JP3369094B2 - How to remove boron from metallic silicon - Google Patents

How to remove boron from metallic silicon

Info

Publication number
JP3369094B2
JP3369094B2 JP00662398A JP662398A JP3369094B2 JP 3369094 B2 JP3369094 B2 JP 3369094B2 JP 00662398 A JP00662398 A JP 00662398A JP 662398 A JP662398 A JP 662398A JP 3369094 B2 JP3369094 B2 JP 3369094B2
Authority
JP
Japan
Prior art keywords
silicon
molten metal
boron
temperature
metallic silicon
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP00662398A
Other languages
Japanese (ja)
Other versions
JPH11199217A (en
Inventor
尚道 中村
秀明 運崎
裕幸 馬場
正道 阿部
嘉英 加藤
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
JFE Steel Corp
Original Assignee
JFE Steel Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by JFE Steel Corp filed Critical JFE Steel Corp
Priority to JP00662398A priority Critical patent/JP3369094B2/en
Publication of JPH11199217A publication Critical patent/JPH11199217A/en
Application granted granted Critical
Publication of JP3369094B2 publication Critical patent/JP3369094B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E10/00Energy generation through renewable energy sources
    • Y02E10/50Photovoltaic [PV] energy

Landscapes

  • Crystals, And After-Treatments Of Crystals (AREA)
  • Drying Of Semiconductors (AREA)
  • Photovoltaic Devices (AREA)
  • Cleaning Or Drying Semiconductors (AREA)
  • Silicon Compounds (AREA)

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【発明の属する技術分野】本発明は、金属シリコンから
のボロン除去方法に関し、詳しくは、金属シリコンを出
発原料として太陽電池用シリコンを製造する際に、障害
となる主要不純物のボロンを迅速除去し、精製時間を短
縮すると共に、電力原単位の低減、容器寿命の延長を図
る技術である。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a method for removing boron from metallic silicon, and more specifically, it is capable of rapidly removing boron, which is a major impurity which becomes an obstacle when manufacturing silicon for solar cells using metallic silicon as a starting material. In addition to shortening the refining time, it is a technology that reduces the power consumption rate and extends the life of the container.

【0002】[0002]

【従来の技術】太陽電池に使用するシリコン基板は、所
要の半導体特性を発揮するには、含有するボロンを0.
1〜0.3ppmの範囲に低減する必要がある。しか
し、ボロンを10ppm程度含有する原料の金属シリコ
ンから、ボロンを上記レベルまで低減させるのは、非常
に難しいことであったので、従来より多くのボロン除去
技術が研究されてきた。
2. Description of the Related Art A silicon substrate used for a solar cell has a boron content of 0.
It is necessary to reduce to the range of 1 to 0.3 ppm. However, it has been very difficult to reduce boron to the above level from metallic silicon, which is a raw material containing about 10 ppm of boron, and therefore more techniques for removing boron have been studied than before.

【0003】例えば、特開昭63−218506号公報
は、「シリカ製容器に保持した金属シリコンに、高温の
プラズマ・ガスを照射して該金属シリコンを溶融し、ボ
ロンを酸化、除去する」方法を開示している。その際、
第1段階として、水素とアルゴンの混合ガスを、第2段
階として0.005〜0.05vol%の酸素、1〜9
9.995vol%の水素、残部アルゴンからなる混合
ガスをプラズマ発生ガスに用いている。
For example, Japanese Patent Laid-Open No. 63-218506 discloses a method of "irradiating metallic silicon held in a silica container with high temperature plasma gas to melt the metallic silicon and oxidize and remove boron". Is disclosed. that time,
As a first step, a mixed gas of hydrogen and argon is used, and as a second step, 0.005-0.05 vol% oxygen, 1-9.
A mixed gas consisting of 9.995 vol% hydrogen and the balance argon is used as the plasma generating gas.

【0004】ところが、この特開昭63−218506
号公報記載の方法には、(1)熱の利用効率が悪いプラ
ズマ・ガスで溶融させ、経済的でない、(2)金属シリ
コンの溶融領域が狭く、量産性なし、(3)シリコンの
飛散、蒸発ロスが多く、またプラズマ・ガス中の酸素濃
度が低く、除去速度が遅い等の欠点があった。
However, this Japanese Patent Laid-Open No. 63-218506
In the method described in the publication, (1) it is not economical because it is melted with a plasma gas that has a poor utilization efficiency of heat, (2) the melting area of metallic silicon is narrow and mass production is not possible, (3) scattering of silicon, There are drawbacks such as large evaporation loss, low oxygen concentration in plasma gas, and slow removal rate.

【0005】そこで、本出願人は、「多量の金属シリコ
ンが溶解可能で経済的なボロン除去技術」を、特開平4
−228414号公報で提案した。それは、「原料とな
る金属シリコンを、シリカあるいはシリカを主成分とす
る耐火物で内張された容器内で、誘導加熱や抵抗加熱等
で溶解、保持し、その溶湯面に高温、高速のプラズマ・
ジェットを吹き付け、ボロンを酸化物として気化、除去
する」方法であった。その際、プラズマを形成するガス
として用いるアルゴン・ガスには、0.1〜10vol
%の水蒸気を添加するようにした。これにより、特開昭
63−218506号公報に記載された方法の前記
(1)〜(3)の欠点が著しく改善され、従来より経済
的に太陽電池用シリコンが安価に量産できるようになっ
た。
Therefore, the applicant of the present invention has disclosed "an economical boron removing technique capable of dissolving a large amount of metallic silicon" in Japanese Patent Laid-Open No.
No. 228414. It is "melting and holding metal silicon as a raw material by induction heating or resistance heating in a container lined with silica or a refractory containing silica as a main component, and a high-temperature, high-speed plasma on the molten metal surface.・
It was a method of spraying a jet to vaporize and remove boron as an oxide. " At that time, the argon gas used as the gas for forming plasma contains 0.1 to 10 vol.
% Water vapor was added. As a result, the drawbacks (1) to (3) of the method described in JP-A-63-218506 are remarkably improved, and the silicon for solar cells can be mass-produced economically and inexpensively as compared with the conventional method. .

【0006】しかしながら、特開平4−228414号
公報記載の技術にも、湯面にシリカ被膜が大量に形成
し、溶湯温度が上昇しないばかりか、ボロンの除去速度
が遅くて、処理時間を長くするという欠点があった。つ
まり、これでは、生産性が期待する程大きくならず、電
力原単位が高いばかりでなく、容器寿命が短いので、太
陽電池用シリコンの製造コストが安価にならないという
問題があった。
However, according to the technique described in Japanese Patent Laid-Open No. 4-228414, a large amount of silica coating is formed on the surface of the molten metal so that the temperature of the molten metal does not rise and the removal rate of boron is slow and the treatment time is prolonged. There was a drawback. In other words, this has a problem that the productivity is not as high as expected, not only the power consumption rate is high, but also the life of the container is short, so that the manufacturing cost of silicon for solar cells cannot be reduced.

【0007】[0007]

【発明が解決しようとする課題】本発明は、かかる事情
に鑑み、太陽電池用シリコンの製造に際し、ボロンの除
去を従来より一層迅速に行える金属シリコンからのボロ
ン除去方法を提供することを目的としている。
SUMMARY OF THE INVENTION In view of such circumstances, the present invention has an object to provide a method for removing boron from metallic silicon which can more rapidly remove boron in the production of silicon for solar cells. There is.

【0008】[0008]

【課題を解決するための手段】発明者は、上記目的を達
成するため、特開平4−228414号公報や特開平5
−139713号公報記載の技術を見直し、脱ボロン速
度の迅速化を鋭意研究した。その結果、溶湯面上での酸
化被膜が、プラズマ・ジェットが溶湯に直接接触する所
謂火点(照射点ともいう)から遠い位置、つまり低温部
から形成することを見いだし、この発見を被膜形成の抑
制に利用するようにした。
In order to achieve the above-mentioned object, the inventor of the present invention discloses Japanese Patent Application Laid-Open No. 4-228414 and Japanese Patent Application Laid-Open No.
The technology described in Japanese Patent No. 139713 was reviewed and earnestly studied to speed up the boron removal rate. As a result, they found that the oxide film formed on the surface of the molten metal was formed at a position far from the so-called fire point (also called irradiation point) where the plasma jet directly contacts the molten metal, that is, at the low temperature part, and this finding was applied to the formation of the film. I tried to use it for suppression.

【0009】すなわち、本発明は、溶融状態にある金属
シリコンの溶湯面に、不活性ガスからなるプラズマ・ジ
ェットに水蒸気を付加した混合ガスを吹き付け、該金属
シリコンが含有するボロンを除去するに際し、前記溶湯
の複数位置での温度を監視し、最も低温位置にプラズマ
・ジェットの照射点を走査することを特徴とする金属シ
リコンからのボロン除去方法である。
That is, according to the present invention, when a mixed gas obtained by adding steam to a plasma jet made of an inert gas is sprayed on the molten surface of metallic silicon in a molten state to remove boron contained in the metallic silicon, The method for removing boron from metallic silicon is characterized in that the temperature of the molten metal at a plurality of positions is monitored and the irradiation point of the plasma jet is scanned at the lowest temperature position.

【0010】また、本発明は、前記溶湯温度の監視を、
該溶湯面の上方に設けた複数個の放射温度計を用いて行
うことを特徴とする金属シリコンからのボロン除去方法
である。本発明によれば、金属シリコン溶湯面上での酸
化珪素被膜の形成が抑制されるようになるので、ボロン
除去が従来より効率良く、一層迅速に行えるようにな
る。その結果、太陽電池用シリコンの生産が向上するば
かりでなく、電力原単位の低減や容器寿命の延長が達成
され、製造コストが従来より格段と低減した。
Further, according to the present invention, the temperature of the molten metal is monitored by
A method for removing boron from metallic silicon is characterized in that a plurality of radiation thermometers provided above the surface of the molten metal are used. According to the present invention, since the formation of the silicon oxide film on the surface of the molten metal silicon is suppressed, boron can be removed more efficiently and more quickly than in the past. As a result, not only was the production of silicon for solar cells improved, but the reduction of power consumption and the extension of container life were also achieved, resulting in a marked reduction in manufacturing costs.

【0011】[0011]

【発明の実施の形態】以下、本発明をなすに至った経緯
もまじえ、本発明の実施の形態を説明する。まず最初
に、金属シリコンからのボロン除去方法を実施する従来
装置の1例を、図1に示す。それは、金属シリコン1を
加熱、溶解する不活性ガスからなるプラズマ・ジェット
2を発生させるプラズマ・トーチ3と、該トーチ3に付
帯する陽極4と陰極5との間に電圧及び電流を印加する
非移行型プラズマ電源6と、金属シリコン1の供給手段
(シュート)と、溶解した溶融状態の金属シリコン1を
保持する容器8と、該容器8を保護する耐熱容器9とで
形成されている。また、該容器8の周囲にシリコン1の
加熱のための手段、例えば誘導加熱コイル14を配置す
ることもできる。ここで、非移行型プラズマ電源6と
は、トーチ3に付帯した陽極4と陰極5との間に電圧及
び電流を印加し、該トーチ3内でアーク11を発生さ
せ、プラズマ発生用ガスをそこで加熱することで、トー
チ先端から高温のプラズマ・ジェット2を噴射させるも
のである。なお、水蒸気13は、プラズマ・トーチ3の
先端近傍に水蒸気用ノズル12を設け、配管10を介し
て供給するようになっている。
BEST MODE FOR CARRYING OUT THE INVENTION Embodiments of the present invention will be described below in consideration of the background of the present invention. First, FIG. 1 shows an example of a conventional apparatus for carrying out the method for removing boron from metallic silicon. It applies a voltage and a current between a plasma torch 3 for generating a plasma jet 2 composed of an inert gas that heats and melts metallic silicon 1 and an anode 4 and a cathode 5 attached to the torch 3. It is composed of a transfer type plasma power source 6, a supply means (chute) for the metallic silicon 1, a container 8 for holding the melted metallic silicon 1 in a molten state, and a heat-resistant container 9 for protecting the container 8. Further, a means for heating the silicon 1, for example, an induction heating coil 14 may be arranged around the container 8. Here, the non-transfer type plasma power source 6 applies a voltage and a current between the anode 4 and the cathode 5 attached to the torch 3 to generate an arc 11 in the torch 3 and generate a plasma generating gas there. By heating, the high temperature plasma jet 2 is jetted from the tip of the torch. The water vapor 13 is supplied through the pipe 10 by providing a water vapor nozzle 12 near the tip of the plasma torch 3.

【0012】発明者は、前記目的を達成するため、かか
る図1に示す装置を用いて従来の脱ボロン方法を実施
し、酸化珪素の形成状況を詳細に観察した。その結果、
該被膜が、前記したように、プラズマ・ジェットの火点
から遠い位置で形成され、発達していくことを発見し
た。つまり、溶湯が低温となるほど、その位置で被膜形
成が激しくなる。
In order to achieve the above-mentioned object, the inventor carried out a conventional deboronization method using the apparatus shown in FIG. 1 and observed the formation of silicon oxide in detail. as a result,
As described above, it was discovered that the film was formed and developed at a position far from the fire point of the plasma jet. That is, the lower the temperature of the molten metal, the more severe the film formation at that position.

【0013】そこで、発明者は、この被膜形成の抑制を
鋭意検討し、下記(1)式の反応に着眼した。 SiO2 (被膜)+ Si(溶湯) ⇔ 2SiO(気体) ・・・(1) この(1)式によれば、形成された被膜は溶湯と反応し
て、気体のSiOとなって蒸発していくはずである。そ
して、この反応が良く起きるようにするには、かなりの
高温が必要であった。
Therefore, the inventor diligently studied the suppression of the film formation and focused on the reaction of the following formula (1). SiO 2 (coating) + Si (molten metal) ⇔ 2SiO (gas) (1) According to this equation (1), the formed coating film reacts with the molten metal and becomes vaporized SiO to evaporate. Should go. And a fairly high temperature was required for this reaction to occur well.

【0014】ところが、プラズマ・ジェットによる加熱
は、ガスの形態から、ガスを噴射するプラズマ・トーチ
を一定位置に固定したのでは、プラズマ・ジェットの照
射点から遠くなるほど、低温となる。この低温部分の形
成を避けるため、トーチの出力を高めると、溶湯温度が
必要以上に高くなり、電力原単位が上昇したり、容器寿
命が縮くなるという問題があった。本発明者は、まずこ
の問題を解消すべく、トーチを溶湯面上で走査し、湯面
全体の温度を高めるようにしたのである。
However, in the heating by the plasma jet, if the plasma torch for injecting the gas is fixed at a fixed position due to the form of the gas, the temperature becomes lower as the distance from the irradiation point of the plasma jet increases. If the output of the torch is increased in order to avoid the formation of this low-temperature portion, the molten metal temperature becomes unnecessarily high, which raises the problem of increasing the electric power consumption rate and shortening the life of the container. To solve this problem, the inventor first scanned the torch on the surface of the molten metal to raise the temperature of the entire surface of the molten metal.

【0015】しかしながら、ある規則を定めてトーチを
走査しても、必ずしも火点の移動した軌跡通りに、溶湯
温度が変化するとは限らない。つまり、容器内の位置に
よって、溶湯の冷却条件や排気条件が異なるからであ
る。そこで、発明者は、被膜形成をできるだけ十分に行
うためには、溶湯温度を位置毎にこまめに管理する必要
があると考えた。そして、溶面の各位置の温度を検知す
る温度計を設け、測温結果を監視しながら、その最も低
温位置に素早く火点を移動できるようにしたのである。
具体的には、各位置の測温データを演算器に入力し、最
も温度の低い位置を同定し、その信号をトーチ走査機構
に出力すれば良い。なお、前記温度計12は、熱電対式
でも良いが、本発明では、溶湯1との接触で頻繁に故障
が発生することを回避するため、非接触の放射温度計の
利用が好ましい。
However, even if the torch is scanned by setting a certain rule, the molten metal temperature does not always change according to the locus of movement of the fire point. That is, the conditions for cooling the molten metal and the conditions for exhausting the molten metal differ depending on the position in the container. Therefore, the inventor considered that it is necessary to diligently control the molten metal temperature at each position in order to perform the film formation as sufficiently as possible. Then, a thermometer for detecting the temperature at each position of the molten surface was provided so that the fire point could be quickly moved to the lowest temperature position while monitoring the temperature measurement result.
Specifically, it suffices to input the temperature measurement data of each position to the arithmetic unit, identify the position with the lowest temperature, and output the signal to the torch scanning mechanism. The thermometer 12 may be a thermocouple type, but in the present invention, a non-contact radiation thermometer is preferably used in order to avoid frequent failure due to contact with the molten metal 1.

【0016】[0016]

【実施例】(実施例1)図1に示した装置に、図示しな
いが、走査機構を備えた出力100kWのトーチ、複数
個の温度計及び演算器を取り付けた。そして、30kg
の金属シリコンを容器に装入し、誘導加熱で溶解した。
その後、溶湯温度を1620℃に維持し、出力200k
ワットのプラズマ・トーチで発生させた非移行型のプラ
ズマ・ジェットに、ガス成分として水蒸気を10 vo
l%含むアルゴン混合ガスを、300リットル/分の速
度で溶湯面に吹き付け、脱ボロンを開始した。なお、上
記容器は、石英ルツボである。
(Embodiment 1) Although not shown, a torch having a scanning mechanism and an output of 100 kW, a plurality of thermometers and a calculator were attached to the apparatus shown in FIG. And 30 kg
The metallic silicon of was charged into a container and melted by induction heating.
After that, maintain the molten metal temperature at 1620 ° C and output 200 k
A non-transfer type plasma jet generated by a watt plasma torch contains 10 vo of water vapor as a gas component.
Argon mixed gas containing 1% was sprayed onto the surface of the molten metal at a rate of 300 liters / minute to start deboronization. The container is a quartz crucible.

【0017】その後、直ちに溶湯温度の実測を始め、上
記した本発明に係る脱ボロン除去方法に従い、プラズマ
・トーチの走査を行った。その結果、溶湯面には、酸化
珪素の被膜が従来に比べ非常に少なくなっていた。かか
る状態を120分間経過した後、溶湯から採取した試料
の比抵抗値が1.5オーム・cmになったので、脱ボロ
ンが終了したと判断し、ボロンの除去処理を終了した。
そして、採取試料のボロンを分析したところ、0.1p
pmであり、太陽電池用シリコンとして許容されるもの
であった。また、使用後の容器を観察したところ、殆ど
損傷はなく、寿命の延長が予想された。 (比較例)図1に示したままの装置で、プラズマ・トー
チを容器中心位置に固定した従来法に従い、水蒸気付加
量を10vol%にして、溶湯温度が1620℃になっ
た時点から、脱ボロンの操業を開始した。なお、他の条
件は、実施例と同じである。溶湯の表面上には、時間の
経過と共に酸化珪素の被膜形成が進行し、ほぼ50分経
過後には、プラズマ・ジェットの照射点近傍を除くほぼ
全面を覆うようになった。そのためか360分経過後
に、採取試料の比抵抗値が漸く1.5オーム・cmにな
ったので、ボロン除去処理を終了した。
Immediately thereafter, the measurement of the molten metal temperature was started, and the plasma torch was scanned in accordance with the above method for removing boron according to the present invention. As a result, the amount of silicon oxide film on the surface of the molten metal was much smaller than in the conventional case. After 120 minutes in such a state, the specific resistance value of the sample taken from the molten metal became 1.5 ohm · cm, so it was judged that the boron removal was completed, and the boron removal treatment was completed.
Then, when the sampled boron was analyzed, it was 0.1 p
pm, which was acceptable as silicon for solar cells. In addition, when the container after use was observed, there was almost no damage and it was expected that the service life would be extended. (Comparative Example) With the apparatus as shown in FIG. 1, according to the conventional method in which the plasma torch is fixed at the center position of the container, the amount of steam added is set to 10 vol% and the boron removal from the time when the molten metal temperature reaches 1620 ° C. Started operations. The other conditions are the same as those in the example. A film of silicon oxide was formed on the surface of the molten metal with the lapse of time, and after about 50 minutes, almost the entire surface except the vicinity of the irradiation point of the plasma jet was covered. Probably because of this, after 360 minutes, the specific resistance value of the collected sample gradually became 1.5 ohm · cm, so the boron removal treatment was terminated.

【0018】上記実施例及び比較例とも、ボロン除去処
理後のシリコン鋳塊から採取した試料のボロン濃度は、
0.1ppmであり、これはいずれも太陽電池用シリコ
ンとして許容されるものである。しかしながら、目標ボ
ロン濃度に到達する時間は、本発明に係る実施例が、従
来法に係る比較例の1/3と大幅に短縮している。さら
に、使用後の容器8を観察したところ、本発明に係る実
施例の方が、従来法に係る比較例に比べて損傷が少な
く、本発明によって容器8の寿命が延長可能であること
を示唆していた。
In both the above-mentioned Examples and Comparative Examples, the boron concentration of the sample taken from the silicon ingot after the boron removal treatment was
0.1 ppm, which is acceptable for silicon for solar cells. However, the time required to reach the target boron concentration in the example according to the present invention is greatly shortened to 1/3 of that in the comparative example according to the conventional method. Furthermore, when observing the container 8 after use, it is suggested that the example according to the present invention is less damaged than the comparative example according to the conventional method, and the life of the container 8 can be extended by the present invention. Was.

【0019】[0019]

【発明の効果】以上述べたように、本発明により、太陽
電池用シリコンの製造に際し、ボロンの除去を従来より
一層迅速に行えるようになった。その結果、該シリコン
の製造に要する時間が短縮され、太陽電池用シリコンの
生産性が向上すると共に、電力原単位の低減及び容器寿
命の延長も達成され、製造コストの低下が可能となっ
た。
As described above, according to the present invention, boron can be removed more rapidly than before in the production of silicon for solar cells. As a result, the time required for the production of the silicon is shortened, the productivity of the silicon for solar cells is improved, the power consumption per unit is reduced, the life of the container is extended, and the production cost can be reduced.

【図面の簡単な説明】[Brief description of drawings]

【図1】金属シリコンからの脱ボロン装置を示す縦断面
図である。
FIG. 1 is a vertical cross-sectional view showing a device for removing boron from metallic silicon.

【符号の説明】[Explanation of symbols]

1 金属シリコン(溶湯) 2 プラズマ・ジェット 3 プラズマ・トーチ 4 陽極 5 陰極 6 非移行型プラズマ電源 7 供給手段 8 シリコンの保持容器(容器) 9 保護容器 10 配管 11 アーク 12 水蒸気用ノズル 13 水蒸気 14 誘導加熱コイル 1 Metallic silicon (molten metal) 2 plasma jet 3 plasma torch 4 anode 5 cathode 6 Non-transfer type plasma power supply 7 Supply means 8 Silicon holding container (container) 9 Protective container 10 piping 11 arc 12 Water vapor nozzle 13 Water vapor 14 induction heating coil

───────────────────────────────────────────────────── フロントページの続き (72)発明者 阿部 正道 千葉県千葉市中央区川崎町1番地 川崎 製鉄株式会社 技術研究所内 (72)発明者 加藤 嘉英 千葉県千葉市中央区川崎町1番地 川崎 製鉄株式会社 技術研究所内 (56)参考文献 特開 平4−228414(JP,A) 特開 平4−338108(JP,A) 特開 平7−267624(JP,A) 特開 平6−345416(JP,A) (58)調査した分野(Int.Cl.7,DB名) C01B 33/02 - 33/193 JICSTファイル(JOIS)─────────────────────────────────────────────────── ─── Continuation of the front page (72) Masamichi Abe Inventor, 1 Kawasaki-cho, Chuo-ku, Chiba, Chiba Prefecture Technical Research Institute, Kawasaki Steel Co., Ltd. (56) Reference JP-A-4-228414 (JP, A) JP-A-4-338108 (JP, A) JP-A-7-267624 (JP, A) JP-A-6-345416 ( (58) Fields investigated (Int.Cl. 7 , DB name) C01B 33/02-33/193 JISC file (JOIS)

Claims (2)

(57)【特許請求の範囲】(57) [Claims] 【請求項1】 溶融状態にある金属シリコンの溶湯面
に、不活性ガスからなるプラズマ・ジェットに水蒸気を
付加した混合ガスを吹き付け、該金属シリコンが含有す
るボロンを除去するに際し、 前記溶湯の複数位置での温度を監視し、最も低温位置に
プラズマ・ジェットの照射点を走査することを特徴とす
る金属シリコンからのボロン除去方法。
1. When a mixed gas obtained by adding steam to a plasma jet of an inert gas is blown onto a molten metal surface of metal silicon in a molten state to remove boron contained in the metal silicon, A method for removing boron from metallic silicon, characterized in that the temperature at a position is monitored and the irradiation point of a plasma jet is scanned at the lowest temperature position.
【請求項2】 前記溶湯温度の監視を、該溶湯面の上方
に設けた複数個の放射温度計を用いて行うことを特徴と
する請求項1記載の金属シリコンからのボロン除去方
法。
2. The method for removing boron from metallic silicon according to claim 1, wherein the temperature of the molten metal is monitored using a plurality of radiation thermometers provided above the surface of the molten metal.
JP00662398A 1998-01-16 1998-01-16 How to remove boron from metallic silicon Expired - Fee Related JP3369094B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP00662398A JP3369094B2 (en) 1998-01-16 1998-01-16 How to remove boron from metallic silicon

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP00662398A JP3369094B2 (en) 1998-01-16 1998-01-16 How to remove boron from metallic silicon

Publications (2)

Publication Number Publication Date
JPH11199217A JPH11199217A (en) 1999-07-27
JP3369094B2 true JP3369094B2 (en) 2003-01-20

Family

ID=11643496

Family Applications (1)

Application Number Title Priority Date Filing Date
JP00662398A Expired - Fee Related JP3369094B2 (en) 1998-01-16 1998-01-16 How to remove boron from metallic silicon

Country Status (1)

Country Link
JP (1) JP3369094B2 (en)

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US7682585B2 (en) 2006-04-25 2010-03-23 The Arizona Board Of Regents On Behalf Of The University Of Arizona Silicon refining process
JP5099774B2 (en) * 2008-06-06 2012-12-19 ユーエムケー・テクノロジ−株式会社 Method and apparatus for purifying silicon
KR101028411B1 (en) 2009-03-27 2011-04-13 최종오 Manufacturing method of poly silicon and manufacturing device for the same

Also Published As

Publication number Publication date
JPH11199217A (en) 1999-07-27

Similar Documents

Publication Publication Date Title
CA2043492C (en) Method and apparatus for purifying silicon
Nakamura et al. Boron removal in molten silicon by a steam-added plasma melting method
Rousseau et al. Purification of MG silicon by thermal plasma process coupled to DC bias of the liquid bath
JP2006027923A (en) Method for purifying silicon
JPH10245216A (en) Production of silicon for solar cell
JP4966560B2 (en) Manufacturing method of high purity silicon
CA1250131A (en) Melt consolidation of silicon powder
JP3369094B2 (en) How to remove boron from metallic silicon
JP4741860B2 (en) Method for producing high purity silicon
JP4788925B2 (en) Method for purifying metallic silicon
WO2010024310A1 (en) Method for purifying silicon
JPH05262512A (en) Purification of silicon
JP4022965B2 (en) Method and apparatus for removing boron from metallic silicon
JP2007161505A (en) Method for regenerating semiconductor silicon material
JPH07267624A (en) Purification of silicon and apparatus therefor
JP2004125246A (en) MELTING METHOD OF HIGH PURITY Si AND MELTER USED THEREFOR
JPH10153693A (en) Melt processing method for radioactive solid waste
JPH09309716A (en) Purification of silicon
JPH10130011A (en) Removing method of boron from metal silicon
JPH10203814A (en) Removal of boron from metallic silicon
JPH10139415A (en) Solidification and purification of molten silicon
JPH10212113A (en) Method for removing boron from metal silicon
JP2000007318A (en) Removal of boron from metallic silicon and apparatus therefor
JPH10182136A (en) Removal of boron from metallic silicon
JP2002173311A (en) Method for purifying molten metal silicon

Legal Events

Date Code Title Description
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20021022

S111 Request for change of ownership or part of ownership

Free format text: JAPANESE INTERMEDIATE CODE: R313113

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20081115

Year of fee payment: 6

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20091115

Year of fee payment: 7

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20101115

Year of fee payment: 8

LAPS Cancellation because of no payment of annual fees