JP3366679B2 - Processing method of organic material - Google Patents

Processing method of organic material

Info

Publication number
JP3366679B2
JP3366679B2 JP03978393A JP3978393A JP3366679B2 JP 3366679 B2 JP3366679 B2 JP 3366679B2 JP 03978393 A JP03978393 A JP 03978393A JP 3978393 A JP3978393 A JP 3978393A JP 3366679 B2 JP3366679 B2 JP 3366679B2
Authority
JP
Japan
Prior art keywords
processing
organic material
electrode
processed
organic
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP03978393A
Other languages
Japanese (ja)
Other versions
JPH06246542A (en
Inventor
正治 関
司 宮崎
周治 矢野
勇藏 森
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Japan Science and Technology Agency
Nitto Denko Corp
Original Assignee
Nitto Denko Corp
Japan Science and Technology Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Family has litigation
First worldwide family litigation filed litigation Critical https://patents.darts-ip.com/?family=12562535&utm_source=google_patent&utm_medium=platform_link&utm_campaign=public_patent_search&patent=JP3366679(B2) "Global patent litigation dataset” by Darts-ip is licensed under a Creative Commons Attribution 4.0 International License.
Application filed by Nitto Denko Corp, Japan Science and Technology Corp filed Critical Nitto Denko Corp
Priority to JP03978393A priority Critical patent/JP3366679B2/en
Publication of JPH06246542A publication Critical patent/JPH06246542A/en
Application granted granted Critical
Publication of JP3366679B2 publication Critical patent/JP3366679B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【産業上の利用分野】本発明は有機材料の加工方法に関
する。
FIELD OF THE INVENTION The present invention relates to a method for processing organic materials.

【0002】[0002]

【従来の技術】まず、結晶質および非晶質の無機材料の
加工においては、最終表面仕上を行うための、いわゆる
超精密加工として、EEM:Elastic Emission Machinin
g (特開平1−236939号公報)をはじめとして、
非常に優れた技術が開発されている。また、最終表面仕
上の前加工段階においても、残留クラックおよび熱的変
質層等の欠陥が発生せず、しかも空間分解能の高い高精
度の加工を行える加工法としてラジカル反応を利用した
CVM:Chemical Vaporization Machining(特開平4−
128393号公報)が提案されている。
2. Description of the Related Art First, in the processing of crystalline and amorphous inorganic materials, EEM: Elastic Emission Machinin is used as so-called ultra-precision processing for final surface finishing.
g (Japanese Patent Laid-Open No. 1-236939),
Very good technology has been developed. Also, in the pre-finishing stage of the final surface finishing, CVM: Chemical Vaporization using radical reaction is used as a processing method that does not cause residual cracks and defects such as thermally deteriorated layers and can perform highly accurate processing with high spatial resolution. Machining (Japanese Patent Laid-Open No. 4-
No. 128393) has been proposed.

【0003】これに対し、有機材料は、比較的柔らかく
刃物による切削が容易であることから、従来では多くの
場合、特別な加工法を採用しなくても、その加工につい
て大きな問題はなかった。
On the other hand, since the organic material is relatively soft and easy to cut with a blade, conventionally, in many cases, there was no big problem in the processing even if a special processing method was not adopted.

【0004】[0004]

【発明が解決しようとする課題】ところで、近年、高機
能性(例えば高硬度・高耐熱性 低熱変形など)の有機
材料が数多く開発されてきており、これに伴い、有機材
料の加工精度に対する要求も非常に厳しくなってきてい
る。そこで、最近では、そのような要求に対応した精密
加工技術として、高強度のレーザビームを利用した加工
法が用いられるようになってきているが、この加工法に
よれば、加工面に熱的変質層が残るといった欠点や、大
面積の加工を行う際にはコスト高となる等の問題があ
る。
By the way, in recent years, many organic materials having high functionality (for example, high hardness, high heat resistance and low thermal deformation) have been developed, and along with this, there is a demand for processing accuracy of the organic materials. Is getting very severe. Therefore, recently, a processing method using a high-intensity laser beam has come to be used as a precision processing technology to meet such demands. According to this processing method, the processing surface is thermally treated. There are problems that an altered layer remains and that cost increases when processing a large area.

【0005】また、そのような高機能性の有機材料を加
工する方法として、無ひずみで、熱的変質層やイオン衝
撃等による表面変質層が生じない、精密な加工技術は現
状では存在しない。
Further, as a method for processing such a highly functional organic material, there is currently no precise processing technique which is strain-free and does not cause a surface deterioration layer due to a thermal deterioration layer or ion bombardment.

【0006】さらに、ポリイミド等の有機材料は単体で
利用されることが少なく、金属や半導体などに積層され
た状態で利用されることが多いが、金属や半導体がフォ
トリソグラフィ技術などで精密パターンに加工すること
が可能であるのに対し、有機材料では、上記したように
精密な加工法がなく、このことが、有機物質と金属物質
で構成される精密な複合材料(複合部品)の実現化への
大きな障害となっている。
Further, an organic material such as polyimide is rarely used alone, and is often used in a state of being laminated on a metal or a semiconductor, but the metal or the semiconductor is formed into a precise pattern by a photolithography technique or the like. While it is possible to process, organic materials do not have a precise processing method as described above, and this realizes precise composite materials (composite parts) composed of organic substances and metal substances. Is a major obstacle to

【0007】本発明はそのような事情に鑑みてなされた
もので、有機材料を無ひずみで精密に加工でき、しか
も、加工面に熱的変質層やイオン衝撃等による表面変質
層が発生しない加工方法の提供を所期の目的とする。
The present invention has been made in view of such circumstances, and can process an organic material precisely without distortion and does not generate a thermally deteriorated layer or a surface deteriorated layer due to ion bombardment on the processed surface. The intended purpose is to provide a method.

【0008】[0008]

【課題を解決するための手段】本発明の加工方法は、内
部に所定形状の加工電極2が配設された反応容器1内
に、有機材料Wを電極2に対して所定の隙間を隔てて配
置するとともに、この容器1内を、ガス雰囲気でかつ
/100気圧以上、1気圧以下に維持した状態で、加工
電極2に高周波電力を印加して、その電極2と有機材料
Wとの間にプラズマを発生させ、そのプラズマ中のラジ
カルと有機材料との反応を利用して加工を行うことを特
徴とする(図1参照)。
According to the processing method of the present invention, an organic material W is separated from an electrode 2 by a predetermined gap in a reaction vessel 1 in which a processing electrode 2 having a predetermined shape is arranged. with placing, the container 1, a gas atmosphere and 1
/ 100 atm or more and 1 atm or less , high frequency power is applied to the machining electrode 2 to generate plasma between the electrode 2 and the organic material W, and radicals and organic material in the plasma are generated. It is characterized in that processing is performed by utilizing the reaction of (see FIG. 1).

【0009】[0009]

【作用】加工電極2への高周波電力の印加により、この
電極2と被加工物である有機材料Wとの間にプラズマを
発生させると、そのプラズマ放電で生成したラジカル
(遊離基)と有機材料との反応によって生成される揮発
性化合物の蒸発により、加工電極2と対面する部分の有
機材料が除去され、これによって加工が進行する。
When plasma is generated between the electrode 2 and the organic material W which is the object to be processed by applying high frequency power to the processing electrode 2, radicals (free radicals) generated by the plasma discharge and organic material W are generated. By evaporation of the volatile compound generated by the reaction with, the organic material in the portion facing the processing electrode 2 is removed, and thereby the processing proceeds.

【0010】ここで、気体分子の平均自由行程は、一般
に10-2atm で数μm以下であることから、加工の際の雰
囲気ガスの圧力を、例えば1/100 気圧以上に設定して
おくことで、その荷電粒子が電界によって高速に加速さ
れず、これによって、有機材料の加工面が、高速イオン
衝撃のよるスパッタリングでダメージを受けることはな
い。さらに、ラジカル反応を利用した加工は、加工過程
において材料に物理的な応力が作用することがなく、従
って、加工ひずみが発生することもない。
Here, since the mean free path of gas molecules is generally 10 -2 atm and several μm or less, the pressure of the atmosphere gas during processing should be set to, for example, 1/100 atmospheric pressure or more. Therefore, the charged particles are not accelerated at high speed by the electric field, and thus the processed surface of the organic material is not damaged by the sputtering due to the high-speed ion bombardment. Further, in the processing utilizing the radical reaction, physical stress does not act on the material in the processing process, and therefore, processing strain does not occur.

【0011】ここで、加工時の雰囲気として、金属や半
導体用の反応ガスを積極的には混合せずに、He,N
e,Ar等の不活性ガスのみの条件で、有機物質と金属
との複合材料を実際に加工したところ、有機材料を金属
や半導体に対して選択的に加工することができるといっ
た結果が得られた。
Here, He, N is used as an atmosphere during processing without positively mixing a reaction gas for metal or semiconductor.
When a composite material of an organic substance and a metal is actually processed under the condition of only an inert gas such as e or Ar, the result is obtained that the organic material can be selectively processed with respect to the metal or the semiconductor. It was

【0012】なお、本発明においては、雰囲気ガスとし
て不活性ガスの他、空気,N2,O2も使用でき、また、
不活性ガスとこれらを混合して用いることもできる。不
活性ガスに空気,N2,O2 を混合する場合の割合は任意
であってもよい。さらに、不活性ガスにCF4 やSF6
などを数%(体積比)程度まで混合すれば加工速度が向
上する。
[0012] In the present invention, other inert gas as the atmosphere gas, air, N 2, O 2 can be used, also,
It is also possible to use a mixture of these with an inert gas. The ratio in the case of mixing air, N 2 and O 2 with the inert gas may be arbitrary. Furthermore, CF 4 and SF 6 are added to the inert gas.
The processing speed can be improved by mixing up to several% (volume ratio).

【0013】[0013]

【実施例】本発明の加工方法の実施例を、以下、図面に
基づいて説明する。まず、本発明の加工方法を実施する
のに使用する装置を説明する。図1はその加工装置の概
略構成を示すブロック図で、図2はその装置の加工電極
2とリニアステージ3を抽出して示す斜視図である。
Embodiments of the processing method of the present invention will be described below with reference to the drawings. First, an apparatus used to carry out the processing method of the present invention will be described. FIG. 1 is a block diagram showing a schematic configuration of the processing apparatus, and FIG. 2 is a perspective view showing a processing electrode 2 and a linear stage 3 of the apparatus in an extracted manner.

【0014】反応容器1の内部には、被加工物(有機材
料)Wを保持するリニアステージ3と、その上方に位置
する加工電極2が配置されており、その加工電極2には
整合器4を介して高周波電源装置5が接続されている。
高周波電源装置5は、100MHz以上の周波数の電力、
例えば145MHz,240Wの高周波電力を加工電極2
に印加することが可能な電源装置である。
Inside the reaction vessel 1, a linear stage 3 holding a workpiece (organic material) W and a processing electrode 2 located above the linear stage 3 are arranged. The high frequency power supply device 5 is connected via.
The high frequency power supply device 5 has a power of a frequency of 100 MHz or more,
For example, high frequency power of 145 MHz and 240 W is applied to the machining electrode 2
It is a power supply device that can be applied to.

【0015】また、反応容器1には、ステージ3上の被
加工物Wと加工電極2の間に、ノズル1aが設けられて
いる。このノズル1aには、ガス供給装置6からHeな
どの不活性ガスが一定の流量で供給される。さらに、反
応容器1には、この容器内圧を 0.1Torr程度にまで減圧
するための排気装置7が接続されている。
The reaction container 1 is provided with a nozzle 1a between the workpiece W on the stage 3 and the machining electrode 2. An inert gas such as He is supplied from the gas supply device 6 to the nozzle 1a at a constant flow rate. Further, the reaction container 1 is connected to an exhaust device 7 for reducing the internal pressure of the container to about 0.1 Torr.

【0016】さて、以上の加工装置を用いて本発明方法
を実施した具体的な例を、以下に述べる。まず、Siウ
ェハ表面上に厚さ20μmのポリイミドを積層した試料
を被加工物Wとしてリニアステージ3上に載置し、ま
た、加工電極2としては、厚さが0.125mm,長さが30mmの
Al製の平板を使用して、この加工電極2と被加工物W
のポリイミド上面との間のギャップを0.2mm に設定す
る。
A specific example of carrying out the method of the present invention using the above processing apparatus will be described below. First, a sample in which a polyimide having a thickness of 20 μm is laminated on the surface of a Si wafer is placed as a workpiece W on the linear stage 3, and the machining electrode 2 has a thickness of 0.125 mm and a length of 30 mm. Using a flat plate made of Al, this machining electrode 2 and the workpiece W
Set the gap between the top surface of polyimide and 0.2mm.

【0017】次いで、反応容器1内を 0.1Torr程度にま
で減圧した後、この容器内にHeガスを充填して1気圧
に維持した状態で、加工電極2に周波数145MHzで2
40Wの高周波電力を印加し、さらに、リニアステージ
3を12mm/分で走査しつつ電極2と被加工物Wとの間
に、Heガスを、ノズル1aを通じて流量10(リット
ル/分)で、電極2と平行に流した状態で平面加工を行
ったところ、加工量(削り取り深さ)が約 0.2μmで、
その表面粗さが 0.005μm(Rmax )以下と非常に平滑
な精密加工を行うことができた。
Next, the pressure inside the reaction vessel 1 was reduced to about 0.1 Torr, and then He gas was filled into the vessel and the pressure was maintained at 1 atm.
High-frequency power of 40 W is applied, and He gas is flown between the electrode 2 and the workpiece W through the nozzle 1a at a flow rate of 10 (liter / minute) while scanning the linear stage 3 at 12 mm / minute. When flat surface processing was performed in a state of flowing in parallel with 2, the processing amount (shaving depth) was about 0.2 μm,
The surface roughness was 0.005 μm (Rmax) or less, and very smooth precision machining could be performed.

【0018】なお、以上の平面加工において、加工雰囲
気ガスの条件を代えて、Heガスに体積比で3%のO2
ガスを混合した状態で加工を行ったところ、Heガスの
みの雰囲気の場合に対して、加工量が2倍ほど深くはな
ったが、表面粗さは悪くなるという結果が得られた。
In the above flat surface processing, the conditions of the processing atmosphere gas were changed and He gas was replaced with 3% by volume of O 2
When the processing was performed with the gas mixed, the processing amount was about twice as deep as in the case of the He gas only atmosphere, but the result was that the surface roughness was deteriorated.

【0019】また、先の実施例と同じ被加工物Wをリニ
アステージ3上に載置し、さらに、被加工物Wの加工面
上に、金属マスク(厚さが0.025mm で、角0.1mm 正方形
の穴が0.125mm のピッチで開口された銅製メッシュ)を
載置した状態で、先と同一条件で5分間の加工を行った
ところ、その銅製メッシュは全く加工されず、ポリイミ
ドのみがメッシュの開口形状に応じて加工され、図3に
示すような正方形のくり抜き穴を開口することができ
た。このとき、ポリイミドPが加工によって完全に除去
され、そのSiウェハSの表面がラジカルにさらされて
も、そのウェハ表面は全く加工されることがなかった。
Further, the same workpiece W as in the previous embodiment is placed on the linear stage 3, and a metal mask (having a thickness of 0.025 mm and a corner of 0.1 mm is placed on the processed surface of the workpiece W). When a copper mesh with square holes opened at a pitch of 0.125 mm) was placed, and processing was performed for 5 minutes under the same conditions as above, the copper mesh was not processed at all, and only the polyimide mesh By processing according to the opening shape, a square hollow hole as shown in FIG. 3 could be opened. At this time, even if the polyimide P was completely removed by processing and the surface of the Si wafer S was exposed to radicals, the surface of the wafer was not processed at all.

【0020】次に、本発明方法を、配線板(銅とポリイ
ミドとの積層体)の加工に適用した例を、図4を参照し
つつ説明する。まず、この配線板F1 は、厚さ50μm
のポリイミドフィルムP1 の上に、厚さ40μmの銅箔
を、エポキシ樹脂が主成分の接着剤で貼り合わせた後、
フォトレジストによるパターニング工程、酸性のエッチ
ング液による銅箔のエッチング工程およびフォトレジス
トの除去工程を経て、線幅が0.2mm の細線パターンC1
を得た後に、さらに、そのパターン上にポリイミドフィ
ルムP1 を、接着剤E1を用いて貼り合わせた積層体で
ある。
Next, an example in which the method of the present invention is applied to the processing of a wiring board (a laminated body of copper and polyimide) will be described with reference to FIG. First, the wiring board F1 has a thickness of 50 μm.
After a copper foil having a thickness of 40 μm is adhered on the polyimide film P1 of No. 1 with an adhesive containing epoxy resin as a main component,
A fine line pattern C1 having a line width of 0.2 mm is obtained through a patterning process using a photoresist, a copper foil etching process using an acidic etching solution, and a photoresist removing process.
After obtaining the above, a polyimide film P1 is further laminated on the pattern using an adhesive E1.

【0021】そして、この例においても、加工は図1の
装置を用いて、先と同様な条件で行うわけであるが、被
加工物である配線板F1 は、図4(a) に示すように、そ
の細線パターンC1 が加工電極2と直行するように、ス
テージ3上に載置し、また、ステージ3による走査は行
わずに、配線板F1 と加工電極2との位置関係は固定し
た状態で加工を行ったところ、図4(b) に示すように、
銅製の細線パターンC1 には殆ど影響を与えることな
く、その細線の周辺の接着剤E1 とポリイミドフィルム
P1 のみを除去できた。従って、このような加工法を採
用することで、細線パターンが埋め込まれた構造の配線
板であっても、その細線パターンの露出つまりパターン
のコンタクト部形成を容易に行える。
Also in this example, the processing is carried out using the apparatus shown in FIG. 1 under the same conditions as above, but the wiring board F1 which is the object to be processed is as shown in FIG. 4 (a). Then, the fine line pattern C1 is placed on the stage 3 so as to be orthogonal to the machining electrode 2, and the positional relationship between the wiring board F1 and the machining electrode 2 is fixed without scanning by the stage 3. When processed with, as shown in Fig. 4 (b),
It was possible to remove only the adhesive E1 and the polyimide film P1 around the fine line with almost no influence on the fine line pattern C1 made of copper. Therefore, by adopting such a processing method, even in a wiring board having a structure in which a fine line pattern is embedded, the fine line pattern can be exposed, that is, the contact portion of the pattern can be easily formed.

【0022】次に、本発明方法を、銅とポリイミドとの
積層体に開口した貫通孔の内壁面の加工に適用した例
を、図5(a),(b) を参照して説明する。なお、図5で
は、貫通孔Hの中央位置で切断した状態を示している。
Next, an example in which the method of the present invention is applied to the processing of the inner wall surface of the through hole opened in the laminated body of copper and polyimide will be described with reference to FIGS. 5 (a) and 5 (b). Note that FIG. 5 shows a state in which the through hole H is cut at the central position.

【0023】まず、被加工物である積層体F2 は、厚さ
40μmの銅箔C2 と、厚さ50μmのポリイミドフィ
ルムP2 とを、接着剤(エポキシ樹脂が主成分)E2 を
挟んで交互に積層したもので、直径0.6mm の貫通孔Hが
開口されている。そして、この加工例では、貫通孔Hを
加工電極の真下に配置して、また、その貫通孔H内に加
工時のラジカルを含んだガスが導くために、雰囲気ガス
(Heガス)をノズル1aから孔内へと流入させつつ、
その孔内壁の加工を行ったところ、図5(b) に示すよう
に、銅箔C2 は全く加工されず、ポリイミドフィルムP
2 と接着剤E2のみが除去された。従って、このような
加工法は、次工程であるスルーホールメッキの施工性に
対して非常に利点のある手法となる。
First, a laminate F2 which is a workpiece is formed by alternately laminating a copper foil C2 having a thickness of 40 .mu.m and a polyimide film P2 having a thickness of 50 .mu.m with an adhesive (mainly epoxy resin) E2 interposed therebetween. A through hole H having a diameter of 0.6 mm is opened. Further, in this processing example, the through hole H is arranged immediately below the processing electrode, and since the gas containing radicals at the time of processing is introduced into the through hole H, the atmospheric gas (He gas) is used as the nozzle 1a. While letting it flow into the hole from
When the inner wall of the hole was processed, as shown in FIG. 5 (b), the copper foil C2 was not processed at all, and the polyimide film P
Only 2 and adhesive E2 were removed. Therefore, such a processing method is an extremely advantageous method for the workability of the through hole plating which is the next step.

【0024】すなわち、銅箔と有機フィルムとの積層体
にスルーホールを開孔(ドリル加工など)した後では、
孔加工面の銅箔が接着剤の付着により汚れた状態となっ
ており、また、孔内面の銅箔加工面とフィルム加工面と
が面一の状態となっていることから、そのままの状態で
スルーホールメッキを施すと、銅箔への銅メッキの付着
性が悪いこと、さらに銅箔とフィルムとの境界でメッキ
の縁切れが生じるなどの原因によってコンタクト不良が
発生し易くなるが、上記した孔加工を行うことで、孔加
工面の銅箔に付着した接着剤は完全に除去され、しか
も、図5(b) に示すように、孔内面で銅箔C2 が、ポリ
イミドフィルムP2 や接着剤E2 に対して突出した状態
となるので、メッキ時の銅箔C2 への銅の析出状態が良
好となる結果、スルーホールメッキの施工性が向上す
る。
That is, after forming through holes (drilling etc.) in the laminate of the copper foil and the organic film,
Since the copper foil on the hole processing surface is dirty due to the adhesion of an adhesive, and the copper foil processing surface on the hole inner surface is flush with the film processing surface, it remains as it is. When through-hole plating is applied, poor adhesion of the copper plating to the copper foil, and more likely to cause contact failure due to causes such as plating edge breakage at the boundary between the copper foil and the film. by performing the hole drilling, adhesive adhered to the copper foil of the holes machined surface was completely removed, moreover, as shown in FIG. 5 (b), a copper foil C2 in hole inner surface, the polyimide film P 2 and adhesive Since it is in a state of protruding with respect to the agent E2, the state of deposition of copper on the copper foil C2 at the time of plating is favorable, and as a result, the workability of through-hole plating is improved.

【0025】ここで、加工時のガス雰囲気の圧力は、先
に説明したように、1/100気圧以上であれば問題は
ないが、金属や半導体に対する加工の選択性を考慮する
と、その上限は1気圧程度が好ましい。
Here, the pressure of the gas atmosphere at the time of processing is 1/100 atm or higher as described above, but there is no problem, but the upper limit thereof is taken into consideration in consideration of the processing selectivity for metal or semiconductor. About 1 atm is preferred.

【0026】また、本発明の加工方法を実施するのに使
用する加工電極としては、上記の実施例で示した平板電
極のほか、例えば金属ワイヤーを直線状に張ったワイヤ
電極あるいは針状電極など、プラズマ放電を微小領域に
集中できるものであれば、任意の形状のものを使用でき
る。されに、加工電極の放電面の2次元形状を、所望の
加工形状に合わせておくことで、その形状に沿った加工
も可能になる。例えば図6に示すように、加工電極62
を円筒形状とすることで、円形の打ち抜き加工が可能と
なる。
Further, as the processing electrode used for carrying out the processing method of the present invention, in addition to the flat plate electrode shown in the above embodiment, for example, a wire electrode in which a metal wire is stretched linearly or a needle electrode is used. Any shape can be used as long as it can concentrate plasma discharge in a minute area. In addition, by matching the two-dimensional shape of the discharge surface of the processing electrode with a desired processing shape, it is possible to perform processing along that shape. For example, as shown in FIG.
By making the cylindrical shape, circular punching can be performed.

【0027】なお、本発明方法は、ポリイミドなどの高
機能性の有機材料の加工に限られることなく、一般的な
有機材料を含めた広い範囲の有機材料の加工に適用可能
であるとは言うまでもない。
It is needless to say that the method of the present invention is not limited to processing of highly functional organic materials such as polyimide, but can be applied to processing of a wide range of organic materials including general organic materials. Yes.

【0028】[0028]

【発明の効果】以上説明したように、本発明の加工方法
によれば、有機材料の加工にラジカル反応を利用するの
で、加工面の表面粗さが例えば 0.005μm程度と非常に
精密な加工を、無ひずみで行うことが可能になる。ま
た、加工部に熱的変質層やイオン衝撃等による表面変質
層が発生することもない。しかも、例えばポリイミド等
の高機能性の有機材料であっても、そのような無ひずみ
の超精密加工が可能で、これによって、高機能性の有機
材料と金属等との複合材料(部品)の超精密化を実現で
きる。
As described above, according to the processing method of the present invention, the radical reaction is utilized in the processing of the organic material, so that the surface roughness of the processed surface is, for example, about 0.005 μm. It becomes possible to do it without distortion. Further, neither a thermally deteriorated layer nor a surface deteriorated layer due to ion bombardment is generated in the processed portion. Moreover, even for highly functional organic materials such as polyimide, it is possible to perform such strain-free ultra-precision processing, which enables the production of composite materials (parts) of highly functional organic materials and metals. Can achieve ultra-precision.

【0029】さらに、基本的にラジカル反応を利用した
加工であることから、加工の自由度が高く、これによ
り、表面加工のみならず外形(輪郭)加工,凹孔のくり
抜き加工あるいは貫通孔の内壁面の加工などの各種の加
工に適用可能である。さらにまた、金属や半導体に対し
て選択的な加工が可能で、これによって、加工の際に被
加工物上に金属マスクを配置するだけで、有機材料を所
望のパターンに容易に加工できるといった点の効果も大
きい。
Further, since the processing is basically based on the radical reaction, the degree of freedom of processing is high. As a result, not only the surface processing but also the outer shape (contour) processing, the hollowing of the recessed hole, or the inside of the through hole is performed. It can be applied to various kinds of processing such as wall processing. Furthermore, it is possible to selectively process metal or semiconductor, which makes it possible to easily process an organic material into a desired pattern simply by disposing a metal mask on the object to be processed. Has a great effect.

【図面の簡単な説明】[Brief description of drawings]

【図1】本発明の加工方法の実施に使用する装置の概略
構成を示す図
FIG. 1 is a diagram showing a schematic configuration of an apparatus used for carrying out a processing method of the present invention.

【図2】その加工装置の加工電極2とリニアステージ3
を抽出して示す斜視図
[FIG. 2] Processing electrode 2 and linear stage 3 of the processing apparatus
Perspective view showing the extracted

【図3】本発明の加工方法の実施例を説明する図FIG. 3 is a diagram illustrating an embodiment of a processing method of the present invention.

【図4】他の実施例を説明する図FIG. 4 is a diagram for explaining another embodiment.

【図5】更に別の実施例を説明する図FIG. 5 is a diagram for explaining still another embodiment.

【図6】本発明方法を実施するのに使用する加工電極の
変形例を示す図
FIG. 6 is a view showing a modified example of a working electrode used for carrying out the method of the present invention.

【符号の説明】[Explanation of symbols]

1・・・・反応容器 1a・・・・ノズル 2・・・・加工電極 3・・・・リニアステージ 4・・・・整合器 5・・・・高周波電源装置 6・・・・ガス供給装置 7・・・・排気装置 W・・・・被加工物(有機材料) 1 ... Reaction container 1a ... Nozzle 2 ... Machining electrode 3 ... Linear stage 4 ... Matching device 5 ··· High frequency power supply 6 ... Gas supply device 7 ... Exhaust device W ・ ・ ・ ・ Workpiece (organic material)

───────────────────────────────────────────────────── フロントページの続き (72)発明者 宮崎 司 大阪府茨木市下穂積1丁目1番2号 日 東電工株式会社内 (72)発明者 矢野 周治 大阪府茨木市下穂積1丁目1番2号 日 東電工株式会社内 (72)発明者 森 勇藏 大阪府交野市私市8丁目16番9号 (56)参考文献 特開 平5−255871(JP,A) 特開 平1−319942(JP,A) 特開 平1−125829(JP,A) 特開 昭56−69382(JP,A) 特開 平5−57525(JP,A) 特開 平4−72725(JP,A) 特開 平5−195258(JP,A) 特開 昭56−81678(JP,A) 特開 昭62−111429(JP,A) (58)調査した分野(Int.Cl.7,DB名) B23H 1/00 B23K 10/00 C08J 7/00 C23F 4/00 H05K 3/26 ─────────────────────────────────────────────────── ─── Continuation of the front page (72) Inventor Tsukasa Miyazaki 1-2-2 Shimohozumi, Ibaraki City, Osaka Prefecture Nitto Denko Corporation (72) Inventor Shuji Yano 1-2-1, Shimohozumi, Ibaraki City, Osaka Prefecture No. Nitto Denko Corporation (72) Inventor Yuzo Mori 8-16-9 Private City, Katano City, Osaka Prefecture (56) Reference JP-A-5-255871 (JP, A) JP-A-1-319942 ( JP, A) JP 1-125829 (JP, A) JP 56-69382 (JP, A) JP 5-57525 (JP, A) JP 4-72725 (JP, A) JP 5-195258 (JP, A) JP-A-56-81678 (JP, A) JP-A-62-111429 (JP, A) (58) Fields investigated (Int.Cl. 7 , DB name) B23H 1 / 00 B23K 10/00 C08J 7/00 C23F 4/00 H05K 3/26

Claims (6)

(57)【特許請求の範囲】(57) [Claims] 【請求項1】 内部に加工電極が配設された反応容器内
に、有機材料を上記電極に対して所定の隙間を隔てて配
置するとともに、この容器内を、ガス雰囲気でかつ1/
100気圧以上、1気圧以下に維持した状態で、上記電
極に高周波電力を印加して、その電極と有機材料との間
にプラズマを発生させ、そのプラズマ中のラジカルと有
機材料との反応を利用して加工を行う有機材料の加工方
法。
1. A into the reaction vessel inside the processing electrode is disposed, the organic materials as well as disposed with a predetermined gap with respect to the electrode, the vessel, and a gas atmosphere 1 /
High-frequency power is applied to the electrode while maintaining at 100 atm or more and 1 atm or less , plasma is generated between the electrode and the organic material, and the reaction between radicals in the plasma and the organic material is used. A method of processing an organic material that performs processing.
【請求項2】 有機材料の加工面上に所定パターンの金
属製マスクを配置した状態で、その有機材料の加工を行
うことを特徴とする請求項1に記載の有機材料の加工方
法。
2. The method of processing an organic material according to claim 1, wherein the organic material is processed in a state where a metal mask having a predetermined pattern is arranged on the processed surface of the organic material.
【請求項3】 上記加工電極と有機材料の相対的な移動
により、当該電極を有機材料の加工面上に沿って走査す
ることを特徴とする請求項1もしくは請求項2に記載の
有機材料の加工方法。
3. The organic material according to claim 1, wherein the electrode is scanned along a processing surface of the organic material by the relative movement of the processing electrode and the organic material. Processing method.
【請求項4】 金属物質と有機物質との複合材料を加工
することを特徴とする請求項1,請求項2もしくは請求
項3に記載の有機材料の加工方法。
4. The method of processing an organic material according to claim 1, wherein the composite material of a metal substance and an organic substance is processed.
【請求項5】 金属,半導体もしくは無機物絶縁体のい
ずれかの表面上に形成された有機物質を加工することを
特徴とする請求項1,請求項2もしくは請求項3に記載
の有機材料の加工方法。
5. The processing of the organic material according to claim 1, wherein the organic material formed on the surface of any one of a metal, a semiconductor, and an inorganic insulator is processed. Method.
【請求項6】 有機材料に開口された貫通孔内に上記ラ
ジカルを含んだガスを導いて、その貫通孔の内壁面の加
工を行うことを特徴とする請求項1に記載の有機材料の
加工方法。
6. The processing of an organic material according to claim 1, wherein the gas containing the radical is introduced into the through hole opened in the organic material to process the inner wall surface of the through hole. Method.
JP03978393A 1993-03-01 1993-03-01 Processing method of organic material Expired - Fee Related JP3366679B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP03978393A JP3366679B2 (en) 1993-03-01 1993-03-01 Processing method of organic material

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP03978393A JP3366679B2 (en) 1993-03-01 1993-03-01 Processing method of organic material

Publications (2)

Publication Number Publication Date
JPH06246542A JPH06246542A (en) 1994-09-06
JP3366679B2 true JP3366679B2 (en) 2003-01-14

Family

ID=12562535

Family Applications (1)

Application Number Title Priority Date Filing Date
JP03978393A Expired - Fee Related JP3366679B2 (en) 1993-03-01 1993-03-01 Processing method of organic material

Country Status (1)

Country Link
JP (1) JP3366679B2 (en)

Families Citing this family (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2000029155A1 (en) 1998-11-13 2000-05-25 Mitsubishi Denki Kabushiki Kaisha Method for treating surface of die by discharge, method for producing electrode for die discharge surface treatment, and electrode for die discharge surface treatment
CH694246A5 (en) * 1999-02-24 2004-10-15 Mitsubishi Electric Corp Vefahren and apparatus for electrical discharge machining.
CN106687510B (en) 2014-09-05 2020-11-10 国立大学法人大阪大学 Method for producing surface-modified molded article, and method for producing composite using same
WO2017191942A1 (en) * 2016-05-02 2017-11-09 성균관대학교 산학협력단 Plasma press apparatus and bonding method using same
CN111112764A (en) * 2019-12-26 2020-05-08 广东工业大学 Pulse gas-assisted mask electrolytic machining device and method

Also Published As

Publication number Publication date
JPH06246542A (en) 1994-09-06

Similar Documents

Publication Publication Date Title
US20060234512A1 (en) Plasma processing apparatus and plasma processing method
US9186879B2 (en) Screen-printing stencil having amorphous carbon films and manufacturing method therefor
US6406979B2 (en) Method for sectioning a substrate wafer into a plurality of substrate chips
KR20040086725A (en) Method for dividing semiconductor wafer
US20040187659A1 (en) Glass cutting method
US4049857A (en) Deposition mask and methods of making same
JP3366679B2 (en) Processing method of organic material
KR100369789B1 (en) Plasma processing method and apparatus
KR100417926B1 (en) Plasma Etching Electrode
US5045437A (en) Method for producing a structured ceramic film or a ceramic member constructed of such films by sintering and useful as ultrasound transducers
KR20180099627A (en) Method for forming a structured coating layer on a molded part and apparatus for carrying out the method
JP4669631B2 (en) Printed circuit and flexible wiring patterning method
JP6931135B1 (en) How to dice a die-attached film
JPH08216415A (en) Method for finely machining liquid jet nozzle
JPH0724579A (en) Method for plasma machining
US5042140A (en) Process for making an apparatus utilizing a layered thin film structure
US7256106B2 (en) Method of dividing a substrate into a plurality of individual chip parts
JP2019102481A (en) Workpiece processing method
JP3826665B2 (en) Quartz vibrating piece, method for manufacturing quartz vibrating piece, and quartz device
EP0803896A2 (en) Plasma processing system and protective member used for the same
JPH05326702A (en) Manufacture of silicon-glass junction member
JP3441129B2 (en) Injection processing method using electroformed mask
JPS5878429A (en) Reactive ion etching apparatus
KR19990049640A (en) Ceramic Filter Manufacturing Method
JPH06238903A (en) Multi-nozzle plate and its manufacture

Legal Events

Date Code Title Description
R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

LAPS Cancellation because of no payment of annual fees