JP3368410B2 - High pressure reaction method and high pressure reactor - Google Patents
High pressure reaction method and high pressure reactorInfo
- Publication number
- JP3368410B2 JP3368410B2 JP26917495A JP26917495A JP3368410B2 JP 3368410 B2 JP3368410 B2 JP 3368410B2 JP 26917495 A JP26917495 A JP 26917495A JP 26917495 A JP26917495 A JP 26917495A JP 3368410 B2 JP3368410 B2 JP 3368410B2
- Authority
- JP
- Japan
- Prior art keywords
- pressure
- reaction
- vessel
- reaction vessel
- pipe
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Expired - Fee Related
Links
Landscapes
- Treatment Of Water By Oxidation Or Reduction (AREA)
Description
【0001】[0001]
【発明の属する技術分野】本発明は、高圧反応方法及び
高圧反応装置に関するものである。TECHNICAL FIELD The present invention relates to a high-pressure reaction method and a high-pressure reaction apparatus.
【0002】[0002]
【従来の技術】有機物質を超臨界条件下にある水(超臨
界水)中において酸化分解する方法は知られている(特
開平2−75911号)。このような超臨界水を用いる
反応では、その反応圧力は220気圧以上と非常に高い
ものになる。しかも、前記反応では、有機物質中に塩素
等のハロゲン原子が含まれていると、腐食性の強いハロ
ゲン化水素が発生する。従って、この場合の反応容器と
しては、耐圧性のみならず、高度の耐腐食性を有するも
のが要求されることとなり、その反応容器コストは非常
に高くなるという問題を生じる。従来の高圧反応容器で
は、一般的にその耐腐食性は不十分であるため、これを
前記反応を行うための反応容器として用いると、その反
応容器寿命が短く、新しいものと比較的頻繁に交換する
ことが必要となり、その結果、反応容器コストは非常に
高くなる。しかも、反応容器の交換時期が遅れると、内
部の高圧流体が反応容器の腐食により生じたピンホール
等から外部に噴出するという危険も生じる。2. Description of the Related Art There is known a method of oxidatively decomposing an organic substance in water (supercritical water) under supercritical conditions (Japanese Patent Laid-Open No. 2-75911). In such a reaction using supercritical water, the reaction pressure is as high as 220 atm or more. Moreover, in the above reaction, when the organic substance contains a halogen atom such as chlorine, hydrogen halide having a strong corrosive property is generated. Therefore, in this case, the reaction vessel is required to have not only pressure resistance but also a high degree of corrosion resistance, which causes a problem that the cost of the reaction vessel becomes very high. Conventional high-pressure reaction vessels generally have insufficient corrosion resistance, so if this is used as a reaction vessel for carrying out the reaction, the life of the reaction vessel will be short and replacement with a new one will be relatively frequent. The result is that the cost of the reaction vessel is very high. Moreover, if the replacement time of the reaction container is delayed, there is a risk that the high-pressure fluid inside will be ejected to the outside from a pinhole or the like caused by the corrosion of the reaction container.
【0003】[0003]
【発明が解決しようとする課題】本発明は、反応容器コ
ストの著しく低下された安全性の高い高圧反応方法及び
高圧反応装置を提供することをその課題とする。SUMMARY OF THE INVENTION It is an object of the present invention to provide a highly safe high pressure reaction method and a high pressure reaction apparatus in which the cost of a reaction vessel is remarkably reduced.
【0004】[0004]
【課題を解決するための手段】本発明者らは、前記課題
を解決すべく鋭意研究を重ねた結果、本発明を完成する
に至った。即ち、本発明によれば、耐圧容器内部に閉鎖
された反応容器を配設した反応装置本体を含む高圧反応
装置における該反応容器内部に液状反応原料を直接該耐
圧容器外部から導入して高圧反応を行い、得られた高圧
反応生成物を該反応容器内部から直接該耐圧容器外部へ
排出させるとともに、該耐圧容器内面と該反応容器外面
との間に形成される空隙部に高圧気体を導入し、かつ該
反応容器内部の圧力と該空隙部の圧力を実質的に同じ圧
力に保持することを特徴とする高圧反応方法が提供され
る。また、本発明によれば、耐圧容器内に閉鎖された反
応容器を配設した反応装置本体と、該反応容器内部に液
状反応原料を直接該耐圧容器外部から導入するための配
管と、該反応容器内部の反応生成物を該反応容器内部か
ら直接該耐圧容器外部へ排出するための配管と、該耐圧
容器内面と該反応容器外面との間に形成される空隙部に
高圧気体を導入するための配管を備え、該空隙部と該反
応容器内部とが開口又は配管を介して流体的に連絡して
いることを特徴とする高圧反応装置が提供される。さら
に、本発明によれば、耐圧容器内部に閉鎖された反応容
器を配設した反応装置本体と、該反応容器内部に液状反
応原料を直接該耐圧容器外部から導入するための配管
と、該反応容器内部の反応生成物を該反応容器から直接
該耐圧容器外部へ排出するための配管と、該耐圧容器内
面と該反応容器外面との間に形成される空隙部に高圧気
体を導入するための配管を備えるとともに、該反応容器
内部の圧力と該空隙部の圧力とを実質的に同じ圧力に保
持するための圧力制御系を有することを特徴とする高圧
反応装置が提供される。The present inventors have completed the present invention as a result of intensive studies to solve the above problems. That is, according to the present invention, the liquid reactants directly to the reaction vessel portion in the high-pressure reactor including a reactor main body which is disposed a reaction vessel which is closed in a pressure vessel unit resistant
Perform high pressure reaction by introducing a container outside the pressure resulting reaction product with discharging directly into the pressure vessel exterior from inside the reaction vessel, it is formed between the pressure vessel interior surface and the reaction vessel outer surface that by introducing a high pressure gas to the air gap, and high pressure reaction method characterized by retaining substantially the same pressure the pressure of the pressure and airspace inside the <br/> reaction vessel is provided. Further, according to the present invention, the reaction apparatus main body which is disposed in the closed Kusarisa reaction vessel in a pressure vessel, for introducing a liquid reaction material directly from the pressure vessel outside the reaction container Internal formed between the pipe and the pipe for discharging the reaction product of the reaction vessel unit to the reaction vessel inside or <br/> directly from the pressure vessel outside, with the pressure vessel interior surface and the reaction vessel outer surface A high-pressure reactor is provided, which is provided with a pipe for introducing high-pressure gas into the void, and the void and the inside of the reaction vessel are in fluid communication with each other through an opening or a pipe. It Furthermore, according to the present invention, the reaction apparatus main body which is disposed a reaction vessel which is closed in a pressure vessel portion, for introducing a liquid reaction material directly from the pressure vessel outside the reaction container Internal piping and the reaction product of the reaction vessel unit directly from the reaction vessel
In together when provided with a pipe for discharging to said pressure vessel outside the pipe for introducing high pressure gas into the gap portion formed between the pressure vessel interior surface and the reaction vessel outer surface, the reaction vessel <br /> high-pressure reactor which is characterized by having a pressure control system for maintaining substantially the same pressure and the pressure of the pressure and the airspace in the section is provided.
【0005】[0005]
【発明の実施の形態】次に、本発明を図面を参照しなが
ら詳述する。図1は、本発明の高圧反応装置の1つの実
施例についての模式図を示す。この図において、1は耐
圧容器、2は全体的に閉鎖された反応容器、3は原料供
給ノズル、4は内管、5は外管、6は反応生成物排出
管、7は開口部、Aは反応器内部、Bは耐圧容器内壁と
反応容器外壁との間に形成される空間部を示す。図1に
示した本発明の高圧反応装置本体は、耐圧容器1と、そ
の内部に配設された閉鎖された反応容器2とからなる。
耐圧容器1は、通常、断面円形状の筒体からなる。この
ものは、高圧に対する十分な機械的強度を有するもので
あればよく、高度の耐腐食性は特に要求されない。従っ
て、この耐圧容器の材質は、従来の耐圧容器に用いられ
ているものと同じ材質とすることができ、例えば、炭素
鋼やステンレススチール等であることができる。反応容
器2は、耐圧容器1とは異なり、耐高圧性は特に必要と
されないが、耐腐食性にすぐれているものであることが
好ましい。従って、この反応容器の材質としては、ニッ
ケル合金、鉄合金、炭素鋼の他、セラミックスを用いる
ことができ、場合によっては、プラスチックも用いるこ
とができる。反応容器2は、一般的には、5kg/cm
2G以上の圧力、好ましくは10〜20kg/cm2Gの
圧力に耐え得るものであればよい。前記した反応容器の
耐熱性は、その反応容器内で実施する反応温度に耐え得
るものであればよい。超臨界水を用いる場合、反応容器
は、374℃以上の温度に対して耐久性を有するもので
あればよい。DESCRIPTION OF THE PREFERRED EMBODIMENTS Next, the present invention will be described in detail with reference to the drawings. FIG. 1 shows a schematic view of one embodiment of the high-pressure reactor of the present invention. In this figure, 1 is a pressure-resistant container, 2 is a reaction container which is totally closed, 3 is a raw material supply nozzle, 4 is an inner pipe, 5 is an outer pipe, 6 is a reaction product discharge pipe, 7 is an opening, A Indicates the inside of the reactor, and B indicates the space formed between the inner wall of the pressure vessel and the outer wall of the reaction vessel. High-pressure reactor main body of the present invention shown in FIG. 1, the pressure vessel 1, consisting disposed a closed Kusarisa reaction vessel 2 which in its interior.
The pressure-resistant container 1 usually comprises a cylindrical body having a circular cross section. This may be any one as long as it has sufficient mechanical strength against high pressure, and high corrosion resistance is not particularly required. Therefore, the material of the pressure-resistant container can be the same as that used in the conventional pressure-resistant container, for example, carbon steel or stainless steel. Unlike the pressure vessel 1, the reaction vessel 2 is not particularly required to have high pressure resistance, but it is preferable that it has excellent corrosion resistance. Therefore, as the material of the reaction vessel, ceramics can be used in addition to nickel alloy, iron alloy, carbon steel, and in some cases, plastic can also be used. The reaction container 2 is generally 5 kg / cm.
It is sufficient that it can withstand a pressure of 2 G or more, preferably a pressure of 10 to 20 kg / cm 2 G. The heat resistance of the reaction container described above may be one that can withstand the reaction temperature carried out in the reaction container. In the case of using supercritical water, the reaction vessel may have durability to a temperature of 374 ° C. or higher.
【0006】原料供給ノズル3は、2重管構造のもの
で、内管4と外管5とからなる。これらの管体の材質と
しては、ニッケル合金、鉄合金、ステンレススチール等
を用いることができる。反応生成物排出管6は、反応容
器2内の反応生成物を反応装置外部へ排出させるための
ものである。開口部7は、反応容器2の内部Aと、耐圧
容器内面と反応容器外面との間の空隙部Bとを流体的に
連絡させるものである。従って、本発明の反応装置にお
いては、反応容器の内部Aと、その反応容器の外面と耐
圧容器内面との間に形成される空隙部Bとは実質上同じ
圧力に保持される。即ち、反応容器内の圧力が高くなる
と、それに応じて反応容器を包囲する空隙部の圧力も増
加し、反応容器の内部圧力と同じ圧力になる。このこと
により、反応容器2の内外圧は実質上同じになるため、
反応容器の耐高圧性は特に必要とされなくなる。前記反
応生成物排出管6の材質としては、ニッケル合金や鉄合
金等を用いることができる。The raw material supply nozzle 3 has a double tube structure and is composed of an inner tube 4 and an outer tube 5. As a material for these pipes, a nickel alloy, an iron alloy, stainless steel, or the like can be used. The reaction product discharge pipe 6 is for discharging the reaction product in the reaction vessel 2 to the outside of the reaction apparatus. The opening 7 fluidly connects the inside A of the reaction vessel 2 and the void B between the inner surface of the pressure vessel and the outer surface of the reaction vessel. Therefore, in the reaction apparatus of the present invention, the inside A of the reaction vessel and the void B formed between the outer surface of the reaction vessel and the inner surface of the pressure vessel are kept at substantially the same pressure. That is, when the pressure in the reaction container increases, the pressure in the void surrounding the reaction container also increases accordingly and becomes the same as the internal pressure of the reaction container. As a result, the internal and external pressures of the reaction vessel 2 become substantially the same,
The high pressure resistance of the reaction vessel is not particularly required. As a material of the reaction product discharge pipe 6, a nickel alloy, an iron alloy, or the like can be used.
【0007】図1に示した反応装置を用いて、有機物質
を超臨界水中で酸化分解する反応例を示すと、先ず、ラ
イン15を通る空気(又は酸素)をライン13、ライン
16を通して外管5に導入し、2重管ノズル3の先端か
ら反応容器内に噴出させるとともに、ライン15を通る
空気(又は酸素)(気体)の一部をライン14を通して
反応容器外面と耐圧容器内面との間の空隙部B内に導入
する。ライン12を通して超臨界水をライン16に導入
して空気(又は酸素)と混合し、空気(又は酸素)とと
もに2重管ノズル3の先端から反応容器内に噴出させ、
反応容器2の内部A内に超臨界水と空気(又は酸素)と
の混合物を充満させる。超臨界水に空気(又は酸素)を
混合すると、空気(又は酸素)は超臨界水に溶解する。
従って、反応容器2の内部A内においては、空気は超臨
界水に溶解した状態で存在する。次に、前記のように、
超臨界水と空気(又は酸素)を反応容器内に供給しなが
ら、ライン11から有機物質を含む原料液(液状反応原
料)を内管4に導入し、その先端から反応容器内へ噴出
させ、前記超臨界水と空気(又は酸素)との混合物に混
合させる。 ライン12を通る前記超臨界水の温度は約
400〜600℃であり、その圧力は約221〜450
気圧である。ライン13を通る空気(又は酸素)の温度
は約20〜600℃であり、その圧力は約221〜45
0気圧である。有機物質を含む原料液の温度は約20〜
200℃であり、その圧力は約221〜450気圧であ
る。空気(又は酸素)量は、有機物質を分解するのに必
要な理論量以上であればよい。An example of a reaction in which an organic substance is oxidatively decomposed in supercritical water using the reaction apparatus shown in FIG. 1 is as follows. First, air (or oxygen) passing through a line 15 is passed through a line 13 and a line 16 to an outer tube. 5 and is jetted from the tip of the double-tube nozzle 3 into the reaction vessel, and a part of air (or oxygen) (gas) passing through the line 15 is passed between the reaction vessel outer surface and the pressure vessel inner surface through the line 14. Introduced into the void B. Supercritical water is introduced into the line 16 through the line 12, mixed with air (or oxygen), and jetted from the tip of the double pipe nozzle 3 into the reaction vessel together with air (or oxygen),
The interior A of the reaction vessel 2 is filled with a mixture of supercritical water and air (or oxygen). When air (or oxygen) is mixed with supercritical water, the air (or oxygen) dissolves in the supercritical water.
Therefore, in the inside A of the reaction vessel 2, air exists in a state of being dissolved in supercritical water. Then, as mentioned above,
While supplying supercritical water and air (or oxygen) into the reaction vessel, a raw material liquid containing an organic substance (liquid reaction raw material) is supplied from a line 11.
Introduced into the inner tube 4 a fee), is ejected from the tip into the reaction vessel, it is mixed the mixture of supercritical water and air (or oxygen). The temperature of the supercritical water passing through the line 12 is about 400 to 600 ° C., and the pressure thereof is about 221 to 450.
Atmospheric pressure. The temperature of the air (or oxygen) passing through the line 13 is about 20 to 600 ° C., and its pressure is about 221 to 45.
It is 0 atm. The temperature of the raw material liquid containing the organic substance is about 20 to
It is 200 ° C. and its pressure is about 221 to 450 atm. The amount of air (or oxygen) may be the theoretical amount or more required to decompose the organic substance.
【0008】前記のようにして、反応容器2内におい
て、有機物質を含む原料液と超臨界水と空気との混合物
が生成されるが、この混合物は超臨界状態を形成し、有
機物質の酸化分解が急速に進行し、その酸化熱でさらに
温度が上昇し、有機物質は完全に分解される。反応容器
内の条件は、水の超臨界状態を保持し得る条件であり、
その反応温度は374〜650℃であり、その圧力は2
21〜450気圧である。反応容器内の反応生成物は、
反応生成物排出管6及びライン17を介して排出され
る。As described above, a mixture of a raw material liquid containing an organic substance, supercritical water, and air is produced in the reaction vessel 2, and this mixture forms a supercritical state to oxidize the organic substance. Decomposition proceeds rapidly, and the heat of oxidation further raises the temperature to completely decompose the organic substance. The conditions in the reaction vessel are conditions that can maintain the supercritical state of water,
The reaction temperature is 374-650 ° C, and the pressure is 2
It is 21 to 450 atm. The reaction product in the reaction vessel is
It is discharged through the reaction product discharge pipe 6 and the line 17.
【0009】図1に示した装置例では、反応容器2の底
面と耐圧容器1の底面とを共用しているが、この理由は
反応生成物を反応容器2の上方から排出するようにして
いるため、反応容器2の底面があまり高温とならず、底
面においては格別の腐食の問題を生じないことによる。
なお、このような場合においても、反応容器2にその側
面及び上面と同じ材質を用いた底面を設けてよいことは
云うまでもなく、また反応生成物を反応容器の下方から
排出するような場合も、同じように側面及び上面と材質
が等しい底面を設けることが好ましい。In the example of the apparatus shown in FIG. 1, the bottom of the reaction vessel 2 and the bottom of the pressure vessel 1 are shared, but the reason is that the reaction product is discharged from above the reaction vessel 2. Therefore, the bottom surface of the reaction vessel 2 does not reach a very high temperature, and no particular problem of corrosion occurs on the bottom surface.
Even in such a case, it goes without saying that the reaction vessel 2 may be provided with a bottom surface made of the same material as the side surface and the top surface, and in the case where the reaction product is discharged from the lower side of the reaction vessel. Similarly, it is preferable to similarly provide a bottom surface made of the same material as the side surface and the top surface.
【0010】本発明の高圧反応装置においては、前記し
たように、反応容器の内外圧を常にほぼ同一の圧力に保
持することができる。反応容器にかかる圧力は、通常、
2kg/cm2以下である。従って、本発明で用いる反
応容器の耐圧性は非常に小さくてすみ、それに応じて、
反応容器壁の厚みも、非常に小さくてすむ。反応容器壁
の厚みは、反応容器の直径にもよるが、一般的には、2
〜10mm程度で十分である。一方、有機物質がハロゲ
ン等の腐食性元素を含む場合には、そのハロゲンは有機
物質の分解により高腐食性のハロゲン化水素に変換され
るため、反応容器の内壁面は高度の耐腐食性を有するも
のであることが必要になる。このような場合には、反応
容器の材質そのものを耐腐食性のものにするか、反応容
器内壁面上に耐腐食性材料をコーティングすればよい。
本発明の場合には、反応容器の材質自体を高耐腐食性の
ものとしても、前記のように、反応容器壁の厚さは小さ
くてすむことから、従来技術のように、耐圧容器自体を
高耐腐食性のものにする場合に比べて、その反応容器コ
ストは著しく少なくてすむ。また、反応容器に寿命がき
て、これを交換する必要性が生じたときには、本発明の
場合は、従来のように、反応装置全体を交換する必要は
なく、耐圧容器はそのままにして、薄肉厚に形成された
反応容器のみを交換すればよく、反応装置コストの大幅
な低減が可能となる。さらに、反応容器2の壁面に腐食
によりピンホールが生じた場合でも、反応容器内の内容
物は空隙部Bに噴出するだけであるので、従来の高圧反
応装置の場合のように、装置外部へ噴出するようなこと
はなく、非常に安全である。In the high-pressure reactor of the present invention, as described above, the internal and external pressures of the reaction vessel can always be maintained at substantially the same pressure. The pressure applied to the reaction vessel is usually
It is 2 kg / cm 2 or less. Therefore, the pressure resistance of the reaction vessel used in the present invention can be very small, and accordingly,
The thickness of the reaction vessel wall is also very small. The thickness of the reaction vessel wall depends on the diameter of the reaction vessel, but is generally 2
About 10 mm is sufficient. On the other hand, when the organic substance contains a corrosive element such as halogen, the halogen is converted into highly corrosive hydrogen halide by decomposition of the organic substance, so the inner wall surface of the reaction vessel has a high degree of corrosion resistance. It is necessary to have one. In such a case, the material itself of the reaction vessel may be made corrosion resistant, or the inner wall surface of the reaction vessel may be coated with a corrosion resistant material.
In the case of the present invention, even if the material itself of the reaction vessel has high corrosion resistance, as described above, since the thickness of the reaction vessel wall can be small, the pressure vessel itself can be formed as in the prior art. The cost of the reaction vessel is remarkably low as compared with the case of using a highly corrosion-resistant one. Also, when the life of the reaction vessel has expired and it becomes necessary to replace it, in the case of the present invention, it is not necessary to replace the entire reaction apparatus as in the conventional case, the pressure vessel is left as it is, and the thin wall thickness is maintained. Only the reaction container formed in the above need be replaced, and the cost of the reaction apparatus can be significantly reduced. Further, even if a pinhole is generated on the wall surface of the reaction container 2 due to the corrosion, the content in the reaction container is only ejected to the void B, so that the outside of the device as in the case of the conventional high-pressure reactor. It is very safe as it does not gush out.
【0011】次に、本発明の高圧反応装置において、反
応容器の内部Aと空隙部Bとが流体的に連絡する他の実
施例についての模式図を図2〜図4に示す。これらの図
において、図1に示したのと同じ符号は同じ意味を有す
る。図2に示した装置において、一方の反応流体C(気
体)はライン21を通って空隙部B内に入り、ここから
ライン22を通って外部へ抜出された後、他方の反応流
体D(液体)が通るライン23に導入され、ここで両者
の反応流体が混合される。この混合物はノズル25を通
ってそのノズル先端から反応容器2内に噴出され、反応
容器の内部Aにおいて両者の反応が行われる。反応生成
物はライン24を通って外部へ排出される。図2に示し
た反応装置においては、反応容器2の内部Aと空隙部B
とは、ライン22、ライン23及びノズル25を介して
流体的に連絡しており、反応容器の内部Aと空隙部Bと
は実質的に同じ圧力に保持される。2 to 4 are schematic views showing another embodiment in which the inside A of the reaction container and the void B are in fluid communication with each other in the high-pressure reactor of the present invention. In these figures, the same symbols as shown in FIG. 1 have the same meaning. In the apparatus shown in FIG. 2, one reaction fluid C (gas
The body) enters into the void B through the line 21, is extracted from there through the line 22 to the outside, and then is introduced into the line 23 through which the other reaction fluid D (liquid) passes, where both The reaction fluids are mixed. This mixture is ejected from the nozzle tip into the reaction vessel 2 through the nozzle 25, and the reaction between the two is performed in the inside A of the reaction vessel. The reaction product is discharged to the outside through the line 24. In the reaction apparatus shown in FIG. 2, the inside A of the reaction container 2 and the void B
Are in fluid communication with each other via lines 22, 23 and the nozzle 25, and the inside A of the reaction container and the void B are maintained at substantially the same pressure.
【0012】図3に示した装置において、ライン31を
通る一方の反応流体C(気体)の一部はライン32を通
って空隙部B内に入り、その残部はライン33を通って
反応容器2内に導入される。一方、他方の反応流体D
(液体)はライン34を通って反応容器2内に導入され
る。反応容器2内において両者の反応流体が混合反応さ
れる。反応生成物はライン35を通って外部へ排出され
る。図3に示した反応装置においては、反応容器2の内
部Aと空隙部Bとは、ライン32及びライン33を介し
て流体的に連絡しており、反応容器の内部Aと空隙部B
とは実質的に同じ圧力に保持される。In the apparatus shown in FIG. 3, a part of one reaction fluid C (gas) passing through the line 31 passes through the line 32 into the void B, and the rest of the reaction fluid passes through the line 33 to the reaction vessel 2. Will be introduced in. On the other hand, the other reaction fluid D
(Liquid) is introduced into the reaction container 2 through the line 34. In the reaction container 2, both reaction fluids are mixed and reacted. The reaction product is discharged to the outside through the line 35. In the reaction apparatus shown in FIG. 3, the inside A of the reaction container 2 and the void B are in fluid communication with each other via lines 32 and 33, and the inside A of the reaction container and the void B are connected.
And are held at substantially the same pressure.
【0013】図4に示した装置は、空隙部B内の流体
(気体)の一部がライン46を通って外部へ排出されて
いる点で、図3の装置と相違するだけである。この装置
においても、反応容器2の内部Aと空隙部とは実質的に
同じ圧力に保持される。The device shown in FIG.
It is only different from the device of FIG. 3 in that a part of (gas) is discharged to the outside through a line 46. Also in this apparatus, the inside A of the reaction container 2 and the void are maintained at substantially the same pressure.
【0014】本発明の高圧反応装置のさらに他の実施例
についての模式図を図5及び図6に示す。これらの図に
おいて、図1に示したのと同じ符号は同じ意味を有す
る。また、これらの図に示した装置は、図1〜図4に示
した装置とは異なり、反応容器2の内部Aと空隙部Bと
は流体的には連絡されておらず、両者の圧力は、圧力制
御系により同じ圧力に保持される。この場合の圧力制御
系は、反応容器の内部Aの圧力と空隙部Bの圧力を同じ
にするように設計されたものであれば、どのようなもの
でもよいが、一般的には、空隙部B内に気体からなる圧
力媒体を充填しておき、反応容器内に導入される原料の
圧力を検知し、この検知圧力に基づいて空隙部B内の圧
力媒体の圧力を同じ圧力に制御する圧力制御系や、反応
容器内の圧力と、圧力媒体の充填された空隙部B内の圧
力差を検知し、この検知された圧力差に基づいて空隙部
B内の圧力を反応容器内の圧力と同じ圧力に制御する圧
力制御系等が採用される。A schematic view of still another embodiment of the high-pressure reactor of the present invention is shown in FIGS. 5 and 6. In these figures, the same symbols as shown in FIG. 1 have the same meaning. In addition, unlike the devices shown in FIGS. 1 to 4, the device shown in these figures is not in fluid communication with the inside A of the reaction container 2 and the void B, and the pressures of the two are not. , The same pressure is maintained by the pressure control system. The pressure control system in this case may be any as long as it is designed so that the pressure inside the reaction container A and the pressure in the void B are the same, but in general, the void leave filled with pressure <br/> force medium composed of gas into B, is introduced into the reaction vessel to detect the pressure of RuHara fee, the pressure of the pressure medium in the gap portion B on the basis of the sensed pressure A pressure control system for controlling the pressure to the same pressure, a pressure in the reaction vessel, and a pressure difference in the void B filled with the pressure medium are detected, and the pressure in the void B is adjusted based on the detected pressure difference. A pressure control system or the like that controls the pressure to the same as the pressure in the reaction vessel is adopted.
【0015】図5に示した装置において、一方の反応流
体C(気体)はライン51を通って反応容器2の内部へ
導入され、他方の反応流体D(液体)はライン52を通
って反応容器2の内部へ導入される。両者の反応流体は
反応容器2の内部において混合反応され、反応生成物は
ライン53を通って排出される。一方、圧力媒体(空気
等の気体)Eがライン55からポンプ58、圧力調節バ
ルブ57を通って空隙部B内に導入され、その一部がラ
イン54を通って外部へ排出される。ただし、圧力媒体
は必ずしも外部へ排出させる必要ない。ライン51には
圧力検出器56が付設され、この圧力信号は圧力調節バ
ルブ57に送られ、空隙部B内の圧力がライン51の圧
力と同じ圧力になるように、空隙部B内へ導入される圧
力媒体の流量が調節される。In the apparatus shown in FIG. 5, one reaction fluid C (gas) is introduced into the reaction vessel 2 through a line 51, and the other reaction fluid D (liquid) is passed through a line 52. Introduced inside 2. Both reaction fluids are mixed and reacted in the reaction vessel 2, and the reaction product is discharged through the line 53. Meanwhile, pressure medium ( air
Gas E, etc. is introduced from the line 55 into the void B through the pump 58 and the pressure adjusting valve 57, and a part thereof is discharged to the outside through the line 54. However, the pressure medium does not necessarily have to be discharged to the outside. A pressure detector 56 is attached to the line 51, and this pressure signal is sent to a pressure control valve 57 and introduced into the void B so that the pressure in the void B becomes the same as the pressure in the void 51. The flow rate of the pressure medium is adjusted.
【0016】図6に示した装置において、一方の反応流
体C(気体)はライン61を通って反応容器2の内部へ
導入され、他方の反応流体D(液体)はライン62を通
って反応容器2の内部へ導入される。両者の反応流体は
反応容器2の内部において混合反応され、反応生成物は
ライン63を通って排出される。一方、圧力媒体(空気
等の気体)Eがライン67からポンプ66、圧力調節バ
ルブ68を通って空隙部B内に圧入され、空隙部B内の
圧力は圧力調節バルブ68により一定圧力に保持され
る。ライン61と空隙部Bとの間には差圧計64が付設
され、この差圧信号は圧力調節バルブ68に送られ、空
隙部B内の圧力がライン51の圧力と同じ圧力に保持さ
れる。In the apparatus shown in FIG. 6, one reaction fluid C (gas) is introduced into the reaction vessel 2 through a line 61, and the other reaction fluid D (liquid) is passed through a line 62. Introduced inside 2. Both reaction fluids are mixed and reacted in the reaction vessel 2, and the reaction product is discharged through the line 63. Meanwhile, pressure medium ( air
(E.g. gas ) is forced into the cavity B from the line 67 through the pump 66 and the pressure regulating valve 68, and the pressure in the cavity B is kept constant by the pressure regulating valve 68. A differential pressure gauge 64 is attached between the line 61 and the void B, and the differential pressure signal is sent to the pressure control valve 68, and the pressure in the void B is maintained at the same pressure as the pressure in the line 51.
【0017】反応容器内に導入される流体は、1種又は
複数種であり、反応の種類に応じて適当種の反応流体が
選ばれる。また、反応流体としては、液体の他、スラリ
ー液、気体等を用いることができる。The fluid introduced into the reaction vessel is one kind or a plurality of kinds, and an appropriate kind of reaction fluid is selected according to the kind of reaction. Further, as the reaction fluid, in addition to liquid, slurry liquid, gas or the like can be used.
【0018】[0018]
【実施例】次に本発明を実施例によりさらに詳細に説明
する。EXAMPLES Next, the present invention will be described in more detail by way of examples.
【0019】実施例1
図1に示した構造の反応装置を用いて、トリクロロエチ
レンとイソプロピルアルコールの混合物の酸化分解反応
を行った。この場合、耐圧容器1としては、器壁の厚さ
が130mmの炭素鋼製容器を用い、反応容器2として
は、器壁の厚さが10mmの耐食金属製容器を用いた。
先ず、外管5を通して、超臨界水(ライン12)100
重量部に空気(ライン13)100重量部を混合して混
合物Fを作り、これを反応容器2内に100kg/hの
流速で噴出させ、反応容器内部A及び反応容器外面と耐
圧容器内面との間の空隙部B内に空気(ライン14)を
充満させた。混合物Fの温度は600℃であり、その圧
力は240気圧である。次に、混合物Fを反応容器内に
噴出させながら、有機物質としてイソプロピルアルコー
ルとトリクロロエチレンとの混合物を20重量%含む水
溶液を、50kg/hの流速で反応容器内に噴出させ
た。この水溶液の噴出により、有機物質としてのイソプ
ロピルアルコールの急速な酸化分解が起り、反応容器の
内部温度は、600℃にまで上昇し、以後、この反応温
度により反応は進行した。反応生成物は、その排出管6
を介して排出し、冷却した。この反応生成物の性状を示
すと次表の通りである。本表から明らかなように、イソ
プロピルアルコールとトリクロロエチレンは完全に分解
されていた。Example 1 An oxidative decomposition reaction of a mixture of trichlorethylene and isopropyl alcohol was carried out using the reactor having the structure shown in FIG. In this case, a carbon steel container having a vessel wall thickness of 130 mm was used as the pressure resistant vessel 1, and a corrosion-resistant metal vessel having a vessel wall thickness of 10 mm was used as the reaction vessel 2.
First, through the outer pipe 5, supercritical water (line 12) 100
100 parts by weight of air (line 13) is mixed with parts by weight to prepare a mixture F, which is jetted into the reaction vessel 2 at a flow rate of 100 kg / h, so that the inside of the reaction vessel A and the outer surface of the reaction vessel and the inner surface of the pressure vessel are separated. Air (line 14) was filled in the space B between them. The temperature of the mixture F is 600 ° C. and its pressure is 240 atm. Next, while ejecting the mixture F into the reaction vessel, an aqueous solution containing 20% by weight of a mixture of isopropyl alcohol and trichlorethylene as an organic substance was ejected into the reaction vessel at a flow rate of 50 kg / h. The jetting of this aqueous solution caused a rapid oxidative decomposition of isopropyl alcohol as an organic substance, the internal temperature of the reaction vessel rose to 600 ° C., and thereafter the reaction proceeded at this reaction temperature. The reaction product is the discharge pipe 6
It was discharged through and cooled. The properties of this reaction product are shown in the following table. As is clear from this table, isopropyl alcohol and trichlorethylene were completely decomposed.
【0020】[0020]
【表1】 *TOC:全有機炭素濃度 TCE:トリクロロエチレン濃度 CO :一酸化炭素[Table 1] * TOC: Total organic carbon concentration TCE: Trichlorethylene concentration CO: Carbon monoxide
【0021】[0021]
【発明の効果】本発明においては、耐圧容器内に反応容
器を配設した構造の高圧反応装置を用い、反応容器の内
外圧が実質的に同じ圧力に保持された状態で高圧反応を
行う。従って、本発明の場合、反応容器は、耐高圧性の
ものにする必要がないことから、非常に安価に製造する
ことができる。また、反応容器の寿命がきて又は破損を
生じて、反応容器を交換する必要が生じたときには、従
来のように、反応装置全体を交換する必要はなく、耐圧
容器はそのままにして、薄肉厚に形成された反応容器の
みを交換すればよいことから、反応装置コストの大幅な
低減が可能となる。また、反応容器が破損しても、高圧
の反応流体が装置外部へ飛散することもないので、その
高圧反応は安全に実施することができる。本発明の高圧
反応装置は、超臨界水や超臨界CO2等の超臨界流体を
用いる高圧反応用の反応装置として好適なものである
が、他の高圧液相反応や、高圧気相反応用の反応装置と
して用いることができる。このような高圧反応の例とし
ては、例えば、下水汚泥や、し尿、難分解性有機廃液の
湿式酸化反応、下水汚泥、木材、アルコール残渣等を熱
化学的に液化(油化)させる反応、石炭の液化反応等を
挙げることができる。According to the present invention, a high-pressure reactor having a reaction vessel arranged in a pressure vessel is used to carry out a high-pressure reaction with the inside and outside pressures of the reaction vessel being maintained at substantially the same pressure. Therefore, in the case of the present invention, since the reaction vessel does not need to be resistant to high pressure, it can be manufactured very inexpensively. In addition, when the life of the reaction container has expired or is damaged, and it is necessary to replace the reaction container, it is not necessary to replace the entire reaction apparatus as in the conventional case, and the pressure container is left as it is, and the thickness of the reaction container is reduced. Since only the formed reaction container needs to be replaced, the cost of the reactor can be significantly reduced. Further, even if the reaction container is damaged, the high-pressure reaction fluid does not scatter to the outside of the apparatus, so that the high-pressure reaction can be carried out safely. High-pressure reactor of the present invention is suitable as a reactor for high pressure reaction using supercritical flow body supercritical water and supercritical CO 2 or the like, or other high-pressure liquid phase reaction, high pressure gas reciprocal applications Can be used as a reactor. Examples of such high pressure reaction is, for example, sewage sludge, night soil, wet oxidation of hardly decomposable organic waste, sewage sludge, wood, thermo-chemically liquefying alcohol residue, etc. (Yuka) is to react, Liquefaction reaction of coal etc. can be mentioned.
【図1】本発明の高圧反応装置の1つの実施例について
の模式図を示す。FIG. 1 shows a schematic view of one embodiment of a high pressure reactor of the present invention.
【図2】本発明の高圧反応装置の他の実施例についての
模式図を示す。FIG. 2 shows a schematic view of another embodiment of the high-pressure reactor of the present invention.
【図3】本発明の高圧反応装置のさらに他の実施例につ
いての模式図を示す。FIG. 3 shows a schematic view of still another embodiment of the high-pressure reactor of the present invention.
【図4】本発明の高圧反応装置のさらに他の実施例につ
いての模式図を示す。FIG. 4 is a schematic view showing still another embodiment of the high pressure reactor of the present invention.
【図5】本発明の高圧反応装置のさらに他の実施例につ
いての模式図を示す。FIG. 5 shows a schematic view of still another embodiment of the high-pressure reactor of the present invention.
【図6】本発明の高圧反応装置のさらに他の実施例につ
いての模式図を示す。FIG. 6 shows a schematic view of still another example of the high-pressure reactor of the present invention.
1 耐圧容器 2 反応容器 3 二重管ノズル 4 内管 5 外管 6 反応生成物排出管 7 開口部 A 反応容器内部 B 耐圧容器と反応容器との間の空隙部 1 Pressure vessel 2 reaction vessels 3 double tube nozzle 4 inner tube 5 outer tube 6 Reaction product discharge pipe 7 openings Inside of A reaction vessel B Gap between pressure vessel and reaction vessel
───────────────────────────────────────────────────── フロントページの続き (72)発明者 河北 智博 埼玉県戸田市川岸1−4−9 オルガノ 株式会社総合研究所内 (56)参考文献 特開 昭58−48923(JP,A) 特公 平6−96113(JP,B2) (58)調査した分野(Int.Cl.7,DB名) B01J 3/00 - 3/04 ─────────────────────────────────────────────────── ─── Continuation of the front page (72) Inventor Tomohiro Kawakita 1-4-9 Kawagishi, Toda City, Saitama Organo Research Institute (56) Reference JP 58-48923 (JP, A) Japanese Patent Publication 6 -96113 (JP, B2) (58) Fields investigated (Int.Cl. 7 , DB name) B01J 3/00-3/04
Claims (5)
設した反応装置本体を含む高圧反応装置における該反応
容器内部に液状反応原料を直接該耐圧容器外部から導入
して高圧反応を行い、得られた高圧反応生成物を該反応
容器内部から直接該耐圧容器外部へ排出させるととも
に、該耐圧容器内面と該反応容器外面との間に形成され
る空隙部に高圧気体を導入し、かつ該反応容器内部の圧
力と該空隙部の圧力を実質的に同じ圧力に保持すること
を特徴とする高圧反応方法。We claim: 1. introducing a liquid reactant in the reaction vessel portion in the high-pressure reactor including a reactor main body which is disposed a closed reaction vessel in a pressure vessel unit directly from the pressure vessel outside the high pressure reaction performed, along with discharging the resulting high-pressure reaction product directly the pressure vessel exterior from inside the reaction vessel, introducing a high pressure gas in the gap portion formed between the pressure vessel interior surface and the reaction vessel outer surface, and high pressure reaction method characterized by retaining substantially the same pressure the pressure of the pressure and airspace inside the reaction vessel.
した反応装置本体と、該反応容器内部に液状反応原料を
直接該耐圧容器外部から導入するための配管と、該反応
容器内部の反応生成物を該反応容器内部から直接該耐圧
容器外部へ排出するための配管と、該耐圧容器内面と該
反応容器外面との間に形成される空隙部に高圧気体を導
入するための配管を備え、該空隙部と該反応容器内部と
が開口又は配管を介して流体的に連絡していることを特
徴とする高圧反応装置。Wherein the reaction apparatus main body which is disposed <br/> the closed Kusarisa reaction vessel in a pressure vessel, for introducing a liquid reaction material directly from the pressure vessel outside the reaction container Internal direct the breakdown voltage and the pipe, the reaction product of the reaction vessel part from the inside the reaction vessel
A pipe for discharging to the outside of the container , and a pipe for introducing high-pressure gas into a void formed between the inner surface of the pressure-resistant container and the outer surface of the reaction container, the void and the inside of the reaction container A high-pressure reactor characterized by being in fluid communication via an opening or a pipe.
導入するための配管を挿入し、該配管の周囲に開口部を
形成せしめることにより、該空隙部と該反応容器内部と
を流体的に連絡させたことを特徴とする請求項2に記載
した高圧反応装置。3. A pipe for directly introducing the liquid reaction raw material is inserted into the upper part of the reaction container, and an opening is formed around the pipe, whereby the void and the inside of the reaction container are fluidized. The high-pressure reactor according to claim 2, characterized in that
設した反応装置本体と、該反応容器内部に液状反応原料
を直接該耐圧容器外部から導入するための配管と、該反
応容器内部の反応生成物を該反応容器から直接該耐圧容
器外部へ排出するための配管と、該耐圧容器内面と該反
応容器外面との間に形成される空隙部に高圧気体を導入
するための配管を備えるとともに、該反応容器内部の圧
力と該空隙部の圧力とを実質的に同じ圧力に保持するた
めの圧力制御系を有することを特徴とする高圧反応装
置。Wherein is disposed a closed reaction vessel in a pressure vessel portion and the reaction apparatus main body, a pipe for introducing a liquid reaction material directly from the pressure vessel outside the reaction container in section, direct the breakdown voltage capacity of the reaction product of the reaction vessel part from the reaction vessel
A pipe for discharging the Utsuwagaibu in together when provided with a pipe for introducing high pressure gas into the gap portion formed between the pressure vessel interior surface and the reaction vessel outer surface, the pressure of the reaction vessel unit And a pressure control system for maintaining the pressure in the voids at substantially the same pressure.
導入するための配管が内管と外管からなり、該液状反応
原料を該内管から噴出させる構造を有することを特徴と
する請求項2ないし4のいずれかに記載した高圧反応装
置。5. The pipe for directly introducing the liquid reaction raw material into the reaction vessel comprises an inner pipe and an outer pipe, and has a structure for ejecting the liquid reaction raw material from the inner pipe. Item 5. A high-pressure reactor according to any one of items 2 to 4.
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP26917495A JP3368410B2 (en) | 1995-09-22 | 1995-09-22 | High pressure reaction method and high pressure reactor |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP26917495A JP3368410B2 (en) | 1995-09-22 | 1995-09-22 | High pressure reaction method and high pressure reactor |
Publications (2)
Publication Number | Publication Date |
---|---|
JPH0985075A JPH0985075A (en) | 1997-03-31 |
JP3368410B2 true JP3368410B2 (en) | 2003-01-20 |
Family
ID=17468715
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP26917495A Expired - Fee Related JP3368410B2 (en) | 1995-09-22 | 1995-09-22 | High pressure reaction method and high pressure reactor |
Country Status (1)
Country | Link |
---|---|
JP (1) | JP3368410B2 (en) |
Families Citing this family (9)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2000189781A (en) | 1998-12-28 | 2000-07-11 | Toshiba Corp | High-pressure treating device, method for supplying material to high-pressure treating device and method for protecting high-pressure treating device |
JP2001269566A (en) * | 2000-03-28 | 2001-10-02 | Japan Organo Co Ltd | Supercritical water reaction apparatus |
JP4334298B2 (en) * | 2003-08-19 | 2009-09-30 | 株式会社東芝 | Organic waste treatment apparatus and treatment method |
JP4545417B2 (en) * | 2003-11-04 | 2010-09-15 | オルガノ株式会社 | Supercritical water reactor |
JP2005342553A (en) * | 2004-05-31 | 2005-12-15 | Japan Organo Co Ltd | Pressure-balanced reaction apparatus and its operation method |
JP2005334848A (en) * | 2004-05-31 | 2005-12-08 | Japan Organo Co Ltd | Pressure balance type reactor and operation method therefor |
JP2005342600A (en) * | 2004-06-02 | 2005-12-15 | Japan Organo Co Ltd | Pressure-balanced reaction apparatus and its operation method |
JP6048793B2 (en) * | 2012-07-24 | 2016-12-21 | 株式会社リコー | Fluid purification device |
CN113479893A (en) * | 2021-08-09 | 2021-10-08 | 北京清创晋华科技有限公司 | Hydrogenation furnace |
-
1995
- 1995-09-22 JP JP26917495A patent/JP3368410B2/en not_active Expired - Fee Related
Also Published As
Publication number | Publication date |
---|---|
JPH0985075A (en) | 1997-03-31 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
JPH10503706A (en) | Turbulent cold wall reactor | |
JP3368410B2 (en) | High pressure reaction method and high pressure reactor | |
JP3273118B2 (en) | High pressure processing equipment | |
EP0267338B1 (en) | Heat exchanger for fluid treatment apparatus | |
US4272383A (en) | Method and apparatus for effecting subsurface, controlled, accelerated chemical reactions | |
Shanableh et al. | Supercritical water oxidation–wastewaters and sludges | |
JP5988155B2 (en) | Waste liquid treatment equipment | |
US5932182A (en) | Reactor for high temperature, elevated pressure, corrosive reactions | |
ATE316821T1 (en) | OXIDATION REACTOR IN THE LIQUID PHASE | |
IE922120A1 (en) | Supercritical water oxidation process and apparatus of organics with inorganics | |
US4849025A (en) | Decoking hydrocarbon reactors by wet oxidation | |
CN103130356A (en) | Waste liquid treatment apparatus and waste liquid treatment method | |
JP2011121052A (en) | Oxidative decomposition treatment apparatus | |
US20020086150A1 (en) | System and method for hydrothermal reactions-two layer liner | |
CN102992466A (en) | Supercritical water oxidation treatment device for organic pollutants | |
GB2054396A (en) | Introducing gases into molten metals | |
US6576185B2 (en) | System and method for hydrothermal reactions-three layer liner | |
JP4334162B2 (en) | Reaction vessel | |
JP4545417B2 (en) | Supercritical water reactor | |
EP0018366A1 (en) | Method and apparatus for effecting subsurface, controlled, accelerated chemical reactions. | |
CA1219385A (en) | Submerged oxygen inlet nozzle for injection of oxygen into wet oxidation reactor | |
JP6090658B2 (en) | Waste liquid treatment equipment | |
CA2193944C (en) | Turbulent flow cold-wall reactor | |
JP3437737B2 (en) | Supercritical water reactor | |
JP5888596B2 (en) | Fluid purification device |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
R250 | Receipt of annual fees |
Free format text: JAPANESE INTERMEDIATE CODE: R250 |
|
R250 | Receipt of annual fees |
Free format text: JAPANESE INTERMEDIATE CODE: R250 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20071115 Year of fee payment: 5 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20081115 Year of fee payment: 6 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20091115 Year of fee payment: 7 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20091115 Year of fee payment: 7 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20101115 Year of fee payment: 8 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20111115 Year of fee payment: 9 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20121115 Year of fee payment: 10 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20121115 Year of fee payment: 10 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20131115 Year of fee payment: 11 |
|
LAPS | Cancellation because of no payment of annual fees |