JP3370930B2 - Manufacturing method of high-strength cold-rolled steel sheet excellent in perforation corrosion resistance and deep drawability - Google Patents

Manufacturing method of high-strength cold-rolled steel sheet excellent in perforation corrosion resistance and deep drawability

Info

Publication number
JP3370930B2
JP3370930B2 JP10618298A JP10618298A JP3370930B2 JP 3370930 B2 JP3370930 B2 JP 3370930B2 JP 10618298 A JP10618298 A JP 10618298A JP 10618298 A JP10618298 A JP 10618298A JP 3370930 B2 JP3370930 B2 JP 3370930B2
Authority
JP
Japan
Prior art keywords
corrosion resistance
steel sheet
deep drawability
steel
less
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP10618298A
Other languages
Japanese (ja)
Other versions
JPH11293346A (en
Inventor
正明 三浦
一郎 塚谷
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Kobe Steel Ltd
Original Assignee
Kobe Steel Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Kobe Steel Ltd filed Critical Kobe Steel Ltd
Priority to JP10618298A priority Critical patent/JP3370930B2/en
Publication of JPH11293346A publication Critical patent/JPH11293346A/en
Application granted granted Critical
Publication of JP3370930B2 publication Critical patent/JP3370930B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Landscapes

  • Heat Treatment Of Steel (AREA)
  • Heat Treatment Of Sheet Steel (AREA)

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【発明が属する技術分野】本発明は、自動車用鋼板など
に用いて好適な深絞り性を有し、さらに340N/mm
級の高強度を有し、かつ優れた耐孔あき腐食性を有
する冷延鋼板の製造方法に関するものである。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention has a deep drawability suitable for use in steel plates for automobiles and the like, and further has 340 N / mm.
The present invention relates to a method for producing a cold-rolled steel sheet having high-grade second strength and excellent perforation corrosion resistance.

【0002】[0002]

【従来の技術】近年、自動車の車体軽量化および安全性
向上を目的として、引張強さが310〜440N/mm
で、かつ優れた深絞り性を有する冷延鋼板が要求さ
れるようになってきた。従来より低炭素Alキルド鋼や
極低炭素鋼をベースにTiなどを添加したものにSi、
Mn、P、Crを添加して強度を上げた深絞り用高強度
鋼板については多くの提案がある。例えば、特公昭57
−57945号公報においては低炭素Ti添加鋼にPを
添加した冷延鋼板が、また特公昭58−29129号公
報ににおいては極低炭素Ti添加鋼にMnを添加した冷
延鋼板が開示されている。これらは、自動車用鋼板にお
いて、特に深絞り性と強度を同時に付与するための技術
であって、その結果、自動車用鋼板の薄肉化すなわち軽
量化を達成しようとするものである。
2. Description of the Related Art In recent years, in order to reduce the weight and safety of automobile bodies, the tensile strength is 310 to 440 N / mm.
2 and a cold-rolled steel sheet having excellent deep drawability has been required. Low carbon Al killed steel and ultra low carbon steel with Si added to the base,
There are many proposals for deep-drawing high-strength steel sheets in which Mn, P, and Cr are added to increase the strength. For example, Japanese Patent Publication Sho 57
No. 57945 discloses a cold-rolled steel sheet obtained by adding P to a low-carbon Ti-added steel, and Japanese Patent Publication No. 58-29129 discloses a cold-rolled steel sheet obtained by adding Mn to an extremely low-carbon Ti-added steel. There is. These are techniques for simultaneously imparting deep drawability and strength to a steel sheet for automobiles, and as a result, attempt to achieve thinning, that is, weight reduction of the steel sheet for automobiles.

【0003】一方、自動車に用いられる鋼板は雨中での
走行、大きな温度変化など、厳しい腐食環境で使用され
るため、強度や加工性のほかに耐食性が求められる。特
に、北米や北欧など、冬季に凍結防止材(NaCl,K
Cl,MgClなど)や滑り止めのための砂利を散布す
る地域では、塗膜を破壊する砂利と鋼板の腐食を促進す
るClイオンの存在下での乾湿繰返し状態となるた
め、極めて優れた耐孔あき腐食性が要求される。
On the other hand, steel sheets used for automobiles are used in severe corrosive environments such as running in the rain and large temperature changes, so that corrosion resistance is required in addition to strength and workability. Especially in North America, Northern Europe, etc., antifreeze materials (NaCl, K
(Cl, MgCl, etc.) and gravel for non-slip application, the gravel that destroys the coating film and the Cl ion that promotes corrosion of the steel sheet are repeatedly dried and wet, resulting in extremely excellent resistance to corrosion. Perforated and corrosive is required.

【0004】上記のとおり、近年、自動車の軽量化の観
点から高強度冷延鋼板が採用され、自動車用鋼板の板厚
を減少することが可能となったが、一方で板厚減少に伴
う耐食性、特に孔食の問題が重要になっており、優れた
深絞り性とともにより一層の耐孔あき腐食性の優れた高
強度冷延鋼板が要求されるようになってきた。
As described above, in recent years, high-strength cold-rolled steel sheets have been adopted from the viewpoint of reducing the weight of automobiles, and it has become possible to reduce the thickness of automobile steel sheets. Particularly, the problem of pitting corrosion has become important, and a high-strength cold-rolled steel sheet having excellent deep drawability and further excellent pitting corrosion resistance has been required.

【0005】このような状況から、従来より自動車用鋼
板には亜鉛めっきを施すなどの耐食性改善に加えて、鋼
板自体の耐食性、特に耐孔あき腐食性を改善する技術が
検討されている。例えば、特開平2−22416号公報
には、P、Cuの単独あるいは複合添加により緻密な錆
層を形成させることで耐食性を改善する技術が開示され
ている。
Under these circumstances, a technique for improving the corrosion resistance of the steel sheet itself, in particular, the perforation corrosion resistance, has been studied in addition to the corrosion resistance improvement such as galvanizing the steel sheet for automobiles. For example, JP-A-2-22416 discloses a technique of improving corrosion resistance by forming a dense rust layer by adding P or Cu singly or in combination.

【0006】この技術は自動車足回り部品への適用を意
図した熱延原板の合金化溶融亜鉛めっき鋼板に関するも
のであり、耐食性向上のためにPを0.05%以上添加
するとともに、孔食の起点となるFeSやMnSの生成
を抑制するためにSを0.01%以下、実質的には0.
005%以下に規制している。Pを多量に添加している
ため、本発明が意図する強度クラスの鋼板を得るのが困
難であり、また、Sに関しても、当該公報の技術がTi
を含まない低炭素鋼をベースにしているため、上述のよ
うな規定が必要になってくると推定される。
This technique relates to an alloyed hot-dip galvanized steel sheet of a hot-rolled original sheet intended to be applied to an automobile undercarriage part, in which P is added in an amount of 0.05% or more to improve corrosion resistance, and In order to suppress the generation of FeS and MnS which are the starting points, S is 0.01% or less, and is substantially 0.
It is regulated to 005% or less. Since a large amount of P is added, it is difficult to obtain a steel sheet of the strength class intended by the present invention. Further, as for S, the technique of the publication is Ti.
Since it is based on low carbon steel that does not contain, it is presumed that the above-mentioned regulations will be required.

【0007】一方、本発明が意図する強度クラスの自動
車用高強度鋼板の耐食性改善方法としては、例えば特開
平4−246128号(特公平7−57893号)公
報、特開平5−195078号公報に開示されているよ
うに、PおよびCuの複合添加により耐食性が向上する
ことは良く知られている。
On the other hand, as a method for improving the corrosion resistance of high-strength steel sheets for automobiles of the strength class intended by the present invention, for example, JP-A-4-246128 (Japanese Patent Publication No. 7-57893) and JP-A-5-195078 are disclosed. As disclosed, it is well known that the combined addition of P and Cu improves the corrosion resistance.

【0008】[0008]

【発明が解決しようとする課題】しかしながら、前記公
報に開示の技術は、P添加に関して、請求項の範囲は
0.03%以上となっているものの、実施例べ一スでは
0.06%以上添加されているのが実情であり、耐食性
はP添加量に依存し、0.06%未満では十分な耐食性
が得られていないものと堆定される。
However, in the technique disclosed in the above publication, although the claimed range is 0.03% or more with respect to P addition, 0.06% or more in the embodiment base. It is the fact that they are added, and the corrosion resistance depends on the amount of P added, and if it is less than 0.06%, it is determined that sufficient corrosion resistance is not obtained.

【0009】一方、特開平9−67626号公報におい
ては、極低炭素鋼をベースに固溶Ti量を0.02〜
0.3%とすると、Cuとの相互作用によりP含有量を
0.03%以下に規制しても耐食性の改善が得られるこ
とが記載されているが、P添加を控えることによる耐食
性のレベルや達成できる強度クラスが記載されていない
ため、実際の自動車用鋼板として適用可能か否かは明か
でない。
On the other hand, in Japanese Patent Laid-Open No. 9-67626, the amount of solid solution Ti is 0.02 to 0.02 based on ultra low carbon steel.
It is described that when the content is 0.3%, the corrosion resistance is improved even if the P content is restricted to 0.03% or less due to the interaction with Cu, but the level of the corrosion resistance by refraining from the addition of P Since the strength class that can be achieved is not described, it is not clear whether it can be applied as an actual steel sheet for automobiles.

【0010】以上のように、従来技術が抱えている問題
は、必要な強度や深絞り性、耐食性などの自動車用鋼板
として必要な特性を総合的に満足させるための配慮が欠
けている点であり、本発明の目的は、このような問題点
を克服することができる技術を確立することにある。
As described above, the problem of the prior art is that it lacks consideration for comprehensively satisfying the necessary properties such as required strength, deep drawability, corrosion resistance and the like as a steel sheet for automobiles. Therefore, an object of the present invention is to establish a technique capable of overcoming such problems.

【0011】[0011]

【課題を解決するための手段】本発明者は上記目的の実
現に向けて鋭意研究を重ねた結果、以下の鋼成分および
製造条件に従うとき、極めて優れた耐孔あき腐食性と深
絞り性を有する高強度冷延領板の製造が可能になること
を見出し、本発明を完成したものである。すなわち、本
発明の高強度冷延鋼板の製造方法は、重量%で、C :
0.01%以下、Si:0.5%以下、Mn:0.1〜
1.5%、S :0.005〜0.015%、Al:
0.01〜0.10%、N :0.006%以下、P
:0.030〜0.060%、Cu:0.1〜0.5
%、有効Ti:0.02〜0.15%(但し、有効Ti=
全Ti%−(48/12)C%−(48/32)S%−(48/14)N
%)かつ、P、Cu、有効Tiが下記式(1) の関係を満
足し、およびNi:0.1〜0.5%を含有し、残部が
Feおよび不可避的不純物からなる鋼を1125℃以上
に加熱後、熱間圧延し、550〜750℃の範囲で巻取
り、酸洗し、60%以上の圧延率での冷間圧延後、引続
いて750〜950℃の温度範囲にて再結晶焼鈍する。
Cu%/64+(P%/31)×(3×10×有効Ti%
/48)≦0.01% …(1)
Means for Solving the Problems As a result of intensive studies for realizing the above-mentioned object, the present inventor has found that when the following steel composition and manufacturing conditions are followed, extremely excellent resistance to perforation corrosion and deep drawability are obtained. The inventors have completed the present invention by finding that it becomes possible to manufacture a high-strength cold-rolled sheet having the same. That is, the manufacturing method of the high-strength cold-rolled steel sheet according to the present invention is C:
0.01% or less, Si: 0.5% or less, Mn: 0.1
1.5%, S: 0.005 to 0.015%, Al:
0.01-0.10%, N: 0.006% or less, P
: 0.030 to 0.060%, Cu: 0.1 to 0.5
%, Effective Ti: 0.02 to 0.15% (however, effective Ti =
Total Ti%-(48/12) C%-(48/32) S%-(48/14) N
%) And P, Cu and effective Ti satisfy the relation of the following formula (1), and contain Ni: 0.1 to 0.5%, and the balance is Fe and inevitable impurities at 1125 ° C. After heating as above, hot rolling, winding in the range of 550 to 750 ° C, pickling, cold rolling at a rolling rate of 60% or more, and subsequent re-heating in the temperature range of 750 to 950 ° C. Crystal annealing.
Cu% / 64 + (P% / 31) × (3 × 10 3 × effective Ti%
/ 48) ≤ 0.01% (1)

【0012】まず、本発明を想到するに至った実験研究
について述べる。下記成分の鋼からなるシートバーを1
180℃に加熱し均熱後、仕上温度920℃、巻取温度
680℃で熱間圧延を施した。引続き、酸洗後、圧下率
80%で0.8mmまで冷間圧延を行い、850℃で60
sの再結晶焼鈍を施した。 ・鋼組成(重量%、残部実質的にFe) C:0.002%、Si:0.01%、Mn:0.30
%、P:0.015〜0.07%、S:0.008%、
Al:0.04%、N:0.0025%、有効Ti:
0.03〜0.08%、Cu:0.15〜0.45%、
Ni:0.15%
First, an experimental study that led to the present invention will be described. 1 sheet bar made of steel with the following ingredients
After heating to 180 ° C. and soaking, hot rolling was performed at a finishing temperature of 920 ° C. and a winding temperature of 680 ° C. Subsequently, after pickling, cold rolling was performed at a reduction rate of 80% to 0.8 mm, and at 850 ° C, 60
s recrystallization annealing was performed. Steel composition (% by weight, balance substantially Fe) C: 0.002%, Si: 0.01%, Mn: 0.30
%, P: 0.015 to 0.07%, S: 0.008%,
Al: 0.04%, N: 0.0025%, effective Ti:
0.03-0.08%, Cu: 0.15-0.45%,
Ni: 0.15%

【0013】得られた試料を用いて耐孔あき腐食性、深
絞り性を調べた。耐孔あき腐食性の評価は、鋼板にリン
酸塩処理を施した後、素地に達するクロスカットを入
れ、塩水散布(50℃の塩水を16時間散布)後、乾燥
(70℃で4時間保持)し、さらに湿潤(湿度85%で
4時間保持)を1サイクルとする腐食促進テストを50
サイクル行い、クロスカット部の腐食最大深さ(最大孔
あき深さ)を測定して行った。また、深絞り性は、圧延
方向に対して0,45,90度方向から試験片を採取
し、15%引張変形時の板幅歪みと板厚歪みの比r0,
r45,r90を測定し、下記式から平均r値を算出
し、この値により評価した。 平均r値=(r0+2r45+r90)/4
The samples thus obtained were examined for pitting corrosion resistance and deep drawability. To evaluate the resistance to pitting corrosion, after subjecting the steel sheet to phosphate treatment, insert a cross cut that reaches the substrate, spray salt water (spray salt water at 50 ° C for 16 hours), and dry (hold at 70 ° C for 4 hours. ), And a corrosion acceleration test with 50 cycles of humidity (85% humidity for 4 hours) as one cycle.
Cycling was performed to measure the maximum corrosion depth (maximum perforation depth) of the cross cut portion. Further, the deep drawability was obtained by taking test pieces from 0, 45, and 90 degrees with respect to the rolling direction, and measuring the ratio r0 of the plate width strain and the plate thickness strain at 15% tensile deformation,
r45 and r90 were measured, the average r value was calculated from the following formula, and this value was used for evaluation. Average r value = (r0 + 2r45 + r90) / 4

【0014】調査結果について、有効Ti量が0.03
%、0.05%および0.08%の各含有量におけるP
およびCu含有量が耐孔あき腐食性、深絞り性に与える
影響を整理したグラフを図1〜3に示す。なお、図1〜
3において、図中に付した数字は最大孔あき深さ、平均
r値を示す。
According to the investigation result, the effective Ti amount is 0.03.
%, 0.05% and 0.08% P
1 to 3 show graphs in which the effects of Cu content and Cu content on perforation corrosion resistance and deep drawability are arranged. 1 to
In Fig. 3, the numbers attached in the figure indicate the maximum perforation depth and the average r value.

【0015】図1〜3からわかるように、耐食性はPお
よびCu添加量を増加すると良好となるが、その必要量
はTi添加量に依存し、Ti添加量が多くなるとその必
要量が少なくなる。すなわち、P、CuおよびTi添加
量を増すと、単純にその総和で耐食性が向上するのでは
なく、Ti添加量を増加した場合に、特にP添加量を少
なく規定しないと良好な耐食性が得られないことが明ら
かとなった。
As can be seen from FIGS. 1 to 3, the corrosion resistance becomes better as the amount of P and Cu added increases, but the required amount depends on the amount of Ti added, and the required amount decreases as the amount of Ti added increases. . That is, if the amount of P, Cu and Ti added is increased, the corrosion resistance is not simply improved by the total amount thereof, but if the amount of Ti added is increased, good corrosion resistance can be obtained unless the amount of P added is particularly specified. It became clear that there is no.

【0016】図1〜3において、図中の斜線領域は耐孔
あき腐食性および深絞り性が良好な領域を示しており、
この領域の右下がりの限界線を式で表したものが下記式
(2)である。なお、各図には参考として有効Ti量が
0.02%および0.15%の場合の限界線(2点鎖
線)についても付記した。 Cu%/64+(P%/31)×(3×10×有効Ti%/48)=0.01% …(2)
In FIGS. 1 to 3, hatched regions in the drawings show regions having good perforation corrosion resistance and deep drawability,
The formula below is the lower right limit line of this area.
It is (2). For reference, the limit line (two-dot chain line) when the effective Ti amount is 0.02% and 0.15% is also added to each figure. Cu% / 64 + (P% / 31) × (3 × 10 3 × effective Ti% / 48) = 0.01% (2)

【0017】これらの関係が成り立つ理由は充分に解明
されていないが、次のように考えられる。極低炭素Ti
添加においてP添加量を増加すると鋼中にFeTiPな
る析出物を生成して、耐食性の向上に有効なPや固溶T
i量がかえって減少するためと堆定される。また、Fe
TiPの生成は深絞り性をも劣化させる。
The reason why these relationships are established has not been fully clarified, but is considered as follows. Ultra low carbon Ti
When the amount of P added is increased during the addition, precipitates such as FeTiP are formed in the steel, and P and solid solution T which are effective in improving corrosion resistance are formed.
It is settled because the i amount rather decreases. Also, Fe
The formation of TiP also deteriorates the deep drawability.

【0018】また、後述する表3の鋼種No.23〜28
の鋼を用いて、同様の条件で冷延鋼板を製造し、S含有
量が耐孔あき腐食性および深絞り性に与える影響を整理
したグラフを図4に示す。図4より、上記特性は鋼中の
S量にも依存し、S量が0.005〜0.015%、好
ましくは0.006〜0.013%の時にもっとも良好
な耐食性が得られることがわかる。
Further, steel types No. 23 to 28 in Table 3 described later
4 is used to manufacture a cold-rolled steel sheet under the same conditions, and FIG. 4 shows a graph in which the effects of the S content on the perforation corrosion resistance and the deep drawability are arranged. From FIG. 4, the above characteristics depend on the S content in the steel, and the best corrosion resistance can be obtained when the S content is 0.005 to 0.015%, preferably 0.006 to 0.013%. Recognize.

【0019】これまで、S量は、低ければ低いほど優れ
た耐食性を示すと考えられ、ほとんどの従来技術では実
施例レベルで0.005%以下に規定されており、特許
請求の範囲ではもう少し高い範囲に規制される場合もあ
るが、S許容範囲について、充分な検討がなされていた
わけではなく、特開平2−22416号公報で開示され
た、Tiを含まない低炭素鋼べ一スでは、SはFeSや
MnSを生成して耐食性を劣化させるという技術知識に
とらわれているためと堆定される。
Up to now, it has been considered that the lower the S content, the more excellent the corrosion resistance is, and in most of the prior arts, it is regulated to 0.005% or less at the practical level, and in the claims, it is a little higher. Although it may be regulated by the range, the S allowable range has not been sufficiently studied, and in the low carbon steel base containing no Ti disclosed in JP-A-2-22416, the S Is trapped in the technical knowledge that it produces FeS and MnS and deteriorates corrosion resistance.

【0020】本発明のような極低炭素Ti添加鋼におい
ては、FeSやMnSを生成せず、TiSやTi
を生成し、そのサイズがFeSやMnSに比べて
微細であるため、耐食性への悪影響が小さい。このた
め、S量の上限が大幅に緩和されるばかりか、0.01
5%以下では低炭素鋼をベースにしたものより良好な耐
食性を示す。一方、S量が過少であると、熱力学的にT
iSやTiの結合エネルギーが低下するた
め、これらを生成せず、固溶のSが存在するようになっ
たり、TiがFeTiPなどの析出物を生成して耐食性
や成形性を劣化させる。
FeS and MnS are not produced in the ultra low carbon Ti-added steel of the present invention, and TiS and Ti 4 C 2 are produced.
Since S 2 is generated and the size thereof is finer than that of FeS or MnS, the adverse effect on corrosion resistance is small. Therefore, not only the upper limit of the amount of S is significantly eased, but 0.01
If it is 5% or less, it shows better corrosion resistance than that based on low carbon steel. On the other hand, if the amount of S is too small, T
Since the binding energy of iS and Ti 4 C 2 S 2 is lowered, they are not produced and solid solution S is present, or Ti produces precipitates such as FeTiP to improve corrosion resistance and formability. Deteriorate.

【0021】本発明者らは以上の実験結果を基に種々検
討した結果、本発明を完成したものであり、ここで本発
明の冷延鋼板の成分限定理由を説明する。以下、元素量
の単位は全て重量%を意味する。
The present inventors have completed the present invention as a result of various studies based on the above experimental results, and the reasons for limiting the components of the cold-rolled steel sheet of the present invention will be explained here. Hereinafter, the unit of the amount of elements means% by weight.

【0022】C:0.01%以下 Cは量産鋼においては不可避な元素であり、鋼板の加工
性および耐食性の観点からは可能な限り少ないことが望
ましい。その含有量が0.01%以下ではさほどの悪影
響を及ぼさないので、上限を0.01%とした。好まし
くは、0.006%以下である。
C: 0.01% or less C is an unavoidable element in mass-produced steel, and it is desirable that C is as small as possible from the viewpoint of workability and corrosion resistance of steel sheet. When the content is 0.01% or less, it does not exert a bad influence so much, so the upper limit was made 0.01%. Preferably, it is 0.006% or less.

【0023】Si:0.5%以下 Siは鋼を強化する作用を有することから、所望の強度
に応じて必要量添加されるが、その量が0.5%を越え
ると深絞り性および熱延後の表面性状、合金化溶融亜鉛
めっき時のめっき密着牲を劣化させるので、上限を0.
5%とする。好ましくは、0.3%以下である。
Si: 0.5% or less Since Si has the effect of strengthening steel, it is added in the required amount according to the desired strength. However, if the amount exceeds 0.5%, deep drawability and heat resistance are increased. Since the surface properties after rolling and the plating adhesion during galvannealing are deteriorated, the upper limit is set to 0.
5%. It is preferably 0.3% or less.

【0024】Mn:0.1〜1.5% Mnは鋼を強化する作用を有することから、所望の強度
に応じて必要量添加されるが、0.1%未満では効果が
過少であるので下限を0.1%とした。一方、1.5%
を越えると深絞り性および耐食性を劣化させるので、上
限を1.5%とした。好ましくは、0.2〜1.0%で
ある。
Mn: 0.1 to 1.5% Mn has the effect of strengthening the steel, so it is added in the required amount according to the desired strength, but if it is less than 0.1%, the effect is too small. The lower limit was 0.1%. On the other hand, 1.5%
If it exceeds 1.0, the deep drawability and corrosion resistance deteriorate, so the upper limit was made 1.5%. It is preferably 0.2 to 1.0%.

【0025】S:0.005〜0.015% Sは本発明において重要な役割を担う元素である。従
来、Sは低いほど耐食性が向上すると考えられてきた
が、本発明のような極低炭素Ti添加鋼においては、F
eSやMnSを生成せず、TiSやTi
生成し、そのサイズがFeSやMnSに比べて微細であ
ることや、地鉄との電位差が小さいため腐食の起点とな
りにくく、耐食性への悪影響が小さい。この理由はS量
が0.005%未満では、熱力学的にTiSやTi
の結合エネルギーが低下してこれらの析出物を
生成せず、固溶のSが存在するようになったり、Tiが
FeTiPなどの析出物を生成するためと堆定される。
このため、0.005%以上でも良好な耐食性や成形性
が得られるので、0.005%を下限とした。一方、
0.015%を越えると、TiSやTi
言えども、量的に多くなり、地鉄との電位差による腐食
の起点となるため耐あき腐食性が劣化するので、0.0
15%を上限とした。好ましくは、0.006〜0.0
13%である。
S: 0.005-0.015% S is an element that plays an important role in the present invention. Conventionally, it has been considered that the lower the S, the higher the corrosion resistance, but in the ultra low carbon Ti-added steel as in the present invention, the F
It does not produce eS or MnS, but produces TiS or Ti 4 C 2 S 2 , its size is finer than that of FeS or MnS, and the potential difference from the base iron is small, so it does not easily become the starting point of corrosion, and corrosion resistance The adverse effect on The reason for this is that if the S content is less than 0.005%, TiS and Ti 4 C are thermodynamically determined.
This is because the binding energy of 2 S 2 is reduced and these precipitates are not formed, and solid solution S is present, or Ti forms precipitates such as FeTiP.
Therefore, good corrosion resistance and formability can be obtained even with 0.005% or more, so 0.005% was made the lower limit. on the other hand,
If it exceeds 0.015%, even TiS and Ti 4 C 2 S 2 will increase in quantity, and they will become the starting point of corrosion due to the potential difference with the base iron, and the corrosion resistance will deteriorate.
The upper limit was 15%. Preferably 0.006 to 0.0
13%.

【0026】Al:0.01〜0.10% Alは脱酸の目的で添加するが、0.01%未満ではそ
の効果が過少であり、鋼中の酸素含有量を低減できない
ので、これを下限とする。−方、0.10%を越えると
この効果が飽和するので、これを上限とする。好ましく
は、0.02〜0.07%である。
Al: 0.01 to 0.10% Al is added for the purpose of deoxidation, but if it is less than 0.01%, its effect is too small to reduce the oxygen content in the steel. The lower limit. On the other hand, if it exceeds 0.10%, this effect is saturated, so this is the upper limit. It is preferably 0.02 to 0.07%.

【0027】N:0.006% NはTiを含有する鋼中ではTiと結合してTiNを形
成する。このような析出物は腐食の起点となるばかりで
なく、耐孔あき腐食性の向上に寄与する有効なTiを減
少させるため、N量は出来るだけ低減することが望まし
く、その上限を0.006%とする。好ましくは、0.
004%以下である。
N: 0.006% N combines with Ti to form TiN in a steel containing Ti. Such a precipitate not only serves as a starting point of corrosion but also reduces effective Ti that contributes to the improvement of pitting corrosion resistance, so it is desirable to reduce the amount of N as much as possible, and the upper limit thereof is 0.006. %. Preferably, 0.
It is 004% or less.

【0028】P:0.030〜0.060% Pは本発明において重要な役割を担う元素であり、鋼を
強化する作用があるとともにCuとの複合添加により鋼
板の耐食性を改善させる効果があるので、必要量を添加
する。その添加量が0.030%未満ではかかる効果が
過少であるので、0.030%を下限とする。一方、P
添加量が0.060%を越えると鋼中にFeTiPなる
析出物を生成して、耐食性の向上に有効なPや固溶Ti
量がかえって減少し、引いては耐孔あき腐食性や深絞り
性を劣化させるので、0.060%を上限とした。好ま
しくは、0.035〜0.055%である。さらに、T
iおよびCu含有量にも依存する式(1) の条件により決
定されるP量を超えては耐孔あき腐食性の向上に対して
効果がないばかりか、必要な強度および優れた深絞り性
が得られないので、式(1) を満足する範囲に止める。
P: 0.030 to 0.060% P is an element that plays an important role in the present invention and has the effect of strengthening the steel and the effect of improving the corrosion resistance of the steel sheet by the combined addition of Cu. So add the required amount. If the addition amount is less than 0.030%, the effect is too small, so 0.030% is made the lower limit. On the other hand, P
If the addition amount exceeds 0.060%, FeTiP precipitates are formed in the steel, and P or solid solution Ti that is effective in improving corrosion resistance is formed.
The amount is rather decreased, and the perforation corrosion resistance and deep drawability are deteriorated, so 0.060% was made the upper limit. Preferably, it is 0.035 to 0.055%. Furthermore, T
Beyond the P content determined by the condition of formula (1), which also depends on the i and Cu contents, there is no effect on the improvement of pitting corrosion resistance, and the required strength and excellent deep drawability are obtained. Since it cannot be obtained, the equation (1) is limited to the range satisfying.

【0029】Cu:0.1〜0.5% CuはPと同様、本発明においては重要な役割を担う添
加元素であり、単独の添加でも鋼板の表面に生成する錆
層を緻密化して耐食性を向上させる元素であるが、Pお
よび固溶Tiの共存により、さらに鋼板に優れた耐孔あ
き腐食性を付与することができる。0.1%未満ではか
かる効果が過少であるので0.1%を下限とする。−
方、0.5%を超えると耐孔あき腐食性の効果が飽和
し、また加工性も劣化するので、これを上限とする。好
ましくは、0.2〜0.4%である。さらにPおよび固
溶Ti含有量との関係で規定される式(1) を満足する範
囲外では前記耐食性向上効果が顕著でないので、式(1)
を満足する範囲に止める。
Cu: 0.1 to 0.5% Like P, Cu is an additive element that plays an important role in the present invention, and even if added alone, the rust layer formed on the surface of the steel sheet is densified and corrosion resistance. However, the coexistence of P and solid solution Ti can further impart excellent perforation corrosion resistance to the steel sheet. If it is less than 0.1%, the effect is too small, so 0.1% is made the lower limit. −
On the other hand, if it exceeds 0.5%, the effect of perforation corrosion resistance is saturated and the workability is deteriorated, so this is made the upper limit. It is preferably 0.2 to 0.4%. Further, since the effect of improving the corrosion resistance is not remarkable outside the range satisfying the formula (1) defined by the relationship between P and the solid solution Ti content, the formula (1)
To a range that satisfies.

【0030】有効Ti(Ti*と表記することがあ
る。):0.02〜0.15% Tiは炭窒化物形成元素であり、鋼中の固溶C、NをT
iC、TiNとして析出固定させ、深絞り性に有利な
{111}結晶方位を生成させるために添加する。この
ためにはTi*が0%以上であれば、固溶C量が0とな
り、良好な深絞り性が得られるが、本発明においてはさ
らに耐孔あき腐食性の向上の観点からも規定される重要
な添加元素である。すなわち、0.02%以下ではPお
よびCu含有量が所定の範囲であっても、良好な耐孔あ
き腐食性が得られないので、0.02%を下限とする。
固溶Tiによる耐孔あき腐食性の向上のメカニズムは現
在のところ明確ではないが、腐食進行時におけるTiの
溶出、優先酸化による錆層の安定化およびCuの錆層緻
密化の相乗効果によるものと推察される。一方、Ti*
の上限は基本的にはPおよびCu含有量に対して規定さ
れる式(1) の関係から決まる。式(1) で規定される量を
超えるTiを添加するとFeTiPなどの析出物を生成
して耐孔あき腐食性や成形性を劣化させるようになるた
めである。また、0.15%を超えると、式(1) の関係
を満足するPおよびCu含有量が少なくなり、耐孔あき
腐食性が得られないので、これを上限とする。好ましく
は、0.03〜0.12%である。
Effective Ti (sometimes referred to as Ti *): 0.02 to 0.15% Ti is a carbonitride forming element, and solid solution C and N in steel are T
iC and TiN are precipitated and fixed, and added to generate {111} crystal orientation advantageous for deep drawability. For this purpose, if Ti * is 0% or more, the amount of solid solution C becomes 0, and good deep drawability can be obtained. However, in the present invention, it is also specified from the viewpoint of further improving perforation corrosion resistance. Is an important additional element. That is, if 0.02% or less, even if the P and Cu contents are within the predetermined ranges, good perforation corrosion resistance cannot be obtained, so 0.02% is made the lower limit.
The mechanism of improvement of pitting corrosion resistance by solid solution Ti is not clear at present, but it is due to synergistic effect of elution of Ti during corrosion progress, stabilization of rust layer by preferential oxidation and densification of Cu rust layer. It is presumed that. On the other hand, Ti *
The upper limit of is basically determined by the relationship of the formula (1) defined for the P and Cu contents. This is because if Ti in an amount exceeding the amount specified by the formula (1) is added, precipitates such as FeTiP are formed and the pitting corrosion resistance and formability are deteriorated. On the other hand, if it exceeds 0.15%, the contents of P and Cu satisfying the relation of the formula (1) become small and the resistance to pitting corrosion cannot be obtained, so this is made the upper limit. Preferably, it is 0.03 to 0.12%.

【0031】Ni:0.1〜0.5% NiはCu含有量の多い鋼に見られる表面疵を防止する
観点ばかりでなく、本発明では耐孔あき腐食性の向上の
観点からの不可欠な添加元素である。すなわち、Niは
表面に濃化し易い元素であり、Niが表面濃化すること
によりCuの表面濃化を抑制したり、有効な固溶Tiを
増加させることにより耐孔あき腐食性を向上させる。
0.1%未満ではかかる効果が過少であるので、これを
下限とする。一方、0.5%を超えると、これらの効果
が飽和するばかりか、コストアップとなるので、これを
上限とする。好ましくは、0.2〜0.4%である。
Ni: 0.1-0.5% Ni is indispensable not only from the viewpoint of preventing surface flaws found in steel having a high Cu content, but also from the viewpoint of improving the resistance to pitting corrosion in the present invention. It is an additive element. That is, Ni is an element that easily concentrates on the surface, and the surface concentration of Ni suppresses the surface enrichment of Cu, and increases the effective solid solution Ti to improve the resistance to perforation corrosion.
If it is less than 0.1%, the effect is too small, so this is made the lower limit. On the other hand, if it exceeds 0.5%, not only these effects are saturated, but also the cost increases, so this is made the upper limit. It is preferably 0.2 to 0.4%.

【0032】本発明の鋼成分を以上を基本成分とする
が、さらに下記Nb、Bの1種又は2種を含有すること
ができ、(1) 基本成分+Nb、(2) 基本成分又は前記
(1) の成分+Bとすることができる。
The steel component of the present invention has the above-mentioned basic components, but may further contain one or two of the following Nb and B, (1) basic component + Nb, (2) basic component or the above
It can be the component + B of (1).

【0033】Nb:0.003〜0.050% Nbは炭化物形成元素であり、鋼中の固溶CをNbCと
して析出固定させ、深絞り性に有利な{111}結晶方
位を優先的に生成させるために添加する。その添加量が
0.003%未満では効果が過少であり、一方0.05
%を超えると焼鈍後の鋼板の粒径が微細化して却って深
絞り性を劣化させるので、下限を0.003%、上限を
0.050%とする。好ましくは、0.005〜0.0
40%である。
Nb: 0.003 to 0.050% Nb is a carbide forming element, and solid solution C in steel is precipitated and fixed as NbC to preferentially generate {111} crystal orientation advantageous for deep drawability. Add to allow. If the added amount is less than 0.003%, the effect is too small, while if 0.05
%, The grain size of the annealed steel sheet becomes finer and rather deep drawability deteriorates, so the lower limit is made 0.003% and the upper limit is made 0.050%. Preferably 0.005-0.0
40%.

【0034】B:0.0003〜0.0050% Bは鋼の耐2次加工脆性を改善するために添加するが、
0.0003%未満ではその効果が過少であるので、こ
れを下限とする。一方、0.0050%を超えると却っ
て深絞り性を劣化させるので、これを上限とする。好ま
しくは、0.0005〜0.0020%である。
B: 0.0003 to 0.0050% B is added to improve the secondary work embrittlement resistance of steel.
If it is less than 0.0003%, the effect is too small, so this is made the lower limit. On the other hand, if it exceeds 0.0050%, the deep drawability is rather deteriorated, so this is made the upper limit. Preferably, it is 0.0005 to 0.0020%.

【0035】次に本発明の熱間圧延条件について説明す
る。本発明においては、熱間圧延条件も重要であり、望
ましい熱間圧延条件は、耐孔あき腐食性の向上に必要な
固溶Tiを確保し、かつNiの表面濃化の効果を得るた
めには連続鋳造スラブの加熱温度として1125℃以上
を確保した後、粗圧延を行う。熱間圧延の仕上温度はA
r点以上の温度で行うことが深校り性に好ましいが、
省エネの観点からはAr点未満の低温熱延でもよい。
巻取温度は550〜750℃の範囲がよい。すなわち、
550℃未満では鋼中の固溶CをTiCやNbCとして
析出固定させ、深絞り性に有利な{111}結晶方位を
生成することが困難NIるので、下限を550℃とす
る。一方、750℃を越えると、TiはTiCよりもF
eTiPを生成して耐孔あき腐食性や成形性を劣化させ
るので、これを上限とする。好ましくは、600〜70
0℃である。
Next, the hot rolling conditions of the present invention will be described. In the present invention, the hot rolling condition is also important, and the desirable hot rolling condition is to secure the solid solution Ti necessary for improving the perforation corrosion resistance and to obtain the effect of surface enrichment of Ni. After securing 1125 ° C. or higher as the heating temperature of the continuous casting slab, rough rolling is performed. The finishing temperature for hot rolling is A
r It is preferable to carry out at a temperature of 3 points or more for deep-deepness,
From the viewpoint of energy saving, low temperature hot rolling with Ar less than 3 points may be used.
The winding temperature is preferably in the range of 550 to 750 ° C. That is,
If the temperature is lower than 550 ° C, it is difficult to precipitate the solid solution C in the steel as TiC or NbC and fix it, and to generate the {111} crystal orientation advantageous for deep drawability. Therefore, the lower limit is 550 ° C. On the other hand, when the temperature exceeds 750 ° C, Ti is more F than TiC.
Since it forms eTiP and deteriorates pitting corrosion resistance and formability, this is the upper limit. Preferably 600-70
It is 0 ° C.

【0036】熱延後、酸洗を行い、冷間圧延を行うが、
良好な深絞り性を得るには、冷間圧延率は60%以上と
する。より好ましくは70%以上である。
After hot rolling, pickling and cold rolling are performed.
In order to obtain good deep drawability, the cold rolling rate is 60% or more. It is more preferably 70% or more.

【0037】冷延後に再結晶焼鈍を行うが、本発明にお
いては、焼鈍条件は重要であり、優れた深絞り性を得る
ためには750〜950℃の温度域にて焼鈍することが
必要である。750℃未満の焼鈍温度では優れた深絞り
性を得ることはできないので、これを下限とする。一
方、950℃を越える温度域にて焼鈍を行うと、フェラ
イトからオーステナイトへの変態により集合組織がラン
ダム化するため深絞り性が劣化するようになるので、こ
れを上限とする。好ましくは、800〜900℃であ
る。
Although recrystallization annealing is carried out after cold rolling, the annealing conditions are important in the present invention, and it is necessary to anneal in the temperature range of 750 to 950 ° C. in order to obtain excellent deep drawability. is there. Since an excellent deep drawability cannot be obtained at an annealing temperature of less than 750 ° C, this is the lower limit. On the other hand, if annealing is performed in a temperature range exceeding 950 ° C., the transformation from ferrite to austenite causes the texture to become random and the deep drawability will deteriorate, so this is the upper limit. The temperature is preferably 800 to 900 ° C.

【0038】なお、本発明においては、焼鈍工程として
は連続焼鈍ラインまたは連続溶融亜鉛めっきラインにお
ける焼鈍が適する。上記連続溶融亜鉛めっき法としては
非合金化溶融亜鉛めっきおよび合金化溶融亜鉛めっきの
いずれも適合する。また、本発明鋼板については、焼鈍
または亜鉛めっき後、適宜の処理を施して化性処理性、
溶接性、プレス成形性および耐食性などの改善を行って
もよい。
In the present invention, annealing in a continuous annealing line or a continuous hot dip galvanizing line is suitable as the annealing step. As the above continuous hot dip galvanizing method, both non-alloyed hot dip galvanizing and alloyed hot dip galvanizing are suitable. Further, for the steel sheet of the present invention, after annealing or galvanizing, an appropriate treatment is applied to the chemical treatability,
Weldability, press formability and corrosion resistance may be improved.

【0039】[0039]

【実施例】表1および表3に示す化学組成を有する鋼ス
ラブを1180℃に加熱−均熱後、仕上温度920℃で
熱間圧延を終了し、680℃で巻き取った。得られた熱
延板を酸洗後、78%の圧下率にて冷間圧延を行って
0.8mmの板厚とした後、連続焼鈍ラインにて850℃
で60sの再結晶焼鈍を行った。
EXAMPLE A steel slab having the chemical composition shown in Tables 1 and 3 was heated to 1180 ° C.-soaked, then hot-rolled at a finishing temperature of 920 ° C., and wound at 680 ° C. The obtained hot-rolled sheet was pickled, cold-rolled at a reduction rate of 78% to a sheet thickness of 0.8 mm, and then 850 ° C. in a continuous annealing line.
Then, recrystallization annealing was performed for 60 seconds.

【0040】こうして得られた供試材について引張試験
および耐食性評価試験を行った。引張特性はJIS5号
引張試験片を使用して測定した。また、深絞り性、耐食
性は先に述べた方法と同様にして平均r値、最大孔あき
深さを求めた。表2および4に最終製品の材料特性を示
す。本発明に適合する冷延鋼板(備考欄中*を付したも
の)は優れた耐孔あき腐食性と深絞り性を有することが
わかる。なお、表3および表4の鋼種No.7は表1およ
び表2のものと同じデータを示している。
A tensile test and a corrosion resistance evaluation test were performed on the test materials thus obtained. The tensile properties were measured using JIS No. 5 tensile test pieces. Further, for deep drawability and corrosion resistance, the average r value and the maximum perforation depth were determined in the same manner as described above. Tables 2 and 4 show the material properties of the final product. It can be seen that the cold-rolled steel sheets (marked with * in the remarks column) that are suitable for the present invention have excellent perforation corrosion resistance and deep drawability. The steel type No. 7 in Tables 3 and 4 shows the same data as those in Tables 1 and 2.

【0041】[0041]

【表1】 [Table 1]

【0042】[0042]

【表2】 [Table 2]

【0043】[0043]

【表3】 [Table 3]

【0044】[0044]

【表4】 [Table 4]

【0045】また、表1の鋼種No. 7を用いて種々の熱
延条件および焼鈍条件で製造した供試材について引張試
験および耐食性評価試験を行った結果を表5に示す。本
発明に適合する製造条件により製造した冷延鋼板(備考
欄中*を付したもの)は優れた耐孔あき腐食性と深絞り
性を有することが確認された。
Table 5 shows the results of the tensile test and the corrosion resistance evaluation test performed on the test materials manufactured using the steel type No. 7 in Table 1 under various hot rolling conditions and annealing conditions. It was confirmed that the cold-rolled steel sheet manufactured under the manufacturing conditions compatible with the present invention (marked with * in the remarks column) has excellent perforation corrosion resistance and deep drawability.

【0046】[0046]

【表5】 [Table 5]

【0047】[0047]

【発明の効果】本発明の冷延鋼板の製造方法によれば、
特にP、Cu含有量を有効Ti量に応じて式(1) を満足
する最適な量に規制するとともに、S含有量を0.00
5〜0.015%としたので、引張強さが340N/mm
級の高強度を有し、しかも耐孔あき腐食性および深
絞り性に優れた高強度冷延鋼板を得ることができる。
According to the method for producing a cold rolled steel sheet of the present invention,
In particular, the P and Cu contents are regulated to the optimum amount satisfying the formula (1) according to the effective Ti amount, and the S content is 0.00
5 ~ 0.015%, so the tensile strength is 340N / mm
It is possible to obtain a high-strength cold-rolled steel sheet having a second- class high strength and excellent in perforation corrosion resistance and deep drawability.

【図面の簡単な説明】[Brief description of drawings]

【図1】有効Ti0.003wt%におけるPおよびCu
含有量が耐孔あき腐食性および深絞り性に及ぼす影響を
示したグラフである。
FIG. 1 P and Cu at 0.003 wt% effective Ti
It is a graph which showed the influence which content has on pitting corrosion resistance and deep drawability.

【図2】有効Ti0.005wt%におけるPおよびCu
含有量が耐孔あき腐食性および深絞り性に及ぼす影響を
示したグラフである。
FIG. 2 P and Cu at an effective Ti of 0.005 wt%.
It is a graph which showed the influence which content has on pitting corrosion resistance and deep drawability.

【図3】有効Ti0.008wt%におけるPおよびCu
含有量が耐孔あき腐食性および深絞り性に及ぼす影響を
示したグラフである。
FIG. 3 P and Cu at 0.008 wt% effective Ti
It is a graph which showed the influence which content has on pitting corrosion resistance and deep drawability.

【図4】S含有量が耐孔あき腐食性および深絞り性に及
ぼす影響を示したグラフである。
FIG. 4 is a graph showing the effect of S content on pitting corrosion resistance and deep drawability.

───────────────────────────────────────────────────── フロントページの続き (56)参考文献 特開 平9−31547(JP,A) 特開 平8−104945(JP,A) 特開 平7−286240(JP,A) 特開 平6−287684(JP,A) 特開 平6−287642(JP,A) (58)調査した分野(Int.Cl.7,DB名) C21D 9/46 - 9/48 C21D 8/00 - 8/04 C22C 38/00 - 38/60 ─────────────────────────────────────────────────── ─── Continuation of the front page (56) Reference JP-A-9-31547 (JP, A) JP-A-8-104945 (JP, A) JP-A-7-286240 (JP, A) JP-A-6- 287684 (JP, A) JP-A-6-287642 (JP, A) (58) Fields investigated (Int.Cl. 7 , DB name) C21D 9/46-9/48 C21D 8/00-8/04 C22C 38/00-38/60

Claims (2)

(57)【特許請求の範囲】(57) [Claims] 【請求項1】 重量%で、C :0.01%以下、S
i:0.5%以下、Mn:0.1〜1.5%、S :
0.005〜0.015%、Al:0.01〜0.10
%、N :0.006%以下、P :0.030〜0.
060%、Cu:0.1〜0.5%、有効Ti:0.0
2〜0.15%(但し、有効Ti=全Ti%−(48/12)C%
−(48/32)S%−(48/14)N%)かつ、P、Cu、有
効Tiが下記式(1) の関係を満足し、およびNi:0.
1〜0.5%を含有し、残部がFeおよび不可避的不純
物からなる鋼を1125℃以上に加熱後、熱間圧延し、
550〜750℃の範囲で巻取り、酸洗し、60%以上
の圧延率での冷間圧延後、引続いて750〜950℃の
温度範囲にて再結晶焼鈍する耐孔あき腐食性および深絞
り性に優れた高強度冷延鋼板の製造方法。 Cu%/64+(P%/31)×(3×10×有効Ti%/48)≦0.01% …(1)
1. By weight%, C: 0.01% or less, S
i: 0.5% or less, Mn: 0.1 to 1.5%, S:
0.005 to 0.015%, Al: 0.01 to 0.10.
%, N: 0.006% or less, P: 0.030-0.
060%, Cu: 0.1-0.5%, Effective Ti: 0.0
2 to 0.15% (However, effective Ti = total Ti%-(48/12) C%
-(48/32) S%-(48/14) N%) and P, Cu and effective Ti satisfy the relationship of the following formula (1), and Ni: 0.
Steel containing 1 to 0.5% and the balance of Fe and unavoidable impurities is heated to 1125 ° C. or higher and hot-rolled,
Winding in the range of 550 to 750 ° C, pickling, cold rolling at a rolling ratio of 60% or more, and subsequently recrystallization annealing in the temperature range of 750 to 950 ° C. A method for producing a high-strength cold-rolled steel sheet having excellent drawability. Cu% / 64 + (P% / 31) × (3 × 10 3 × effective Ti% / 48) ≦ 0.01% (1)
【請求項2】 請求項1に記載した成分にさらにNb:
0.003〜0.050%、B :0.0003〜0.
0050%の1種又は2種を含む請求項1に記載の耐孔
あき腐食性および深絞り性に優れた高強度冷延鋼板の製
造方法。
2. The component according to claim 1, further comprising Nb:
0.003-0.050%, B: 0.0003-0.
The method for producing a high-strength cold-rolled steel sheet excellent in perforation corrosion resistance and deep drawability according to claim 1, containing 1% or 2% of 0050%.
JP10618298A 1998-04-16 1998-04-16 Manufacturing method of high-strength cold-rolled steel sheet excellent in perforation corrosion resistance and deep drawability Expired - Fee Related JP3370930B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP10618298A JP3370930B2 (en) 1998-04-16 1998-04-16 Manufacturing method of high-strength cold-rolled steel sheet excellent in perforation corrosion resistance and deep drawability

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP10618298A JP3370930B2 (en) 1998-04-16 1998-04-16 Manufacturing method of high-strength cold-rolled steel sheet excellent in perforation corrosion resistance and deep drawability

Publications (2)

Publication Number Publication Date
JPH11293346A JPH11293346A (en) 1999-10-26
JP3370930B2 true JP3370930B2 (en) 2003-01-27

Family

ID=14427091

Family Applications (1)

Application Number Title Priority Date Filing Date
JP10618298A Expired - Fee Related JP3370930B2 (en) 1998-04-16 1998-04-16 Manufacturing method of high-strength cold-rolled steel sheet excellent in perforation corrosion resistance and deep drawability

Country Status (1)

Country Link
JP (1) JP3370930B2 (en)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP3840409B2 (en) * 2001-12-06 2006-11-01 株式会社神戸製鋼所 Corrosion-resistant steel sheet with excellent paint corrosion resistance and perforated corrosion resistance

Also Published As

Publication number Publication date
JPH11293346A (en) 1999-10-26

Similar Documents

Publication Publication Date Title
JP2005528519A5 (en)
US5846343A (en) Cold rolled steel sheet exhibiting excellent press workability and method of manufacturing the same
JPH0372134B2 (en)
KR100979020B1 (en) Super formable high strength steel sheet and method of manufacturing thereof
JP4320913B2 (en) High-tensile hot-dip galvanized steel sheet with excellent formability and method for producing the same
JP3370930B2 (en) Manufacturing method of high-strength cold-rolled steel sheet excellent in perforation corrosion resistance and deep drawability
JPH0530900B2 (en)
JP3347152B2 (en) Method for producing cold-rolled high-strength hot-dip galvanized steel sheet with excellent resistance to pitting corrosion
JP2005105399A (en) Method for manufacturing low-yield-ratio high-strength galvannealed steel
JP3142922B2 (en) Manufacturing method of hot-rolled high-strength hot-dip galvanized steel sheet with low yield ratio and excellent pitting corrosion resistance
JP3049104B2 (en) Manufacturing method of high tensile cold rolled steel sheet for deep drawing
JP3204101B2 (en) Deep drawing steel sheet and method for producing the same
JPS63241122A (en) Production of hot dip zinc coated steel sheet for ultra-deep drawing
JP3477896B2 (en) Cold rolled steel sheet for processing with excellent corrosion resistance and method for producing the same
JP3288456B2 (en) Manufacturing method of cold drawn steel sheet for deep drawing with excellent corrosion resistance
JPH05132740A (en) Production of hot-dip galvanized steel sheet for deep drawing excellent in pitting corrosion resistance
JP3309859B2 (en) Manufacturing method of cold-rolled steel sheet for deep drawing excellent in bake hardenability and corrosion resistance
JP3874821B2 (en) Manufacturing method of high strength hot-dip galvanized steel sheet with excellent deep drawability
JP3144572B2 (en) Manufacturing method of low yield ratio high tensile strength hot rolled steel sheet with excellent corrosion resistance
JP3716439B2 (en) Manufacturing method of high-tensile alloyed hot-dip galvanized steel sheet with excellent plating characteristics
JPH08225854A (en) Production of high strength cold rolled steel sheet excellent in deep drawability
JPH05195078A (en) Production of cold rolled steel sheet for deep drawing excellent in corrosion resistance
JP4313912B2 (en) Manufacturing method of high-strength hot-dip galvanized steel sheet with excellent deep drawability
JP4218598B2 (en) High tensile alloyed hot dip galvanized steel sheet with excellent plating characteristics
JP3520155B2 (en) High-tensile alloyed hot-dip galvanized hot-rolled steel sheet for automobiles having excellent deformation resistance at high strain rates and method for producing the same

Legal Events

Date Code Title Description
FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20081115

Year of fee payment: 6

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20081115

Year of fee payment: 6

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20091115

Year of fee payment: 7

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20091115

Year of fee payment: 7

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20101115

Year of fee payment: 8

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20111115

Year of fee payment: 9

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20121115

Year of fee payment: 10

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20131115

Year of fee payment: 11

LAPS Cancellation because of no payment of annual fees