパレータに応用
すれば、PVDFは難燃性であるため、ポリエチレン製
のセパレータを用いる場合よりも安全性の高い電池とな
る。
As described above, the porous body of the present invention is lightweight and has excellent mechanical properties and is useful for various filtration materials, separation membranes and the like. Further, when applied to a separator such as a lithium battery, PVDF is flame-retardant, so that the battery has higher safety than the case where a polyethylene separator is used.

───────────────────────────────────────────────────── フロントページの続き (51)Int.Cl.6 識別記号 庁内整理番号 FI 技術表示箇所 C08L 27:12 (72)発明者 宮木 義行 京都府京都市下京区中堂寺粟田町1番地 エルフ・アトケム・ジャパン株式会社京都 テクニカルセンター内─────────────────────────────────────────────────── ─── Continuation of the front page (51) Int.Cl. 6 Identification number Reference number in the agency FI Technical display location C08L 27:12 (72) Inventor Yoshiyuki Miyaki 1 Awata-cho, Nakado-ji, Shimogyo-ku, Kyoto, Kyoto Elf Atchem Japan Co., Ltd. Kyoto Technical Center

Claims (12)

【特許請求の範囲】[Claims] 【請求項1】 樹脂の構成単位としてフッ化ビニリデン
を少なくとも90重量%含有する熱可塑性フッ素系樹脂
からなり、巾(短径)0.1〜3μm、長さ(長径)
0.5〜20μmの扁平状細孔を有することを特徴とす
る熱可塑性フッ素系樹脂多孔体。
1. A thermoplastic fluororesin containing at least 90% by weight of vinylidene fluoride as a constitutional unit of a resin, having a width (minor axis) of 0.1 to 3 μm and a length (major axis).
A thermoplastic fluororesin porous body having a flat pore size of 0.5 to 20 μm.
【請求項2】 多孔体がシート状物、或いは中空状物で
あることを特徴とする請求項1の熱可塑性フッ素系樹脂
多孔体。
2. The thermoplastic fluororesin porous material according to claim 1, wherein the porous material is a sheet-shaped material or a hollow material.
【請求項3】 ポリフッ化ビニリデンをシート状或いは
中空状に溶融押し出した後冷延伸し、多数の扁平状細孔
を生じさせることによって見かけ比重を1.7以下とす
ることを特徴とする熱可塑性フッ素系樹脂多孔体の製造
方法。
3. A thermoplastic resin characterized in that an apparent specific gravity is 1.7 or less by melt-extruding polyvinylidene fluoride into a sheet shape or a hollow shape and then cold-stretching to generate a large number of flat pores. Method for producing porous fluororesin.
【請求項4】 ポリフッ化ビニリデンをシート状或いは
中空状に溶融押し出した後熱処理し、結晶化度を40%
以上とした後冷延伸して多数の扁平状細孔を生じさせる
ことによって見かけ比重を1.7以下とすることを特徴
とする熱可塑性フッ素系樹脂多孔体の製造方法。
4. Polyvinylidene fluoride is melt extruded into a sheet shape or a hollow shape and then heat-treated to obtain a crystallinity of 40%.
A method for producing a thermoplastic fluororesin porous material, which has an apparent specific gravity of 1.7 or less by forming a large number of flat pores by the above-mentioned cold stretching.
【請求項5】 ポリフッ化ビニリデンをシート状或いは
中空状に溶融押し出した後熱処理し、結晶化度を40%
以上とした後冷延伸して多数の扁平状細孔を生じさせ、
しかる後再熱処理によってその細孔を固定することを特
徴とする請求項1の熱可塑性フッ素系樹脂多孔体の製造
方法。
5. Polyvinylidene fluoride is melt extruded into a sheet shape or a hollow shape and then heat treated to have a crystallinity of 40%.
After the above, cold drawing is performed to generate a large number of flat pores,
The method for producing a thermoplastic fluororesin porous material according to claim 1, wherein the pores are fixed by subsequent heat treatment.
【請求項6】 ポリフッ化ビニリデンをシート状或いは
中空状に溶融押し出した後冷延伸し、放射線あるいは化
学処理により架橋することを特徴とする請求項1の熱可
塑性フッ素系樹脂多孔体の製造方法。
6. The method for producing a thermoplastic fluororesin porous material according to claim 1, wherein the polyvinylidene fluoride is melt-extruded into a sheet or hollow shape, cold-stretched, and crosslinked by radiation or chemical treatment.
【請求項7】 陽極、陰極、およびセパレータから構成
される電池において、セパレータと電極の少なくとも1
つが熱可塑性フッ素系樹脂多孔体から構成され、その熱
可塑性フッ素系樹脂多孔体が、樹脂の構成単位としてフ
ッ化ビニリデンを少なくとも90重量%含有する熱可塑
性フッ素系樹脂からなり、巾(短径)0.1〜3μm、
長さ(長径)0.5〜20μmの扁平状細孔を有する電
池の製造方法。
7. A battery comprising an anode, a cathode, and a separator, wherein at least one of the separator and the electrode.
Is composed of a thermoplastic fluororesin porous material, and the thermoplastic fluororesin porous material is composed of a thermoplastic fluororesin containing at least 90% by weight of vinylidene fluoride as a constitutional unit of the resin, and has a width (minor diameter). 0.1-3 μm,
A method for producing a battery having flat pores having a length (major axis) of 0.5 to 20 μm.
【請求項8】 熱可塑性フッ素系樹脂多孔体が、ポリフ
ッ化ビニリデンをシート状に溶融押し出した後冷延伸
し、多数の扁平状細孔を生じさせることによって見かけ
比重を1.7以下として得られたものであることを特徴
とする請求項7の電池の製造方法。
8. A thermoplastic fluororesin porous material having a specific gravity of 1.7 or less is obtained by melting and extruding polyvinylidene fluoride into a sheet and then cold-drawing to produce a large number of flat pores. The method for manufacturing a battery according to claim 7, wherein the battery is a battery.
【請求項9】 熱可塑性フッ素系樹脂多孔体が、放射線
あるいは化学処理により架橋されていることを特徴とす
る請求項7の電池の製造方法。
9. The method for producing a battery according to claim 7, wherein the thermoplastic fluororesin porous material is crosslinked by radiation or chemical treatment.
【請求項10】 樹脂の構成単位としてフッ化ビニリデ
ンを少なくとも90重量%含有する熱可塑性フッ素系樹
脂からなり、巾(短径)0.1〜3μm、長さ(長径)
0.5〜20μmの扁平状細孔を有することを特徴とす
る熱可塑性フッ素系樹脂シートからなるバッテリーセパ
レータ。
10. A thermoplastic fluororesin containing at least 90% by weight of vinylidene fluoride as a constitutional unit of the resin, having a width (minor axis) of 0.1 to 3 μm and a length (major axis).
A battery separator comprising a thermoplastic fluororesin sheet having flat pores of 0.5 to 20 μm.
【請求項11】 ポリフッ化ビニリデンをシート状に溶
融押し出した後冷延伸し、多数の扁平状細孔を生じさせ
ることによって見かけ比重を1.7以下として得られた
ものであることを特徴とする請求項10のバッテリーセ
パレータ。
11. The polyvinylidene fluoride is obtained by melting and extruding polyvinylidene fluoride into a sheet and then cold-drawing to produce a large number of flat pores with an apparent specific gravity of 1.7 or less. The battery separator according to claim 10.
【請求項12】 放射線あるいは化学処理により架橋さ
れていることを特徴とする請求項10のバッテリーセパ
レータ。
12. The battery separator according to claim 10, which is crosslinked by radiation or chemical treatment.
JP9040392A 1996-03-01 1997-02-25 Porous thermoplastic fluoroplastic body, its production and production of battery Pending JPH09328566A (en)

Priority Applications (2)

Application Number Priority Date Filing Date Title
JP9040392A JPH09328566A (en) 1996-03-01 1997-02-25 Porous thermoplastic fluoroplastic body, its production and production of battery
PCT/EP1997/004885 WO1998038029A1 (en) 1997-02-25 1997-08-28 A thermoplastic fluororesin porous body, a method for the production thereof and use of said porous body for producing a battery cell

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
JP4393796 1996-03-01
JP8-43937 1996-03-01
JP9040392A JPH09328566A (en) 1996-03-01 1997-02-25 Porous thermoplastic fluoroplastic body, its production and production of battery

Publications (1)

Publication Number Publication Date
JPH09328566A true JPH09328566A (en) 1997-12-22

Family

ID=26379853

Family Applications (1)

Application Number Title Priority Date Filing Date
JP9040392A Pending JPH09328566A (en) 1996-03-01 1997-02-25 Porous thermoplastic fluoroplastic body, its production and production of battery

Country Status (1)

Country Link
JP (1) JPH09328566A (en)

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2001148243A (en) * 1999-11-19 2001-05-29 Matsushita Electric Ind Co Ltd Manufacturing method of battery electrode sheet and manufacturing method of electrolyte sheet
JP2004503913A (en) * 2000-06-15 2004-02-05 エイイーエイ テクノロジー バッテリー システムズ リミテッド Battery incorporating a porous membrane
JP2007505185A (en) * 2003-09-12 2007-03-08 スリーエム イノベイティブ プロパティズ カンパニー Microporous PVDF film and manufacturing method
WO2008018181A1 (en) * 2006-08-10 2008-02-14 Kuraray Co., Ltd. Porous membrane of vinylidene fluoride resin and process for producing the same
JP4988973B1 (en) * 2011-04-08 2012-08-01 帝人株式会社 Nonaqueous secondary battery separator and nonaqueous secondary battery
WO2012137377A1 (en) * 2011-04-08 2012-10-11 帝人株式会社 Nonaqueous secondary battery separator and nonaqueous secondary battery

Cited By (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2001148243A (en) * 1999-11-19 2001-05-29 Matsushita Electric Ind Co Ltd Manufacturing method of battery electrode sheet and manufacturing method of electrolyte sheet
JP2004503913A (en) * 2000-06-15 2004-02-05 エイイーエイ テクノロジー バッテリー システムズ リミテッド Battery incorporating a porous membrane
JP2007505185A (en) * 2003-09-12 2007-03-08 スリーエム イノベイティブ プロパティズ カンパニー Microporous PVDF film and manufacturing method
JP4824561B2 (en) * 2003-09-12 2011-11-30 スリーエム イノベイティブ プロパティズ カンパニー Microporous PVDF film and manufacturing method
WO2008018181A1 (en) * 2006-08-10 2008-02-14 Kuraray Co., Ltd. Porous membrane of vinylidene fluoride resin and process for producing the same
US7909178B2 (en) 2006-08-10 2011-03-22 Kuraray Co., Ltd. Porous membrane of vinylidene fluoride resin and process for producing the same
JP4988973B1 (en) * 2011-04-08 2012-08-01 帝人株式会社 Nonaqueous secondary battery separator and nonaqueous secondary battery
WO2012137377A1 (en) * 2011-04-08 2012-10-11 帝人株式会社 Nonaqueous secondary battery separator and nonaqueous secondary battery
US9269938B2 (en) 2011-04-08 2016-02-23 Teijin Limited Separator for nonaqueous secondary battery, and nonaqueous secondary battery

Similar Documents

Publication Publication Date Title
JP2883726B2 (en) Manufacturing method of battery separator
JP5497635B2 (en) Polyolefin microporous membrane, method for producing the same, battery separator and battery
CN109997247B (en) Nano porous ultra-high molecular weight polyethylene film
TWI700851B (en) Polyolefin microporous membrane, separator for non-aqueous electrolyte secondary battery, and non-aqueous electrolyte secondary battery
WO2004089627A1 (en) Polyolefin microporous membrane
JP6823718B2 (en) Polyolefin microporous membranes, separators for power storage devices, and power storage devices
TW201836852A (en) Polyolefin microporous film
US20170069893A1 (en) Method for manufacturing porous film, porous film, and electro-chemical battery and separator including the porous film
JP7409301B2 (en) Microporous polyolefin membrane and method for producing microporous polyolefin membrane
JP4220329B2 (en) Polyolefin microporous membrane and method for producing the same
JP5450944B2 (en) Polyolefin microporous membrane, battery separator and battery
KR20170029399A (en) Method for manufacturing porous film, the porous film, and electro-chemical battery or separator comprising the porous film
JP5295857B2 (en) Nonaqueous electrolyte battery separator and nonaqueous electrolyte battery
JP2020084084A (en) Polyolefin microporous film
JPH09328566A (en) Porous thermoplastic fluoroplastic body, its production and production of battery
JP2000348703A (en) Separator for battery and lithium battery using same
JP2019102126A (en) Battery separator and non-aqueous electrolyte secondary battery
JP2012087223A (en) Microporous film, and battery separator
JP6598911B2 (en) Manufacturing method of polyolefin microporous membrane, battery separator, and non-aqueous electrolyte secondary battery
WO1998038029A1 (en) A thermoplastic fluororesin porous body, a method for the production thereof and use of said porous body for producing a battery cell
JP6347801B2 (en) Manufacturing method of polyolefin microporous membrane, battery separator, and non-aqueous electrolyte secondary battery
JP2015136809A (en) Method for producing polyolefin microporous film, battery separator and nonaqueous electrolyte secondary battery
JP7152435B2 (en) Polyolefin microporous membrane
JP6201500B2 (en) Fluorine resin porous body
JP6988880B2 (en) Polyolefin microporous membrane

Legal Events

Date Code Title Description
LAPS Cancellation because of no payment of annual fees