JP2005342600A - Pressure-balanced reaction apparatus and its operation method - Google Patents

Pressure-balanced reaction apparatus and its operation method Download PDF

Info

Publication number
JP2005342600A
JP2005342600A JP2004164374A JP2004164374A JP2005342600A JP 2005342600 A JP2005342600 A JP 2005342600A JP 2004164374 A JP2004164374 A JP 2004164374A JP 2004164374 A JP2004164374 A JP 2004164374A JP 2005342600 A JP2005342600 A JP 2005342600A
Authority
JP
Japan
Prior art keywords
pressure
reaction
reaction vessel
vessel
fluid
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2004164374A
Other languages
Japanese (ja)
Inventor
Hiroshi Suzugaki
裕志 鈴垣
Shinichirou Kawasaki
慎一朗 川崎
Tomonori Fujii
智範 藤井
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Organo Corp
Original Assignee
Organo Corp
Japan Organo Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Organo Corp, Japan Organo Co Ltd filed Critical Organo Corp
Priority to JP2004164374A priority Critical patent/JP2005342600A/en
Publication of JP2005342600A publication Critical patent/JP2005342600A/en
Pending legal-status Critical Current

Links

Images

Landscapes

  • Treatment Of Water By Oxidation Or Reduction (AREA)
  • Physical Or Chemical Processes And Apparatus (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To provide a pressure-balanced reaction apparatus having such a structure that the predetermined constitution can be kept without damaging a reaction vessel when a great pressure difference arises suddenly between the inside and outside of the reaction vessel since the operation is not controlled desirably or the reaction condition is changed, and to provide its operation method. <P>SOLUTION: This pressure-balanced reaction apparatus has a double-vessel structure that the reaction vessel is arranged in a pressure-resistant vessel so that the first pressure in the reaction vessel is balanced with the second pressure in the space between the pressure-resistant vessel and the reaction vessel. A communicative passage is arranged for communicating the inside of the reaction vessel with the space between the pressure-resistant vessel and the reaction vessel when the differential pressure between the first pressure and the second pressure reaches the predetermined or higher value. A rupture disk which ruptures when the differential pressure between the first pressure and the second pressure reaches the predetermined or higher value and opens the communicative passage is arranged in the communicative passage. <P>COPYRIGHT: (C)2006,JPO&NCIPI

Description

本発明は、圧力バランス型反応装置およびその運転方法に関し、とくに超臨界水の存在下での水熱反応等の高圧下での反応を、より望ましい装置条件下で行うことが可能な圧力バランス型反応装置およびその運転方法に関する。   The present invention relates to a pressure balance type reaction apparatus and a method for operating the same, and in particular, a pressure balance type capable of performing a reaction under a high pressure such as a hydrothermal reaction in the presence of supercritical water under more desirable apparatus conditions. The present invention relates to a reaction apparatus and an operation method thereof.

高圧下での反応を行う反応装置として、耐圧容器内に反応容器を設けて二重容器構造とし、反応容器内の圧力と、耐圧容器と反応容器の間の圧力とをバランスさせて、反応容器自体には大きな内外差圧がかからないようにした圧力バランス型反応装置が知られている。このような構造においては、反応容器には大きな変形力等が加わらないため、比較的薄肉構造を採用でき、また、高価な耐蝕材料等が要求される場合にもその材料費を削減でき、一方、耐圧容器には専ら耐圧性能だけを満足できる構造を採用すればよいから、比較的安価な材料を選定でき、装置全体を安価に構成できるとともに、装置各部に十分に高い要求性能を容易に持たせることが可能になる。   As a reaction apparatus for performing a reaction under high pressure, a reaction vessel is provided in a pressure vessel to form a double vessel structure, and the reaction vessel is balanced with the pressure in the reaction vessel and the pressure between the pressure vessel and the reaction vessel. There is known a pressure balance type reaction apparatus in which a large internal / external differential pressure is not applied to itself. In such a structure, since a large deformation force is not applied to the reaction vessel, a relatively thin wall structure can be adopted, and the material cost can be reduced even when an expensive corrosion-resistant material is required. Since the pressure vessel only needs to have a structure that can satisfy only pressure resistance performance, relatively inexpensive materials can be selected, the entire device can be configured at low cost, and each part of the device can easily have sufficiently high required performance. It becomes possible to make it.

このような圧力バランス型反応装置は、たとえば、高温高圧水の存在下での水熱反応等に有効である。近年、高温高圧水、とくに超臨界水の存在下での水熱酸化反応を利用して、環境汚染物質等を分解、無害化する試みが注目されている。とくに、超臨界水の高い反応性を利用した超臨界水酸化により、従来技術では分解することが難しかった有害な難分解性の有機物、例えば、PCB(ポリ塩素化ビフェニル)、ダイオキシン、有機塩素系有機物等を分解して、二酸化炭素、窒素、水、無機塩などの無害な生成物に転化する試みが注目されている。この超臨界水とは、超臨界状態にある水、すなわち、水の臨界点を越えた状態にある水を言い、詳しくは、374.1℃以上の温度で、かつ22.04MPa以上の圧力下にある状態の水を言う。超臨界水は、有機物を溶解する溶解能が高く、有機化合物に多い非極性物質をも完全に溶解することができる一方、逆に、金属、塩等の無機物に対する溶解能は著しく低い。また、超臨界水は、空気や酸素、窒素などの気体と任意の割合で混合して単一相を構成することができる。このような超臨界水を用いた超臨界水酸化を含む水熱反応、とくに温度180℃以上、圧力1MPa以上の高温高圧水を用いる水熱反応等に圧力バランス型反応装置を適用すると、比較的安価に、所定の連続式やバッチ式の水熱反応装置を構成することが可能になる。   Such a pressure balance type reaction apparatus is effective for, for example, a hydrothermal reaction in the presence of high-temperature high-pressure water. In recent years, attention has been paid to attempts to decompose and detoxify environmental pollutants using a hydrothermal oxidation reaction in the presence of high-temperature and high-pressure water, particularly supercritical water. In particular, due to supercritical water oxidation utilizing the high reactivity of supercritical water, harmful and difficult-to-decompose organic substances, such as PCB (polychlorinated biphenyl), dioxin, and organic chlorine, which were difficult to be decomposed by the prior art. Attempts have been focused on decomposing organic substances and converting them into harmless products such as carbon dioxide, nitrogen, water and inorganic salts. The supercritical water means water in a supercritical state, that is, water in a state exceeding the critical point of water. Specifically, it is at a temperature of 374.1 ° C. or higher and under a pressure of 22.04 MPa or higher. Says water in a state. Supercritical water has a high ability to dissolve organic substances, and can completely dissolve non-polar substances that are abundant in organic compounds. Conversely, the ability to dissolve inorganic substances such as metals and salts is extremely low. Supercritical water can be mixed with a gas such as air, oxygen, or nitrogen at an arbitrary ratio to form a single phase. When the pressure balance type reactor is applied to such hydrothermal reaction including supercritical water oxidation using supercritical water, particularly hydrothermal reaction using high-temperature high-pressure water having a temperature of 180 ° C. or higher and a pressure of 1 MPa or higher, It is possible to configure a predetermined continuous or batch hydrothermal reactor at low cost.

圧力バランス型反応装置を適用した水熱反応装置として、特許文献1〜特許文献3には、耐圧容器の中に反応容器を設け、反応容器の外側に(耐圧容器と反応容器の間に)圧力バランスを保つための流体(バランス流体)を流通させる圧力バランス式のベッセル型反応器が開示されている。   As hydrothermal reactors to which a pressure balance type reactor is applied, in Patent Documents 1 to 3, a reaction vessel is provided in a pressure vessel, and the pressure outside the reaction vessel (between the pressure vessel and the reaction vessel). A pressure-balanced Bessel-type reactor in which a fluid for maintaining balance (balance fluid) is circulated is disclosed.

このような圧力バランス型反応装置は、バッチ式と連続式の反応装置に大別することが可能である。図5は、バッチ式装置の例を示しており、図5に示す装置では、被処理物111が反応容器112内に充填され、反応環境を形成する水または超臨界水113と反応用流体としての空気114が反応容器112内に導入されて反応容器112内で反応が行われる。反応が終了すると、処理流体115は処理流体排出管116を介して排出され、たとえば、冷却水117を通水した冷却器118、処理流体減圧弁119を介して所定の行き先へと送られる。このような反応系統とは別系統からバランス流体が供給され、本例では、反応用流体供給管としての空気供給管が分岐され、空気がバランス流体120として、反応容器112と耐圧容器121の間に流入され、バランス空気減圧弁122を介して排出される。このバランス流体120は、反応容器内流体とは反応容器112により隔絶されている。通常、反応容器内圧力よりもバランス流体圧力がわずかに高くなるように、バランス流体120の圧力が制御されている。なお、図示していないが、反応容器112および耐圧容器121に流入するラインには、逆流防止のため逆止弁が設けられる。   Such pressure balance type reactors can be broadly classified into batch reactors and continuous reactors. FIG. 5 shows an example of a batch type apparatus. In the apparatus shown in FIG. 5, an object 111 to be processed is filled in a reaction vessel 112, and water or supercritical water 113 forming a reaction environment and a reaction fluid are used. The air 114 is introduced into the reaction vessel 112 and the reaction is performed in the reaction vessel 112. When the reaction is completed, the processing fluid 115 is discharged through the processing fluid discharge pipe 116 and is sent to a predetermined destination through, for example, the cooler 118 that has passed the cooling water 117 and the processing fluid pressure reducing valve 119. A balance fluid is supplied from a system different from such a reaction system. In this example, an air supply pipe as a reaction fluid supply pipe is branched, and air is used as a balance fluid 120 between the reaction vessel 112 and the pressure vessel 121. And discharged through the balance air pressure reducing valve 122. The balance fluid 120 is isolated from the reaction container fluid by the reaction container 112. Usually, the pressure of the balance fluid 120 is controlled so that the balance fluid pressure is slightly higher than the pressure in the reaction vessel. Although not shown, a check valve is provided in the line flowing into the reaction vessel 112 and the pressure vessel 121 to prevent backflow.

図6は、連続式装置の例を示しており、図6に示す装置では、被処理流体101がノズル102を介してたとえば超臨界水とともに反応容器103内に導入され、反応用流体104(この場合、空気)が導入されて反応容器103内で反応が行われ、処理流体105が処理流体排出管106から排出される。反応用流体104として供給される空気は、圧力バランス用のバランス流体107としても使用され、該バランス流体107が、反応容器103と耐圧容器108の間に流入されるとともに、反応容器103とノズル102の隙間から反応容器103内に流入される。この構造においては、反応容器103の内外は反応容器103の開口部を介して連通しているため、流体流れによる微小な圧力損失による圧力差はあるものの、基本的にはバランス流体と反応容器内流体の圧力は同一となる。なお、図5、6とも図示しないが、反応容器の内側と外側の圧力差を検知するために、たとえば、反応用空気とバランス空気ラインの差圧を測定するラインが設けられており、異常を検知することができるようになっている。
特開2003−340261号公報 特開2003−340262号公報 特開平9−85075号公報
FIG. 6 shows an example of a continuous apparatus. In the apparatus shown in FIG. 6, the fluid 101 to be treated is introduced into the reaction vessel 103 together with, for example, supercritical water via the nozzle 102, and the reaction fluid 104 (this In this case, air is introduced and the reaction is performed in the reaction vessel 103, and the processing fluid 105 is discharged from the processing fluid discharge pipe 106. The air supplied as the reaction fluid 104 is also used as a balance fluid 107 for pressure balance. The balance fluid 107 flows between the reaction vessel 103 and the pressure vessel 108 and the reaction vessel 103 and the nozzle 102. Into the reaction vessel 103 through the gap. In this structure, since the inside and outside of the reaction vessel 103 communicate with each other through the opening of the reaction vessel 103, basically there is a pressure difference due to a small pressure loss due to the fluid flow, but basically the balance fluid and the inside of the reaction vessel The fluid pressure is the same. Although not shown in FIGS. 5 and 6, in order to detect the pressure difference between the inner side and the outer side of the reaction vessel, for example, a line for measuring the differential pressure between the reaction air and the balance air line is provided. It can be detected.
JP 2003-340261 A JP 2003-340262 A JP-A-9-85075

ところが、図5に示したようなバッチ式の反応器構造においては、バランス流体と反応容器内流体は隔絶されているため、圧力バランスを取るために両者とも圧力制御をしているが、どちらか一方の圧力制御に不調をきたした場合には、内外圧力差が生じ、反応容器の設計圧力を超えることが想定される。さらに、バッチ式装置においては、昇温・昇圧過程があり(たとえば、特許文献2)、反応容器内の温度上昇に伴う圧力上昇に合わせたバランス流体圧力の制御が必要となるが、予期しない温度の急上昇があった場合、バランス空気圧力の制御が追随できず、内外圧力差が生じ、反応容器の設計圧力を超えることが想定される。さらに、反応容器内で急激な反応が生じて圧力が急上昇した場合や装置に急激な漏れが発生した場合にも、バランス流体圧力の制御が追随できず、内外圧力差が生じ、反応容器の設計圧力を超えることが想定される。   However, in the batch type reactor structure as shown in FIG. 5, since the balance fluid and the fluid in the reaction vessel are isolated from each other, both of them are pressure-controlled in order to balance the pressure. When one of the pressure controls is unsatisfactory, it is assumed that a pressure difference between the inside and outside occurs and exceeds the design pressure of the reaction vessel. Furthermore, in the batch type apparatus, there is a temperature increase / pressure increase process (for example, Patent Document 2), and it is necessary to control the balance fluid pressure in accordance with the pressure increase accompanying the temperature increase in the reaction vessel. If there is a sudden rise, it is assumed that the balance air pressure cannot be controlled, and that a pressure difference between the inside and outside is generated and exceeds the design pressure of the reaction vessel. In addition, even when a sudden reaction occurs in the reaction vessel and the pressure suddenly rises or a sudden leak occurs in the device, the balance fluid pressure cannot be controlled, resulting in a difference in pressure between the inside and outside of the vessel. It is assumed that the pressure will be exceeded.

また、図6に示したような連続式の反応器構造においても、被処理流体中に塩類が混入されていると、反応容器内で析出し、場合によっては反応容器とノズルの隙間にも析出し、隙間がなくなる。この場合に、反応容器内流体の圧力調節が不調になったり、運転終了後の反応容器内減圧を行なった際には、反応容器内流体圧力は低下するが、図示しない逆止弁の効果によりバランス流体の逆流は防止され、バランス流体圧力は低下しないため、反応容器の内側と外側に反応容器の設計圧力を超える圧力差が発生することも想定される。   Further, even in a continuous reactor structure as shown in FIG. 6, if salts are mixed in the fluid to be treated, it is deposited in the reaction vessel, and in some cases, also deposited in the gap between the reaction vessel and the nozzle. And the gap disappears. In this case, when the pressure adjustment of the fluid in the reaction vessel becomes unstable or when the pressure in the reaction vessel is reduced after the operation is finished, the fluid pressure in the reaction vessel decreases, but due to the effect of a check valve (not shown). Since the back flow of the balance fluid is prevented and the balance fluid pressure does not decrease, it is assumed that a pressure difference exceeding the design pressure of the reaction vessel is generated inside and outside the reaction vessel.

そこで本発明の課題は、上記のような問題点に着目し、とくに制御不調や反応条件の変化等により反応容器の内外圧力差に急激かつ過大な変化が生じた場合に、反応容器にダメージを与えることなく圧力バランス型反応装置の所定の構成を維持できるようにした構造と運転方法を提供することにある。   Therefore, the object of the present invention is to pay attention to the above-mentioned problems, particularly when a sudden and excessive change in the internal / external pressure difference of the reaction vessel occurs due to a malfunction of control or a change in reaction conditions. It is an object of the present invention to provide a structure and an operation method that can maintain a predetermined configuration of a pressure balance type reactor without giving the pressure.

上記課題を解決するために、本発明に係る圧力バランス型反応装置は、耐圧容器内に反応容器を設けた二重容器構造を有し、反応容器内の第1の圧力と耐圧容器と反応容器の間の第2の圧力とをバランスさせるようにした圧力バランス型反応装置であって、第1の圧力と第2の圧力との差圧が所定値以上になったときに反応容器の内部側と耐圧容器と反応容器の間側とを連通させる連通路を設けるとともに、該連通路に、第1の圧力と第2の圧力との差圧が所定値以上になったときに破裂し該連通路を開く破裂板を設けたことを特徴とするものからなる。   In order to solve the above problems, a pressure balance type reaction apparatus according to the present invention has a double container structure in which a reaction vessel is provided in a pressure vessel, and the first pressure, the pressure vessel and the reaction vessel in the reaction vessel. A pressure balance type reaction apparatus that balances the second pressure between the first and second pressures when the differential pressure between the first pressure and the second pressure exceeds a predetermined value. And a communication passage that communicates between the pressure vessel and the reaction vessel, and the communication passage is ruptured when the pressure difference between the first pressure and the second pressure exceeds a predetermined value. It consists of what is provided with the rupture disk which opens a channel | path.

上記破裂板としては、一枚の破裂板を連通路内に設けた構造とすることもできるし、一方向のみに作動する破裂板が並列に双方向に設けられている構造とすることもできる。   The rupturable plate may have a structure in which a single rupturable plate is provided in the communication path, or may have a structure in which a rupturable plate that operates only in one direction is provided in both directions in parallel. .

また、上記連通路には、バッファタンクが設けられていることが好ましい。   Further, it is preferable that a buffer tank is provided in the communication path.

このような圧力バランス型反応装置においては、反応容器内で高圧の反応、たとえば水熱反応が行われる。水熱反応としては、たとえば超臨界水酸化反応が挙げられる。   In such a pressure balance type reaction apparatus, a high-pressure reaction, for example, a hydrothermal reaction is performed in the reaction vessel. Examples of the hydrothermal reaction include a supercritical water oxidation reaction.

本発明に係る圧力バランス型反応装置の運転方法は、上記のような圧力バランス型反応装置を用い、第1の圧力と第2の圧力との差圧が所定値以上になったときに、破裂板を破裂させて連通路を連通させるとともに、装置を停止する方法からなる。   The operation method of the pressure balance type reactor according to the present invention uses the pressure balance type reactor as described above, and bursts when the pressure difference between the first pressure and the second pressure becomes a predetermined value or more. It consists of a method of rupturing the plate to make the communication path communicate and stopping the apparatus.

従来の圧力バランス型反応装置では、反応容器の内外圧力差が生じた場合には、対応として装置を停止するだけであり、各調節弁により圧力を調節すること以外に圧力差を解消する手段がなかった。そのため、急激に反応容器の内外圧力差が上昇した場合に、調節弁だけでは圧力バランスを調節しきれずに反応容器の設計圧力を超え、反応容器が変形もしくは破損するおそれがあった。しかし本発明に係る圧力バランス型反応装置においては、反応容器の内外差圧が所定値以上となったときには、連通路に設けられた破裂板が破裂し、反応容器の内部と外部を連通させる連通路(均圧ライン)が開かれ、反応容器の内部と外部が連通されて反応容器にかかる差圧を無くす。したがって、反応容器には過大な差圧がかからなくなり、変形や破損のおそれが除去される。   In the conventional pressure balance type reaction apparatus, when a pressure difference between the inside and outside of the reaction vessel occurs, the apparatus is only stopped as a countermeasure, and means for eliminating the pressure difference other than adjusting the pressure by each control valve is provided. There wasn't. Therefore, when the pressure difference between the inside and outside of the reaction vessel suddenly rises, the pressure balance cannot be adjusted with the control valve alone, and the design pressure of the reaction vessel is exceeded, and the reaction vessel may be deformed or damaged. However, in the pressure balance type reaction apparatus according to the present invention, when the internal / external differential pressure of the reaction vessel exceeds a predetermined value, the rupture plate provided in the communication passage is ruptured, and the communication that connects the inside and the outside of the reaction vessel is established. A passage (equal pressure equalization line) is opened, and the inside and outside of the reaction vessel are communicated to eliminate the differential pressure applied to the reaction vessel. Therefore, an excessive differential pressure is not applied to the reaction vessel, and the possibility of deformation or breakage is eliminated.

本発明に係る圧力バランス型反応装置およびその運転方法によれば、不測の事態等により反応容器の内外圧力差が急激に上昇した場合にも、破裂板の破裂という極めて速い動作をもって過大な差圧がかからないように対応することができ、反応容器を変形・破損させるおそれを除去して、圧力バランス型反応装置の所定の構成を安定して維持することができる。   According to the pressure balance type reactor and the operation method thereof according to the present invention, even when the internal and external pressure difference of the reaction vessel suddenly increases due to an unexpected situation or the like, an excessively high differential pressure with an extremely fast operation of rupture of the rupture disc Therefore, it is possible to prevent the reaction vessel from being deformed / damaged and to stably maintain a predetermined configuration of the pressure balance type reactor.

以下に、本発明の望ましい実施の形態を、図面を参照して説明する。
図1は、本発明の第1実施態様に係る圧力バランス型反応装置を示しており、とくにバッチ式の、超臨界水酸化装置として好適な水熱反応装置を示している。図1に示す圧力バランス型反応装置1は、耐圧容器2内に反応容器3を設けた二重容器構造を有し、反応容器3内の第1の圧力と耐圧容器2と反応容器3の間の第2の圧力とをバランスさせるようにした圧力バランス型反応装置に構成されている。被処理物4はバッチ式にて反応容器3内に充填され、水または超臨界水5と反応用流体6(この場合、空気)が導入されて反応容器3内で反応が行われ、処理流体7が処理流体排出管8から排出される。排出された処理流体7は、本実施態様では、冷却水9が通水された冷却器10で冷却され、処理流体減圧弁11にて適度に減圧されて所定の行き先へと排出される。反応用流体6として供給される空気は、圧力バランス用のバランス流体12としても使用され、該バランス流体12は、反応容器3と耐圧容器2の間に流入され、反応容器3内とは隔絶された状態にて、バランス流体排出管13、バランス流体減圧弁14を介して排出される。
Hereinafter, preferred embodiments of the present invention will be described with reference to the drawings.
FIG. 1 shows a pressure balance type reaction apparatus according to the first embodiment of the present invention, and particularly shows a hydrothermal reaction apparatus suitable as a batch type supercritical water oxidation apparatus. The pressure balance type reactor 1 shown in FIG. 1 has a double container structure in which a reaction vessel 3 is provided in a pressure vessel 2, and the first pressure in the reaction vessel 3 is between the pressure vessel 2 and the reaction vessel 3. It is comprised in the pressure balance type | mold reaction apparatus which balanced the 2nd pressure of this. The object to be processed 4 is filled in the reaction vessel 3 in a batch manner, water or supercritical water 5 and a reaction fluid 6 (in this case, air) are introduced, and the reaction is performed in the reaction vessel 3, and the treatment fluid 7 is discharged from the processing fluid discharge pipe 8. In the present embodiment, the discharged processing fluid 7 is cooled by the cooler 10 through which the cooling water 9 has been passed, and is appropriately depressurized by the processing fluid pressure reducing valve 11 and discharged to a predetermined destination. The air supplied as the reaction fluid 6 is also used as a balance fluid 12 for pressure balance, and the balance fluid 12 flows between the reaction vessel 3 and the pressure vessel 2 and is isolated from the reaction vessel 3. In this state, the fluid is discharged via the balance fluid discharge pipe 13 and the balance fluid pressure reducing valve 14.

そして、この圧力バランス型反応装置1に、反応容器3内の第1の圧力と耐圧容器2と反応容器3の間の第2の圧力との差圧が所定値以上になったときに反応容器3の内部側と耐圧容器2と反応容器3の間側とを連通させる連通路15が設けられている。この連通路15には、第1の圧力と第2の圧力との差圧が所定値以上になったときに該連通路15を開く破裂板16が設けられており、破裂板16は、自身の破裂により連通路15を開くようになっている。本実施態様では、破裂板16は、連通路15の延設方向の両方向に破裂できるようになっているが、図2に示すように、一方向のみに作動する破裂板16a、16bが並列に双方向に(破裂方向が互いに反対方向となるように)設けられている構造とすることもできる。図2に示した構造では、破裂板16a、16bのそれぞれの作動方向を別方向とすることで、どちらの圧力が増加した場合にも精度良く対応できるようになる。なお図1に示される破裂板16は、連通路15において破裂板16を境界にして一方の圧力(第1の圧力)が他方の圧力(第2の圧力)より大きくなり、その差圧が所定値以上になったときに、圧力の大きい側から圧力の小さい側に破裂する破裂板を用いることができる。   Then, when the pressure difference between the first pressure in the reaction vessel 3 and the second pressure between the pressure vessel 2 and the reaction vessel 3 becomes a predetermined value or more, 3 is provided with a communication passage 15 that allows communication between the inner side of 3 and the pressure vessel 2 and the reaction vessel 3. The communication passage 15 is provided with a rupture plate 16 that opens the communication passage 15 when the differential pressure between the first pressure and the second pressure becomes a predetermined value or more. The communication passage 15 is opened by the rupture of. In this embodiment, the rupturable plate 16 can be ruptured in both directions in the extending direction of the communication passage 15, but as shown in FIG. 2, rupturable plates 16 a and 16 b that operate only in one direction are arranged in parallel. A structure provided in both directions (so that the burst directions are opposite to each other) may be employed. In the structure shown in FIG. 2, the operating directions of the rupturable plates 16a and 16b are set to different directions, so that it is possible to accurately cope with either pressure increase. In the rupturable plate 16 shown in FIG. 1, one pressure (first pressure) is larger than the other pressure (second pressure) with the rupturable plate 16 as a boundary in the communication path 15, and the differential pressure is predetermined. A rupture disc that ruptures from the high pressure side to the low pressure side when the value is exceeded can be used.

また図2に示される破裂板16aは、例えば破裂板の中央部に矢印方向に凸状に湾曲している破壊部を設け、矢印方向の圧力が破裂板16aを境界としてその逆方向の圧力より大きくなり、その差圧が所定値以上になったときに前記破壊部が破壊し、たとえ矢印方向と逆方向の圧力が大きくなったとしても破壊しないような破裂板を用いることができる。なお破裂板16bは、16aとは逆方向に作動するものを用いることは言うまでもない。   The rupture disk 16a shown in FIG. 2 is provided with, for example, a rupture portion that is convexly curved in the direction of the arrow at the center of the rupture disk. It is possible to use a rupturable plate that becomes large and breaks when the pressure difference exceeds a predetermined value, and does not break even if the pressure in the direction opposite to the arrow increases. Needless to say, the rupturable plate 16b is operated in the direction opposite to that of 16a.

このように構成された圧力バランス型反応装置1においては、連通路15を設けるとともに、その連通路15に破裂板16(あるいは破裂板16a、16b)を設けることにより、反応容器3の内外圧力差が急激に変化しその差圧が所定範囲を超えると、破裂板が迅速に破裂して連通路15を開放し、反応容器3の内外圧力差を解消することができる。したがって、不測の事態等が発生し反応容器3の内外圧力差が急激に増大した場合にあっても、連通路15(均圧ライン)とそこに設けた破裂板の破裂による均圧化により、極めて迅速に圧力差を解消できることになり、反応容器3にダメージを与えることなく、所定の圧力バランス型反応装置1の構成を安定して維持することができる。   In the pressure balance type reactor 1 configured as described above, the communication passage 15 is provided, and the rupture plate 16 (or the rupture plates 16 a and 16 b) is provided in the communication passage 15, so that the pressure difference between the inside and outside of the reaction vessel 3 is increased. When the pressure changes abruptly and the differential pressure exceeds a predetermined range, the rupturable plate bursts quickly to open the communication passage 15 and the internal / external pressure difference of the reaction vessel 3 can be eliminated. Therefore, even when an unforeseen situation or the like occurs and the pressure difference between the inside and outside of the reaction vessel 3 suddenly increases, pressure equalization by rupture of the communication path 15 (equal pressure line) and the rupture plate provided therein, The pressure difference can be eliminated very quickly, and the configuration of the predetermined pressure balance type reactor 1 can be stably maintained without damaging the reaction vessel 3.

なお、図示例では、反応容器3の内部と外部の圧力差を感知し、圧力を均一化する破裂板16を設けるライン(連通路15)として、水または超臨界水の反応容器3への入口とバランス空気の配管入口を選択したが、その他にも、以下に示すような各箇所からの任意の組合せとすることができる。たとえば、反応容器3の内部圧力感知位置として、(1)反応容器入口、(2)処理流体出口、(3)反応容器内から導出される差圧検知専用ライン(図示略)等、また、反応容器3の外部圧力感知位置として、(1)バランス空気入口の他、(2)バランス空気出口、(3)耐圧容器から導出される差圧感知専用ライン(図示略)等を選択してもよい。図1において、水または超臨界水の入口側は、基本的には不純物を含まない水が供給され、塩の析出・閉塞のおそれが最も低い位置であるため、反応容器内側圧力の導出元として好ましい。   In the illustrated example, water or supercritical water is introduced into the reaction vessel 3 as a line (communication path 15) provided with a rupturable plate 16 that senses the pressure difference between the inside and outside of the reaction vessel 3 and equalizes the pressure. In addition, the balance air pipe inlet is selected, but any other combination from the following points can be used. For example, the internal pressure sensing position of the reaction vessel 3 includes (1) reaction vessel inlet, (2) processing fluid outlet, (3) differential pressure detection dedicated line (not shown) derived from the reaction vessel, etc. As the external pressure sensing position of the container 3, (1) a balance air inlet, (2) a balance air outlet, (3) a differential pressure sensing dedicated line (not shown) derived from the pressure vessel, etc. may be selected. . In FIG. 1, the inlet side of water or supercritical water is basically supplied with water that does not contain impurities, and has the lowest risk of salt precipitation / clogging. preferable.

また、反応容器内に投入される被処理物は腐食性である場合があるが、通常耐圧容器には特別な腐食対策を施さないため、反応容器内圧力が上昇して破裂板が作動した場合には、反応容器内の被処理物(被処理流体)が反応容器外部に到達し、耐圧容器と接液すると、耐圧容器が腐食するおそれがある。そこで、図1の装置に関して図3に示すように、均圧ライン(連通路15)にバッファタンク21を設けることで、反応容器内圧力が上昇して破裂板16が作動した場合でも、反応容器内流体が反応容器外部に到達することがなくなる。図3では、破裂板16の前にバッファタンク21を設けたが、後ろでもよく、また、前後に一つずつ設けてもよい。バッファタンク21の構成としては、液の飛散等を抑制する目的で、図3に示すように、反応容器内部との連結側がタンク下部まで導かれ、反応容器外部との連結側がタンク上部に接続されていることが好ましい。なお、次に述べる図4に示す装置についても、同様にバッファタンクを設けることができる。   In addition, the workpiece to be put into the reaction vessel may be corrosive, but normally the pressure vessel is not subjected to special corrosion countermeasures, so when the pressure inside the reaction vessel rises and the rupture disk is activated If the object to be processed (processed fluid) in the reaction container reaches the outside of the reaction container and is in contact with the pressure container, the pressure container may be corroded. Therefore, as shown in FIG. 3 with respect to the apparatus of FIG. 1, by providing a buffer tank 21 in the pressure equalizing line (communication path 15), even when the rupture plate 16 is activated due to an increase in the pressure in the reaction vessel, the reaction vessel The internal fluid does not reach the outside of the reaction vessel. In FIG. 3, the buffer tank 21 is provided in front of the rupturable plate 16, but it may be provided at the rear or one at the front and rear. As shown in FIG. 3, the buffer tank 21 is configured so that the connection side with the inside of the reaction vessel is led to the lower portion of the tank and the connection side with the outside of the reaction vessel is connected to the upper portion of the tank, as shown in FIG. It is preferable. Note that a buffer tank can be similarly provided for the apparatus shown in FIG.

本発明は、図1に示したようなバッチ式の圧力バランス型反応装置に好適なものであるが、本発明は連続式の圧力バランス型反応装置にも適用できる。図4は、本発明の第2実施態様に係る圧力バランス型反応装置を示しており、とくに連続式の、超臨界水酸化装置として好適な水熱反応装置を示している。図4に示す圧力バランス型反応装置31は、耐圧容器32内に反応容器33を設けた二重容器構造を有し、反応容器33内の第1の圧力と耐圧容器32と反応容器33の間の第2の圧力とをバランスさせるようにした圧力バランス型反応装置に構成されている。被処理流体34はノズル35を介してたとえば超臨界水とともに反応容器33内に導入され、反応用流体36(この場合、空気)が導入されて反応容器33内で反応が行われ、処理流体37が処理流体排出管38から排出される。反応用流体36として供給される空気は、圧力バランス用のバランス流体39としても使用され、該バランス流体39が、反応容器33と耐圧容器32の間に流入されるとともに、反応容器33とノズル35との隙間40から反応容器33内に流入される。本実施態様においては、反応容器33に対してブライン水入口41とブライン水出口42とが設けられており、反応容器33内のブライン水43の液面レベルを検出する液面検出器44が、低位側検出ライン45、高位側検出ライン46を介して接続されている。   The present invention is suitable for a batch-type pressure balance reactor as shown in FIG. 1, but the present invention can also be applied to a continuous pressure balance reactor. FIG. 4 shows a pressure balance type reaction apparatus according to the second embodiment of the present invention, and particularly shows a hydrothermal reaction apparatus suitable as a continuous supercritical water oxidation apparatus. The pressure balance type reaction apparatus 31 shown in FIG. 4 has a double container structure in which a reaction vessel 33 is provided in a pressure vessel 32, and the first pressure in the reaction vessel 33 is between the pressure vessel 32 and the reaction vessel 33. It is comprised in the pressure balance type | mold reaction apparatus which balanced the 2nd pressure of this. The fluid 34 to be treated is introduced into the reaction vessel 33 together with, for example, supercritical water through the nozzle 35, the reaction fluid 36 (in this case, air) is introduced, and the reaction is performed in the reaction vessel 33, and the treatment fluid 37 Is discharged from the processing fluid discharge pipe 38. The air supplied as the reaction fluid 36 is also used as a balance fluid 39 for pressure balance. The balance fluid 39 flows between the reaction vessel 33 and the pressure vessel 32 and the reaction vessel 33 and the nozzle 35. And into the reaction vessel 33 from the gap 40. In the present embodiment, a brine water inlet 41 and a brine water outlet 42 are provided for the reaction vessel 33, and a liquid level detector 44 that detects the level of the brine water 43 in the reaction vessel 33 includes: The lower detection line 45 and the higher detection line 46 are connected to each other.

そして、この圧力バランス型反応装置31に、反応容器33内の第1の圧力と耐圧容器32と反応容器33の間の第2の圧力との差圧が所定値以上になったときに反応容器33の内部側と耐圧容器32と反応容器33の間側とを連通させる連通路47が設けられており、この連通路47に、第1の圧力と第2の圧力との差圧が所定値以上になったときに自身の破裂により該連通路47を開く破裂板48が設けられている。この圧力バランス型反応装置31においても、不測の事態等が発生し反応容器33の内外圧力差が急激に増大した場合にあっても、連通路47(均圧ライン)とそこに設けた破裂板48の破裂による均圧化により、極めて迅速に圧力差を解消できることになり、反応容器33にダメージを与えることなく、所定の圧力バランス型反応装置31の構成を安定して維持することができる。   When the pressure difference between the first pressure in the reaction vessel 33 and the second pressure between the pressure vessel 32 and the reaction vessel 33 becomes equal to or greater than a predetermined value, 33 is provided with a communication passage 47 that allows communication between the inner side of the pressure vessel 33 and the side between the pressure vessel 32 and the reaction vessel 33. In this communication passage 47, a differential pressure between the first pressure and the second pressure is a predetermined value. A rupture plate 48 is provided that opens the communication passage 47 by its own rupture when the above is reached. Even in this pressure balance type reaction device 31, even when an unexpected situation occurs and the pressure difference between the inside and outside of the reaction vessel 33 suddenly increases, the communication path 47 (equal pressure line) and the rupture disc provided there The pressure equalization by the rupture of 48 can eliminate the pressure difference very quickly, and the configuration of the predetermined pressure balance type reactor 31 can be stably maintained without damaging the reaction vessel 33.

なお、図1、4において、耐圧容器と反応容器の間の圧力バランスを保つ流体として、反応に使用する空気を分岐して供給する形態を示したが、耐圧容器と反応容器の間の圧力バランスを保つ流体として全く別個に、たとえば窒素のような流体を供給する形態でもよい。   In FIGS. 1 and 4, the air used for the reaction is branched and supplied as a fluid for maintaining the pressure balance between the pressure vessel and the reaction vessel, but the pressure balance between the pressure vessel and the reaction vessel is shown. It is also possible to supply a fluid such as nitrogen, for example, as a separate fluid that keeps the temperature constant.

本発明に係る圧力バランス型反応装置およびその運転方法は、二重容器型のあらゆる圧力バランス型反応装置に適用でき、とくにバッチ式の圧力バランス型反応装置、中でも、超臨界水の存在下での超臨界水酸化のような高圧下での水熱反応に好適なものである。   The pressure balance type reactor according to the present invention and the operating method thereof can be applied to any double vessel type pressure balance type reactor, particularly in a batch type pressure balance type reactor, particularly in the presence of supercritical water. It is suitable for hydrothermal reaction under high pressure such as supercritical water oxidation.

本発明の第1実施態様に係る圧力バランス型反応装置の概略機器系統図である。It is a schematic equipment system diagram of a pressure balance type reaction device concerning the 1st embodiment of the present invention. 図1の装置の破裂板の別の構成例を示す部分機器系統図である。It is a partial equipment system diagram which shows another structural example of the rupturable plate of the apparatus of FIG. 図1の装置にバッファタンクを設けた場合の部分機器系統図である。FIG. 2 is a partial equipment system diagram when a buffer tank is provided in the apparatus of FIG. 1. 本発明の第2実施態様に係る圧力バランス型反応装置の概略機器系統図である。It is a general | schematic apparatus system diagram of the pressure balance type | mold reaction apparatus which concerns on the 2nd embodiment of this invention. 従来のバッチ式の圧力バランス型反応装置の概略機器系統図である。It is a schematic equipment system diagram of a conventional batch type pressure balance type reactor. 従来の連続式の圧力バランス型反応装置の概略機器系統図である。It is a schematic equipment system diagram of a conventional continuous pressure balance type reactor.

符号の説明Explanation of symbols

1、31 圧力バランス型反応装置
2、32 耐圧容器
3、33 反応容器
4 被処理物
5 水または超臨界水
6、36 反応用流体としての空気
7、37 処理流体
8、38 処理流体排出管
9 冷却水
10 冷却器
11 処理流体減圧弁
12、39 バランス流体としての空気
13 バランス流体排出管
14 バランス流体減圧弁
15、47 連通路(均圧ライン)
16、16a、16b、48 破裂板
21 バッファタンク
34 被処理流体
35 ノズル
40 隙間
41 ブライン水入口
42 ブライン水出口
43 ブライン水
44 液面検出器
45 低位側検出ライン
46 高位側検出ライン
DESCRIPTION OF SYMBOLS 1,31 Pressure balance type reaction apparatus 2,32 Pressure-resistant container 3,33 Reaction container 4 To-be-processed object 5 Water or supercritical water 6,36 Air as reaction fluid 7,37 Processing fluid 8,38 Processing fluid discharge pipe 9 Cooling water 10 Cooler 11 Processing fluid pressure reducing valve 12, 39 Air as balance fluid 13 Balance fluid discharge pipe 14 Balance fluid pressure reducing valve 15, 47 Communication path (equal pressure equalization line)
16, 16a, 16b, 48 Rupture plate 21 Buffer tank 34 Processed fluid 35 Nozzle 40 Gap 41 Brine water inlet 42 Brine water outlet 43 Brine water 44 Liquid level detector 45 Low side detection line 46 High side detection line

Claims (6)

耐圧容器内に反応容器を設けた二重容器構造を有し、反応容器内の第1の圧力と耐圧容器と反応容器の間の第2の圧力とをバランスさせるようにした圧力バランス型反応装置であって、第1の圧力と第2の圧力との差圧が所定値以上になったときに反応容器の内部側と耐圧容器と反応容器の間側とを連通させる連通路を設けるとともに、該連通路に、第1の圧力と第2の圧力との差圧が所定値以上になったときに破裂し該連通路を開く破裂板を設けたことを特徴とする圧力バランス型反応装置。   A pressure balance type reactor having a double vessel structure in which a reaction vessel is provided in a pressure vessel and balancing the first pressure in the reaction vessel and the second pressure between the pressure vessel and the reaction vessel And providing a communication path for communicating the inside of the reaction vessel and the space between the pressure vessel and the reaction vessel when the differential pressure between the first pressure and the second pressure exceeds a predetermined value, A pressure balance type reaction apparatus comprising a rupture plate that ruptures and opens the communication path when the differential pressure between the first pressure and the second pressure exceeds a predetermined value. 前記破裂板として、一方向のみに作動する破裂板が並列に双方向に設けられている、請求項1の圧力バランス型反応装置。   The pressure balance type reactor according to claim 1, wherein a rupturable plate that operates in only one direction is provided in parallel as the rupturable plate. 前記連通路に、バッファタンクが設けられている、請求項1または2の圧力バランス型反応装置。   The pressure balance type reactor according to claim 1 or 2, wherein a buffer tank is provided in the communication path. 反応容器内で水熱反応を行う、請求項1〜3のいずれかに記載の圧力バランス型反応装置。   The pressure balance type | mold reaction apparatus in any one of Claims 1-3 which performs a hydrothermal reaction within reaction container. 水熱反応が超臨界水酸化反応である、請求項4の圧力バランス型反応装置。   The pressure balanced reactor according to claim 4, wherein the hydrothermal reaction is a supercritical water oxidation reaction. 請求項1〜5のいずれかに記載の圧力バランス型反応装置を用い、第1の圧力と第2の圧力との差圧が所定値以上になったときに、破裂板を破裂させて連通路を連通させるとともに、装置を停止する、圧力バランス型反応装置の運転方法。   The pressure balanced reactor according to any one of claims 1 to 5, wherein when the differential pressure between the first pressure and the second pressure becomes a predetermined value or more, the rupturable plate is ruptured to communicate with the communication path. The operation method of the pressure balance type reaction apparatus which makes the apparatus stop while communicating.
JP2004164374A 2004-06-02 2004-06-02 Pressure-balanced reaction apparatus and its operation method Pending JP2005342600A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2004164374A JP2005342600A (en) 2004-06-02 2004-06-02 Pressure-balanced reaction apparatus and its operation method

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2004164374A JP2005342600A (en) 2004-06-02 2004-06-02 Pressure-balanced reaction apparatus and its operation method

Publications (1)

Publication Number Publication Date
JP2005342600A true JP2005342600A (en) 2005-12-15

Family

ID=35495454

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2004164374A Pending JP2005342600A (en) 2004-06-02 2004-06-02 Pressure-balanced reaction apparatus and its operation method

Country Status (1)

Country Link
JP (1) JP2005342600A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2010075818A (en) * 2008-09-25 2010-04-08 Panasonic Electric Works Co Ltd Decomposition device and method for discharging decomposed liquid

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0985075A (en) * 1995-09-22 1997-03-31 Japan Organo Co Ltd High pressure reaction method and apparatus therefor
JPH10258225A (en) * 1997-03-19 1998-09-29 Natl Space Dev Agency Japan<Nasda> Pressurizing type visible container
JP2002233857A (en) * 2001-02-09 2002-08-20 Masayuki Kanno Method for detoxicating all of pcb-containing insulating oil in transformer, etc.
JP2003171104A (en) * 2001-12-04 2003-06-17 Iwatani Internatl Corp Ozone gas concentration apparatus

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0985075A (en) * 1995-09-22 1997-03-31 Japan Organo Co Ltd High pressure reaction method and apparatus therefor
JPH10258225A (en) * 1997-03-19 1998-09-29 Natl Space Dev Agency Japan<Nasda> Pressurizing type visible container
JP2002233857A (en) * 2001-02-09 2002-08-20 Masayuki Kanno Method for detoxicating all of pcb-containing insulating oil in transformer, etc.
JP2003171104A (en) * 2001-12-04 2003-06-17 Iwatani Internatl Corp Ozone gas concentration apparatus

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2010075818A (en) * 2008-09-25 2010-04-08 Panasonic Electric Works Co Ltd Decomposition device and method for discharging decomposed liquid
JP4458187B2 (en) * 2008-09-25 2010-04-28 パナソニック電工株式会社 Disassembly device and discharge method of decomposition liquid

Similar Documents

Publication Publication Date Title
CA2593149A1 (en) Fuel cell system having a valve device controlled by a control device
JP6601832B2 (en) Seal gas supply control method, seal gas supply control device, rotating machine
JP2006526696A (en) Mechanically operated stop-injector safety system and method for stopping runaway chemical reactions
US7192561B2 (en) Hydraulically controlled pressure relief valve for high-pressure reactors
US7743784B2 (en) Bursting disc assembly
KR102202570B1 (en) Valve apparatus and control method for gas flow
JP2005342600A (en) Pressure-balanced reaction apparatus and its operation method
JP2005334848A (en) Pressure balance type reactor and operation method therefor
JP2005342553A (en) Pressure-balanced reaction apparatus and its operation method
JP2001227661A (en) Passage shut-off device and dangerous substance discharge preventing device using it
JP2010511566A (en) Equipment for ship inert gas equipment
JP2008202644A (en) Check valve and vacuum pump device
KR100962547B1 (en) System for breaking reverse-current
JP4736339B2 (en) Liquid feeding means and liquid feeding method
JP2009092128A (en) Lubricating oil storage tank
JP2000279790A (en) Operation stopping method of supercritical water reaction device
JP2004342482A (en) Fuel cell system
JP2002136859A (en) High-temperature and high-pressure vessel
JP2007098267A (en) Hydrothermal reactor
CN221723091U (en) Multistage pump mechanical seal solution circulating device
CN218501987U (en) Online catalyst unloading device
JP4508766B2 (en) Hydrothermal reactor shutdown method
JP2005207363A (en) Gaseous fuel supply system
JP2503839B2 (en) Water distribution system in building water supply system
JP2000185227A (en) High pressure fixed bed reactor

Legal Events

Date Code Title Description
A621 Written request for application examination

Effective date: 20070417

Free format text: JAPANESE INTERMEDIATE CODE: A621

A131 Notification of reasons for refusal

Effective date: 20100420

Free format text: JAPANESE INTERMEDIATE CODE: A131

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20101022