JP3365753B2 - Gas supply system for bottom blow converter - Google Patents

Gas supply system for bottom blow converter

Info

Publication number
JP3365753B2
JP3365753B2 JP36157499A JP36157499A JP3365753B2 JP 3365753 B2 JP3365753 B2 JP 3365753B2 JP 36157499 A JP36157499 A JP 36157499A JP 36157499 A JP36157499 A JP 36157499A JP 3365753 B2 JP3365753 B2 JP 3365753B2
Authority
JP
Japan
Prior art keywords
flow rate
valve
opening
gas
valve opening
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP36157499A
Other languages
Japanese (ja)
Other versions
JP2001175336A (en
Inventor
泰宏 松岡
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Kawasaki Motors Ltd
Original Assignee
Kawasaki Jukogyo KK
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Kawasaki Jukogyo KK filed Critical Kawasaki Jukogyo KK
Priority to JP36157499A priority Critical patent/JP3365753B2/en
Publication of JP2001175336A publication Critical patent/JP2001175336A/en
Application granted granted Critical
Publication of JP3365753B2 publication Critical patent/JP3365753B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Classifications

    • GPHYSICS
    • G05CONTROLLING; REGULATING
    • G05DSYSTEMS FOR CONTROLLING OR REGULATING NON-ELECTRIC VARIABLES
    • G05D7/00Control of flow
    • G05D7/06Control of flow characterised by the use of electric means
    • G05D7/0617Control of flow characterised by the use of electric means specially adapted for fluid materials
    • G05D7/0629Control of flow characterised by the use of electric means specially adapted for fluid materials characterised by the type of regulator means
    • G05D7/0635Control of flow characterised by the use of electric means specially adapted for fluid materials characterised by the type of regulator means by action on throttling means
    • G05D7/0641Control of flow characterised by the use of electric means specially adapted for fluid materials characterised by the type of regulator means by action on throttling means using a plurality of throttling means
    • G05D7/0652Control of flow characterised by the use of electric means specially adapted for fluid materials characterised by the type of regulator means by action on throttling means using a plurality of throttling means the plurality of throttling means being arranged in parallel

Landscapes

  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Engineering & Computer Science (AREA)
  • Automation & Control Theory (AREA)
  • Carbon Steel Or Casting Steel Manufacturing (AREA)
  • Feedback Control In General (AREA)
  • Flow Control (AREA)

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【発明の属する技術分野】本発明は、たとえば親弁と子
弁の2つの弁を用いて広範囲に流量を制御する底吹き転
炉のガス供給装置に関する。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a gas supply device for a bottom-blowing converter that controls a flow rate over a wide range by using two valves, for example, a master valve and a slave valve.

【0002】[0002]

【従来の技術】図4は、製鋼精錬に用いられる底吹き転
炉1の親子弁2の流量制御系統図である。転炉1の炉底
部には複数の羽口3が設けられ、各羽口3には親子弁2
を介して不活性ガスおよび酸素などのガスが吹き込まれ
る。転炉に吹き込むガスは小流量から大流量まで広範囲
に制御する必要があるため、小流量弁である子弁5と大
流量弁である親弁4とを有する親子弁2を用いて制御す
る。
2. Description of the Related Art FIG. 4 is a flow rate control system diagram of a parent valve 2 of a bottom blowing converter 1 used for steel refining. A plurality of tuyere 3 is provided on the bottom of the converter 1, and each tuyere 3 has a parent-child valve 2
A gas such as an inert gas and oxygen is blown in through. Since the gas blown into the converter needs to be controlled in a wide range from a small flow rate to a large flow rate, it is controlled using a parent valve 2 having a child valve 5 which is a small flow valve and a parent valve 4 which is a large flow valve.

【0003】親子弁2は、転炉1の羽口3に接続される
第1流路6と、この第1流路6に介在される子弁5と、
子弁5の上流に介在され、子弁5を通過する流量を検出
する小流量検出器10と、小流量検出器10および子弁
5をバイパスして第1流路6に接続される第2流路8と
第2流路8に介在される親弁4と、親弁4の上流に介在
され、親弁4を通過する流量を検出する大流量検出器9
と小流量検出器10および大流量検出器9に基づいて親
弁4および子弁5の弁開度を制御する制御手段11とを
含んで構成される。第1流路5には不活性ガスおよび酸
素が供給され、子弁5および親弁4を介して転炉1の羽
口3から転炉内に吹き込まれる。
The parent-child valve 2 includes a first passage 6 connected to the tuyere 3 of the converter 1, and a child valve 5 interposed in the first passage 6.
A small flow rate detector 10 which is interposed upstream of the child valve 5 and detects a flow rate passing through the child valve 5, and a second flow rate bypassing the small flow rate detector 10 and the child valve 5 and connected to the first flow path 6. A master valve 4 interposed in the flow path 8 and the second flow path 8, and a large flow rate detector 9 that is interposed upstream of the master valve 4 and detects a flow rate passing through the master valve 4.
And a control means 11 for controlling the valve opening degree of the master valve 4 and the slave valve 5 based on the small flow rate detector 10 and the large flow rate detector 9. Inert gas and oxygen are supplied to the first flow path 5, and are blown into the converter from the tuyere 3 of the converter 1 via the slave valve 5 and the master valve 4.

【0004】制御手段11には設定流量Qが入力され、
この設定流量Q、小流量検出器10および大流量検出器
9の検出出力に基づき、親弁4を通過するガス流量およ
び子弁5を通過するガス流量の和が設定流量Qに等しく
なるように、制御手段11は親弁4および子弁5の弁開
度を制御する。弁4,5はたとえば玉形弁から成り、弁
開度に比例して通過流量が大きくなる。
The set flow rate Q is input to the control means 11,
Based on the detected outputs of the set flow rate Q, the small flow rate detector 10 and the large flow rate detector 9, the sum of the gas flow rate passing through the master valve 4 and the gas flow rate passing through the slave valve 5 should be equal to the set flow rate Q. The control means 11 controls the valve opening degrees of the master valve 4 and the slave valve 5. The valves 4 and 5 are, for example, spherical valves, and the flow rate increases in proportion to the valve opening.

【0005】図5は、設定流量Qと子弁5の弁開度およ
び親弁4の弁開度との関係を示すグラフであり、横軸は
入力される設定流量Qであり、左の縦軸は子弁5の弁開
度であり、右の縦軸は親弁4の弁開度であり、ライン1
2は設定流量Qと子弁5の弁開度との関係を示すグラフ
であり、ライン13は設定流量Qと親弁4の弁開度との
関係を示すグラフである。
FIG. 5 is a graph showing the relationship between the set flow rate Q and the valve opening degree of the child valve 5 and the valve opening degree of the master valve 4. The horizontal axis represents the input set flow rate Q and the left vertical axis. The axis is the valve opening of the slave valve 5, the right vertical axis is the valve opening of the parent valve 4, and the line 1
2 is a graph showing the relationship between the set flow rate Q and the valve opening degree of the slave valve 5, and line 13 is a graph showing the relationship between the set flow rate Q and the valve opening degree of the master valve 4.

【0006】設定流量Qが小さい場合は、親弁4を閉
じ、子弁5のみを開いて、子弁5の通過ガス流量が設定
流量になるように子弁5のみ制御し、設定流量Qが、子
弁5の80%の弁開度に対応する切替流量Aよりも大き
い場合には、子弁5の弁開度を80%に保持し、親弁4
を開き、子弁5を通過するガス流量と親弁4を通過する
ガス流量との和が設定流量Qとなるように親弁4の弁開
度を制御する。
When the set flow rate Q is small, the master valve 4 is closed, only the slave valve 5 is opened, and only the slave valve 5 is controlled so that the gas flow rate passing through the slave valve 5 becomes the set flow rate. , If the switching flow rate A corresponding to the valve opening of 80% of the child valve 5 is larger, the valve opening of the child valve 5 is maintained at 80%, and the parent valve 4
And the valve opening degree of the master valve 4 is controlled so that the sum of the gas flow rate passing through the slave valve 5 and the gas flow rate passing through the master valve 4 becomes the set flow rate Q.

【0007】弁4,5は前述したように玉形弁であり、
弁開度に比例して通過するガス流量が増加するが、全開
近傍、たとえば80%以上の弁開度では通過ガス流量が
あまり変化せず、弁開度に対する通過ガス流量の応答性
が鈍くなる、いわば不感帯となる。したがって、図5で
示すように子弁5の80%の弁開度に対応する切替流量
A以上の場合には子弁の弁開度を80%に保持し、親弁
4の弁開度のみを制御する。これによって設定流量Qの
範囲の中で、不感帯となって制御困難となる領域が生じ
るといったことをを防ぐことができる。
The valves 4 and 5 are, as described above, sphere valves.
Although the flow rate of the passing gas increases in proportion to the valve opening degree, the passing gas flow rate does not change much in the vicinity of full opening, for example, the valve opening degree of 80% or more, and the responsiveness of the passing gas flow rate to the valve opening degree becomes dull. , So to speak, dead zone. Therefore, as shown in FIG. 5, when the switching flow rate A corresponding to the valve opening of 80% of the child valve 5 or more, the valve opening of the child valve is maintained at 80% and only the valve opening of the parent valve 4 is maintained. To control. As a result, it is possible to prevent the occurrence of a dead zone in which the control is difficult in the range of the set flow rate Q.

【0008】[0008]

【発明が解決しようとする課題】前述したように、弁
4,5は弁開度に比例して通過ガス流量が増加し、全開
近傍では制御困難となるが、逆に全閉近傍、たとえば弁
開度が20%未満のときには、弁開度の変化に応じた通
過ガス流量の変化が大きくなり過ぎ、いわば過敏に反応
し、これによって逆に制御が困難となる。
As described above, the flow rate of the passing gas of the valves 4 and 5 increases in proportion to the valve opening, and it becomes difficult to control the valve near the fully open position. When the opening is less than 20%, the change in the flow rate of the passing gas in accordance with the change in the valve opening becomes too large, so to speak, it is hypersensitive, which makes control difficult.

【0009】上述した従来技術では、子弁5の全開近傍
の不感帯による制御困難は防ぐことができるが、設定流
量Qが切替流量Aよりわずかに大きくなる場合には、親
弁4の弁開度が20%未満となるため、制御困難な領域
となってしまう。
In the above-mentioned conventional technique, it is possible to prevent the control difficulty due to the dead zone near the full opening of the child valve 5, but when the set flow rate Q is slightly larger than the switching flow rate A, the valve opening degree of the parent valve 4 is increased. Is less than 20%, which makes it difficult to control.

【0010】図6は、このような問題を解決する第2の
従来の弁制御方法を示すグラフである。この制御方法で
は、子弁5の80%の弁開度に対応する切替流量Aより
も設定流量Qが大きくなる場合には、子弁5を完全に閉
じ、親弁4のみを開けて制御する。親弁4の20%の弁
開度に対応する流量よりも子弁5の80%の弁開度に対
応する切替流量Aが小さいとすると、切替流量Aよりも
大きい設定流量Qの場合には、親弁4の弁開度は20%
以上となり、これによって設定流量Qが切替流量Aより
わずかに大きくなる領域での制御困難を防ぐことができ
る。
FIG. 6 is a graph showing a second conventional valve control method for solving such a problem. In this control method, when the set flow rate Q is larger than the switching flow rate A corresponding to the valve opening of 80% of the slave valve 5, the slave valve 5 is completely closed and only the master valve 4 is opened for control. . Assuming that the switching flow rate A corresponding to the valve opening degree of 80% of the slave valve 5 is smaller than the flow rate corresponding to the valve opening degree of 20% of the master valve 4, when the set flow rate Q is larger than the switching flow rate A, , Valve opening of master valve 4 is 20%
As described above, this makes it possible to prevent control difficulties in the region where the set flow rate Q is slightly larger than the switching flow rate A.

【0011】底吹き転炉1では、転炉1の低部から溶銑
内にガスを吹き込んで溶銑を撹拌するが、ガス吹き込み
中に親弁4および子弁5の両方を閉じた場合にはノズル
の先端が詰まる恐れがある。上述した第2の従来技術で
は、切替流量Aよりも設定流量Qが大きくなる場合には
子弁5を全閉する。従って、子弁5を全閉している状態
で、設定流量Qが切替流量Aより小さくなった場合に
は、親弁4を閉じ、子弁5を開く必要があるが、このと
き子弁5が故障するなどして開かなくなった場合には、
親弁4と子弁5との両方を閉じることになり、上述した
ようなノズルの詰まりが発生してしまう。
In the bottom blowing converter 1, gas is blown into the hot metal from the lower part of the converter 1 to stir the hot metal, but when both the master valve 4 and the slave valve 5 are closed during the gas blowing, the nozzle There is a risk of clogging the tip of the. In the above-mentioned second conventional technique, when the set flow rate Q becomes larger than the switching flow rate A, the slave valve 5 is fully closed. Therefore, when the set flow rate Q becomes smaller than the switching flow rate A with the child valve 5 fully closed, it is necessary to close the parent valve 4 and open the child valve 5, but at this time, the child valve 5 If it doesn't open due to a malfunction,
Both the master valve 4 and the slave valve 5 are closed, and the nozzle clogging as described above occurs.

【0012】また第3の従来技術として特開平5−25
0043号公報には、親弁の制御限界時に発生した偏差
に対して制御補償を行い、制御系の制御精度を確保する
親子弁流量制御方法が開示されているが、この方法を用
いても、上述した問題を解消することはできない。
As a third conventional technique, Japanese Patent Laid-Open No. 5-25
Japanese Patent Laid-Open Publication No. 0043 discloses a parent-child valve flow rate control method for performing control compensation for a deviation generated at the control limit of a parent valve to ensure control accuracy of a control system. The above problems cannot be solved.

【0013】本発明の目的は、2つの弁を用いて広範囲
にガス流量を制御する場合、制御困難となる領域を生じ
させず、かつ、ガス流量制御中にいずれか一方の弁を全
閉することのない底吹き転炉のガス供給装置を提供する
ことである。
An object of the present invention is to prevent a region in which control is difficult when a gas flow rate is controlled over a wide range using two valves, and to completely close one of the valves during gas flow rate control. It is an object of the present invention to provide a bottom blowing converter gas supply device.

【0014】[0014]

【課題を解決するための手段】本発明は、(a)ガス源
からのガスを底吹き転炉20の羽口22に供給する第1
流路30と、 (b)第1流路30に介在される第1弁25と、 (c)第1弁25をバイパスして第1流路30に接続さ
れる第2流路32と、 (d)第2流路32に介在され、全開時の流量が、第1
弁25の全開時の流量を越える第2弁24と、 (e)第1弁25を通過するガスの流量を検出する第1
流量検出器31と、 (f)第2弁24を通過するガスの流量を検出する第2
流量検出器33と、 (g)羽口22に供給する流量Qを設定する流量設定手
段と、 (h)第1および第2流量検出器31,33の出力と流
量設定手段の出力とに応答し、 (h1)設定流量Qが、第1弁25の全開近傍である予
め定める上限弁開度(子弁25のたとえば80%弁開
度)に対応する第1流量A未満であるとき、第1流量検
出器31の検出流量F1が、設定流量Qに対応するよう
に第1弁25の開度を制御し、第2弁24は、全閉と
し、 (h2)第2流量Bを、第1流量Aと、第2弁24の全
閉近傍である予め定める下限弁開度(親弁25のたとえ
ば20%弁開度)に対応する流量との和とし、設定流量
Qが、第1流量A以上であって、第2流量B未満である
とき、第2流量検出器33の検出流量F2が、第2弁2
4を、その第2弁24の前記下限弁開度に対応する流量
になるように、第2弁24の開度を保持し、第1弁25
の開度を、第1および第2流量検出器31,33の検出
流量F1,F2の和が設定流量Qになるように制御し、 (h3)設定流量Qが、第2流量B以上であるとき、第
1弁25の開度を、第1流量検出器31の検出流量F1
が第1流量Aになるように、保持し、第2弁24の開度
を、第1および第2検出器31,33の検出流量F1,
F2の和が設定流量Qになるように制御する制御手段3
7とを含むことを特徴とする底吹き転炉のガス供給装置
である。
The present invention provides (a) a first gas supply from a gas source to tuyere 22 of a bottom blowing converter 20.
A flow channel 30, (b) a first valve 25 interposed in the first flow channel 30, and (c) a second flow channel 32 bypassing the first valve 25 and connected to the first flow channel 30. (D) The flow rate when fully opened is between the first flow path 32 and the first flow path 32.
A second valve 24 that exceeds the flow rate of the valve 25 when it is fully opened, and (e) a first valve that detects the flow rate of gas passing through the first valve 25.
Flow rate detector 31, and (f) second for detecting the flow rate of gas passing through the second valve 24
Responsive to the flow rate detector 33, (g) flow rate setting means for setting the flow rate Q supplied to the tuyere 22, and (h) the outputs of the first and second flow rate detectors 31, 33 and the output of the flow rate setting means. (H1) When the set flow rate Q is less than the first flow rate A corresponding to a predetermined upper limit valve opening (for example, 80% valve opening of the child valve 25) near the fully open position of the first valve 25, The opening amount of the first valve 25 is controlled so that the detected flow rate F1 of the first flow rate detector 31 corresponds to the set flow rate Q, the second valve 24 is fully closed, and (h2) the second flow rate B is set to The set flow rate Q is the sum of 1 flow rate A and a flow rate corresponding to a predetermined lower limit valve opening degree (for example, 20% valve opening degree of the parent valve 25) near the fully closed second valve 24, and the set flow rate Q is the first flow rate. When it is A or more and less than the second flow rate B, the detected flow rate F2 of the second flow rate detector 33 is the second valve 2
4 holds the opening degree of the second valve 24 so that the flow rate corresponds to the lower limit valve opening degree of the second valve 24.
Is controlled so that the sum of the detected flow rates F1 and F2 of the first and second flow rate detectors 31 and 33 becomes the set flow rate Q, and (h3) the set flow rate Q is equal to or greater than the second flow rate B. At this time, the opening degree of the first valve 25 is set to the detected flow rate F1 of the first flow rate detector 31.
So as to become the first flow rate A, and the opening degree of the second valve 24 is set to the flow rate F1, detected by the first and second detectors 31, 33.
Control means 3 for controlling so that the sum of F2 becomes the set flow rate Q
And a gas supply device for a bottom blowing converter.

【0015】たとえば第1弁25を小流量弁とし、第2
弁24を大流量弁とし、上限弁開度以上となる全開近傍
は、不感帯となって制御困難となる領域であり、また下
限弁開度未満では過敏に反応して制御困難となる領域で
ある。したがって、設定流量Qが第2弁の下限弁開度に
対応する流量Bより大きい場合は、制御手段は、第1弁
を下限弁開度まで開けて保持し、第1弁の通過流量F1
と第2弁の通過流量F2との和が設定流量になるよう
に、第1弁の弁開度のみ制御する。このように制御する
ことによって、第1弁の全閉近傍および第2弁の全開近
傍での制御困難となる領域をなくすことができるととも
に、ガス流量制御中に第1弁を完全に閉じてしまうとい
ったことを防ぐことができる。
For example, the first valve 25 is a small flow valve and the second valve is
The valve 24 is a large flow valve, and the vicinity of full opening above the upper limit valve opening is a dead zone where control becomes difficult, and when it is less than the lower limit valve opening, it is an area that reacts hypersensitively and becomes difficult to control. . Therefore, when the set flow rate Q is larger than the flow rate B corresponding to the lower limit valve opening degree of the second valve, the control means opens and holds the first valve up to the lower limit valve opening degree, and the passing flow rate F1 of the first valve.
Only the valve opening of the first valve is controlled so that the sum of the flow rate F2 and the passing flow rate F2 of the second valve becomes the set flow rate. By controlling in this manner, it is possible to eliminate a region in which it is difficult to control the valve in the vicinity of the fully closed first valve and in the vicinity of the fully opened second valve, and the first valve is completely closed during the gas flow rate control. Can be prevented.

【0016】[0016]

【0017】本発明に従えば、第2弁の下限弁開度に対
応する流量と、第1弁の上限弁開度に対応する流量との
和より設定流量が大きい場合は、第1弁を上限弁開度に
保持し、第1弁の通過流量F1と第2弁の通過流量F2
との和が設定流量になるように、制御手段は第2弁の弁
開度のみ制御する。これによって、制御困難となる領域
を生じず、大きな設定流量に対応することができる。ま
たこの場合にも第1弁が完全に閉じるといったことが防
がれる。
According to the present invention, when the set flow rate is larger than the sum of the flow rate corresponding to the lower limit valve opening degree of the second valve and the flow rate corresponding to the upper limit valve opening degree of the first valve, the first valve is turned on. Maintaining the upper limit valve opening, the flow rate F1 of the first valve and the flow rate F2 of the second valve
The control means controls only the valve opening degree of the second valve so that the sum of and becomes the set flow rate. As a result, it is possible to deal with a large set flow rate without causing an area that becomes difficult to control. Also in this case, it is possible to prevent the first valve from being completely closed.

【0018】本発明に従えば、底吹き転炉において、制
御困難となる領域を生じさせず、2つの弁を用いて広範
囲にガス流量を制御することができる。また、制御中に
一方の弁を完全に閉じるといったことを防ぎ、ノズルが
詰まるといったことを確実に防止することができる。本
発明は、第1弁25の第1流量Aは、第2弁24の前記
下限弁開度に対応する流量と、第1弁25の全閉近傍で
ある予め定める下限弁開度(子弁25のたとえば20%
弁開度)に対応する流量との和よりも大きいことを特徴
とする。
According to the present invention, in the bottom blowing converter, it is possible to control the gas flow rate in a wide range by using the two valves without causing an area that is difficult to control. Further, it is possible to prevent one valve from being completely closed during the control, and it is possible to reliably prevent the nozzle from being clogged. According to the present invention, the first flow rate A of the first valve 25 is a flow rate corresponding to the lower limit valve opening degree of the second valve 24 and a predetermined lower limit valve opening degree (slave valve near the fully closed position of the first valve 25). 20% of 25
It is characterized by being larger than the sum of the flow rate corresponding to the valve opening).

【0019】設定流量Qが第1流量A以上では、第1お
よび第2弁25,24は、それらの各下限弁開度を越え
る開度に対応した流量となっており、したがって正確な
流量でガスを羽口22に供給することができる。
When the set flow rate Q is equal to or higher than the first flow rate A, the first and second valves 25 and 24 have flow rates corresponding to the opening exceeding the lower limit valve opening of each of them, so that the accurate flow rate is obtained. Gas can be supplied to the tuyere 22.

【0020】[0020]

【発明の実施の形態】図1は、本発明の実施の一形態で
ある弁制御方法を用いる底吹き転炉20の親子弁21の
流量制御系統図である。底吹き転炉20では炉底部に設
けられる複数の羽口22からアルゴンまたは窒素などの
不活性ガスおよび酸素ガスを吹き込み、カーボン量が4
%程度の溶銑をカーボン量が0.2%以上の溶鋼に精錬
する。このとき、溶鋼のカーボン量の設定値を広範囲と
するためには、吹き込むガス流量を広範囲で制御する必
要があり、たとえば最小設定流量と最大設定流量との比
が1:20程度となる制御範囲を必要とする。
1 is a flow control system diagram of a parent-child valve 21 of a bottom blowing converter 20 using a valve control method according to an embodiment of the present invention. In the bottom blowing converter 20, an inert gas such as argon or nitrogen and an oxygen gas are blown from a plurality of tuyere 22 provided at the bottom of the furnace, and the carbon amount is 4
% Molten metal is refined into molten steel having a carbon content of 0.2% or more. At this time, in order to make the set value of the carbon amount of the molten steel in a wide range, it is necessary to control the gas flow rate to be blown in a wide range. For example, the control range in which the ratio between the minimum set flow rate and the maximum set flow rate is about 1:20. Need.

【0021】制御する弁を玉形弁など、弁開度の増減に
よって流量を制御する簡単な構造の弁を用いた場合に
は、1つの弁で広い流量範囲を高精度に制御することは
困難である。したがって、たとえば流量比が1:5で、
小流量範囲の制御を行う子弁25と、流量比が5:20
で大流量範囲の制御を行う親弁24とを用いた親子弁2
1で制御を行う。
When a valve having a simple structure for controlling the flow rate by increasing / decreasing the valve opening degree is used as a valve to be controlled, it is difficult to highly accurately control a wide flow rate range with one valve. Is. Therefore, for example, if the flow ratio is 1: 5,
A child valve 25 for controlling a small flow range and a flow ratio of 5:20
A parent-child valve 2 using a parent valve 24 that controls a large flow range with
Control is performed at 1.

【0022】親子弁21は、各羽口22毎にもうけら
れ、ガス源(図示せず)から不活性ガスおよび酸素が一
端側に供給され、他端側が転炉20の羽口22に連なる
第1流路30と、第1流路30に介在される子弁25
と、子弁25の上流側の第1流路30に介在される小流
量検出器31と、子弁25および小流量検出器31をバ
イパスして第1流路30に接続される第2流路32と、
第2流路32に介在される親弁24と、親弁24の上流
側の第2流路32に介在される大流量検出器33と、設
定流量Qが入力され、小流量検出器31および大流量検
出器33の検出出力に基づき、子弁25および親弁24
を制御する制御手段37とを含んで構成される。
The parent-child valve 21 is provided for each tuyere 22, the inert gas and oxygen are supplied to one end side from a gas source (not shown), and the other end side is connected to the tuyere 22 of the converter 20. One flow passage 30 and a child valve 25 interposed in the first flow passage 30
A small flow rate detector 31 interposed in the first flow path 30 upstream of the child valve 25, and a second flow connected to the first flow path 30 bypassing the child valve 25 and the small flow rate detector 31. Path 32,
The master valve 24 interposed in the second flow path 32, the large flow rate detector 33 interposed in the second flow path 32 upstream of the master valve 24, and the set flow rate Q are input, and the small flow rate detector 31 and Based on the detection output of the large flow rate detector 33, the child valve 25 and the parent valve 24
And a control means 37 for controlling.

【0023】制御手段37は、子弁25の弁開度を制御
する第1コントローラ34と親弁24の弁開度を制御す
る第2コントローラ35と、小流量検出器31、大流量
検出器33、および流量設定手段(図示せず)から与え
られて入力される流量設定値Qに基づき、子弁用指令信
号S1および親弁用指令信号S2を算出を算出する演算
器36とから構成される。各指令信号S1,S2は流量
指令値または弁開度指令値のいずれかであり、たとえば
第1コントローラに流量指令値である子弁用指令信号S
1が入力されると、第1コントローラ34は小流量検出
器31に基づいて子弁25を通過する流量が入力された
指令値となるように子弁25の弁開度を制御する。また
指令信号S1が弁開度指令である場合には、この入力さ
れた弁開度まで子弁25を開け、この弁開度に保つ。こ
のような構成は第2コントローラ35においても同様で
ある。
The control means 37 includes a first controller 34 for controlling the valve opening of the child valve 25, a second controller 35 for controlling the valve opening of the parent valve 24, a small flow rate detector 31, and a large flow rate detector 33. , And an arithmetic unit 36 for calculating the child valve command signal S1 and the parent valve command signal S2 based on the flow rate set value Q input from the flow rate setting means (not shown). . Each of the command signals S1 and S2 is either a flow rate command value or a valve opening command value, and for example, the command signal S for the slave valve, which is a flow rate command value for the first controller.
When 1 is input, the first controller 34 controls the valve opening degree of the slave valve 25 based on the small flow rate detector 31 so that the flow rate passing through the slave valve 25 becomes the input command value. If the command signal S1 is a valve opening command, the child valve 25 is opened up to the input valve opening and the valve opening is maintained. Such a configuration is the same in the second controller 35 as well.

【0024】玉形弁は、弁開度に比例して通過流量が増
減するが、前述したように全開近傍および全閉近傍では
制御困難となる。したがって本実施形態では各弁24,
25を弁開度が20〜80%の範囲で制御するものとす
る。すなわち、最小の設定流量は子弁25の20%弁開
度に対応する流量であり、最大設定流量は子弁25の8
0%弁開度に対応する流量に、親弁24の80%弁開度
に対応する流量を加えた流量とする。ただしこれはガス
の圧力が基準とする圧力で一定であるものとした場合で
あり、実際には最大設定流量時には親弁の弁開度が90
%以上になる場合がある。
In the sphere valve, the passage flow rate increases and decreases in proportion to the valve opening, but as described above, it becomes difficult to control near the fully open position and near the fully closed position. Therefore, in this embodiment, each valve 24,
25 is controlled in the range of valve opening of 20 to 80%. That is, the minimum set flow rate is the flow rate corresponding to the 20% valve opening of the child valve 25, and the maximum set flow rate is 8% of the child valve 25.
The flow rate corresponding to the 0% valve opening is added to the flow rate corresponding to the 80% valve opening of the parent valve 24. However, this is the case where the gas pressure is constant at the reference pressure, and in reality, the valve opening of the master valve is 90
It may be over%.

【0025】図2は設定流量Qと子弁25および親弁2
4の各弁開度との関係を示すグラフである。なお図2に
おいて横軸は入力される設定流量Qであり、左の縦軸は
子弁25の弁開度であり、右の縦軸は親弁24の弁開度
であり、ライン40は設定流量Qと子弁25の弁開度と
の関係を示すグラフであり、ライン41は設定流量Qと
親弁24の弁開度との関係を示すグラフである。また、
参照符Aは、子弁25の80%弁開度に対応する第1切
替流量であり、参照符Bは子弁25の80%弁開度に対
応する流量に、親弁24の20%弁開度に対応する流量
を加算した第2切替流量である。なお切替流量A,Bは
それぞれ基準とする予め定める一定の圧力での各弁開度
において通過するガス流量であり、予め定められるもの
とする。また、子弁25の80%弁開度に対応する流量
は、親弁24の20%弁開度に対応する流量に子弁25
の20%弁開度に対応する流量を加算した値よりも大き
いものとする。
FIG. 2 shows the set flow rate Q, the slave valve 25 and the master valve 2.
It is a graph which shows the relationship with each valve opening degree of No. 4. In FIG. 2, the horizontal axis represents the input set flow rate Q, the left vertical axis represents the valve opening of the child valve 25, the right vertical axis represents the valve opening of the parent valve 24, and the line 40 represents the setting. It is a graph which shows the relationship between the flow rate Q and the valve opening degree of the child valve 25, and the line 41 is a graph which shows the relationship between the set flow rate Q and the valve opening degree of the parent valve 24. Also,
Reference symbol A is the first switching flow rate corresponding to the 80% valve opening of the slave valve 25, and reference symbol B is the flow rate corresponding to the 80% valve opening of the slave valve 25, and the 20% valve of the master valve 24. It is the second switching flow rate obtained by adding the flow rate corresponding to the opening degree. The switching flow rates A and B are gas flow rates that pass at each valve opening at a predetermined constant pressure that is a reference, and are set in advance. Further, the flow rate corresponding to the 80% valve opening of the child valve 25 is equal to the flow rate corresponding to the 20% valve opening of the parent valve 24.
Is larger than the value obtained by adding the flow rate corresponding to the 20% valve opening degree.

【0026】演算機36は設定流量Qが入力されると、
図2に示すグラフおよび各検出器31,33に基づい
て、各コントローラ34,35への指令信号S1,S2
を算出する。
When the set flow rate Q is input to the calculator 36,
Based on the graph shown in FIG. 2 and the detectors 31 and 33, command signals S1 and S2 to the controllers 34 and 35, respectively.
To calculate.

【0027】次に図3に示すフローチャートを参照し
て、演算機36による指令信号S1,S2の算出方法に
ついて説明する。ステップa1において、演算機36に
設定流量Qが入力されると、演算機36は入力された設
定流量Qと前記切替流量A,Bとを比較し、設定流量Q
が切替流量Aより小さい場合はステップa2に進む。
Next, a method of calculating the command signals S1 and S2 by the arithmetic unit 36 will be described with reference to the flowchart shown in FIG. In step a1, when the set flow rate Q is input to the calculator 36, the calculator 36 compares the input set flow rate Q with the switching flow rates A and B, and sets the set flow rate Q.
Is smaller than the switching flow rate A, the process proceeds to step a2.

【0028】図2のグラフからも判るように、設定流量
Qが切替流量A未満の場合には、親弁24は閉じ、子弁
25のみで制御するので、ステップa2で親弁用指令信
号S2として0%の弁開度指令値を第2コントローラに
入力する。第2コントローラはこれに基づいて親弁24
を全閉状態に保つ。
As can be seen from the graph of FIG. 2, when the set flow rate Q is less than the switching flow rate A, the master valve 24 is closed and controlled only by the slave valve 25. Therefore, at step a2, the master valve command signal S2 The 0% valve opening command value is input to the second controller. Based on this, the second controller 24
Keep it fully closed.

【0029】次のステップa3で、子弁用指令信号S1
を流量指令値としてコントローラ34に入力する。親弁
24が全閉状態であるので、コントローラ34に入力す
る指令信号S1は設定流量Qと等しくなる。コントロー
ラ34ではこの入力された指令信号S1に応答し、子弁
25を通過するガス流量が設定流量Qとなるように小流
量検出器31の検出出力に基づいて子弁25の弁開度を
フィードバック制御する。
At the next step a3, the slave valve command signal S1
Is input to the controller 34 as a flow rate command value. Since the master valve 24 is fully closed, the command signal S1 input to the controller 34 becomes equal to the set flow rate Q. In response to the input command signal S1, the controller 34 feeds back the valve opening degree of the slave valve 25 based on the detection output of the small flow rate detector 31 so that the gas flow rate passing through the slave valve 25 becomes the set flow rate Q. Control.

【0030】ステップa1で演算機36に入力される設
定流量Qが切替流量A以上で切替流量B未満の場合に
は、ステップa4に進む。図2のグラフから判るように
設定流量Qが、A≦Q<Bの場合には、親弁24を20
%の弁開度に保持し、子弁25のみを制御する。すなわ
ち、ステップa4で親弁用指令信号S2として20%の
弁開度指令値を第2コントローラ35に入力する。第2
コントローラ35はこれに応じて親弁24を20%の弁
開度まで開け、この状態に保持する。
If the set flow rate Q input to the computer 36 in step a1 is greater than or equal to the switching flow rate A and less than the switching flow rate B, the process proceeds to step a4. As can be seen from the graph of FIG. 2, when the set flow rate Q is A ≦ Q <B, the master valve 24 is set to 20
The valve opening degree is maintained at%, and only the child valve 25 is controlled. That is, in step a4, the valve opening command value of 20% is input to the second controller 35 as the master valve command signal S2. Second
In response to this, the controller 35 opens the master valve 24 to a valve opening degree of 20% and holds this state.

【0031】次のステップa5で演算機36は親弁24
を通過するガス流量F2と子弁25を通過するガス流量
F1との和が設定流量Q(すなわちQ=F1+F2)と
なるように、設定流量Qおよび各検出器31,33の検
出出力に基づいて子弁用指令信号S1を算出する。すな
わち小流量検出器31の検出出力をF1、大流量検出器
33の検出出力をF2とすると、S1=Q−F1−F2
となる。このようにして算出した流量値を子弁用指令信
号S1として第1コントローラ34に入力する。第1コ
ントローラ34では入力された指令信号S1および小流
量検出器31の検出出力に基づき、子弁25を通過する
ガス流量が指令信号S1に一致するように子弁25をフ
ィードバック制御する。
At the next step a5, the computer 36 causes the master valve 24 to operate.
Based on the set flow rate Q and the detection outputs of the detectors 31 and 33 so that the sum of the gas flow rate F2 passing through the sub valve and the gas flow rate F1 passing through the slave valve 25 becomes the set flow rate Q (that is, Q = F1 + F2). The slave valve command signal S1 is calculated. That is, if the detection output of the small flow rate detector 31 is F1 and the detection output of the large flow rate detector 33 is F2, S1 = Q-F1-F2
Becomes The flow rate value calculated in this way is input to the first controller 34 as the slave valve command signal S1. Based on the input command signal S1 and the detection output of the small flow rate detector 31, the first controller 34 feedback-controls the slave valve 25 so that the gas flow rate passing through the slave valve 25 matches the command signal S1.

【0032】なお、このとき親弁24は20%の弁開度
に保持されているが、圧力の変動によって親弁24を通
過するガス流量が変動し、演算機36は大流量検出器3
3の検出出F2にも基づいて指令信号S1を算出してい
るので、指令信号S1は圧力変動による親弁24の通過
ガス流量の変動を打ち消すような値となる。これによっ
て転炉20に供給されるガス流量は設定流量Qに高精度
に保持される。
At this time, the master valve 24 is held at a valve opening of 20%, but the gas flow rate passing through the master valve 24 fluctuates due to pressure fluctuations, and the calculator 36 causes the large flow rate detector 3 to operate.
Since the command signal S1 is calculated also based on the detection output F2 of No. 3, the command signal S1 has a value that cancels the fluctuation of the flow rate of the gas passing through the master valve 24 due to the pressure fluctuation. As a result, the gas flow rate supplied to the converter 20 is maintained at the set flow rate Q with high accuracy.

【0033】ステップa1において演算機36に入力さ
れる設定流量Qが切替流量B以上の場合には、ステップ
a6に進む。設定流量Qが、B≦Qの場合には、図2の
グラフから判るように子弁25の弁開度を80%に保持
し、親弁24のみを制御する。
If the set flow rate Q input to the calculator 36 is equal to or larger than the switching flow rate B in step a1, the process proceeds to step a6. When the set flow rate Q is B ≦ Q, as can be seen from the graph of FIG. 2, the valve opening degree of the slave valve 25 is maintained at 80% and only the master valve 24 is controlled.

【0034】したがって、ステップa6で子弁用指令信
号をS1として80%の弁開度指令値を第1コントロー
ラ34に入力する。第1コントローラ34はこれに応答
して子弁25を80%の弁開度まであけ、これを保持す
る。
Therefore, in step a6, the command signal for the slave valve is set to S1 and a valve opening command value of 80% is input to the first controller 34. In response to this, the first controller 34 opens the child valve 25 to a valve opening of 80% and holds it.

【0035】次のステップa7で演算機36は設定流量
Qおよび各検出器31,33の検出出力F1,F2に基
づき、子弁25を通過するガス流量と親弁24を通過す
るガス流量との和が設定流量Qとなる親弁用指令信号S
2を算出する。すなわち、S2=Q−F1−F2を算出
し、第2コントローラ35に入力する。第2コントロー
ラ35ではこれに応答し、親弁24を通過するガス流量
が指令信号S2に一致するように大流量検出器33の検
出出力F2に基づいてフィードバック制御する。
At the next step a7, the computer 36 determines the gas flow rate passing through the child valve 25 and the gas flow rate passing through the master valve 24 based on the set flow rate Q and the detection outputs F1 and F2 of the detectors 31 and 33. Command signal S for master valve whose sum is set flow rate Q
Calculate 2. That is, S2 = Q-F1-F2 is calculated and input to the second controller 35. In response to this, the second controller 35 performs feedback control based on the detection output F2 of the large flow rate detector 33 so that the gas flow rate passing through the master valve 24 matches the command signal S2.

【0036】なおこのときも前述と同様に、子弁25の
弁開度は一定に保たれているが、圧力変動によって子弁
25を通過するガス流量が変動し、演算機36ではこの
変動を打消すような指令信号S2を算出しているので、
転炉20に供給されるガス流量は設定流量Qに高精度に
保持される。
At this time as well, the valve opening of the sub-valve 25 is kept constant as in the above case, but the flow rate of the gas passing through the sub-valve 25 fluctuates due to the pressure fluctuation, and the calculator 36 makes this fluctuation. Since the command signal S2 for canceling is calculated,
The gas flow rate supplied to the converter 20 is maintained at the set flow rate Q with high accuracy.

【0037】このように、演算手段37に設定流量Qが
入力される毎に速やかに各弁24,25を制御して吹き
込むガス流量が設定流量Qとなる。
As described above, each time the set flow rate Q is input to the calculating means 37, the gas flow rate to be blown by rapidly controlling the valves 24 and 25 becomes the set flow rate Q.

【0038】図2からも判るように、本発明の弁制御方
法では、設定流量に拘わらず、子弁25が80%以上の
弁開度となり、かつ親弁24が20%以下の弁開度とは
なる状態は、生じないので、制御困難となる領域が存在
せず、広範囲にわたって高精度に制御することができ
る。
As can be seen from FIG. 2, in the valve control method of the present invention, the valve opening of the child valve 25 is 80% or more and the valve opening of the parent valve 24 is 20% or less regardless of the set flow rate. Since such a condition does not occur, there is no region in which control is difficult, and it is possible to control with high accuracy over a wide range.

【0039】また、ガス流量制御中に子弁25が完全に
閉じるといったことがないので、従来技術のように両方
の弁を同時に閉じ、ノズルが詰まってしまうといったこ
とが確実に防がれる。また、親弁24および子弁25の
両方を同時に開いている場合であっても、いずれか一方
の弁は所定の弁開度に保持し、フィードバック制御は他
方の弁のみで行うので、同時に両方の弁をフィードバッ
ク制御し、ハンチングが発生するといったことが防がれ
る。
Further, since the sub-valve 25 is not completely closed during the gas flow rate control, it is possible to surely prevent both the valves from being closed at the same time and the nozzle is clogged as in the prior art. Even when both the master valve 24 and the slave valve 25 are open at the same time, one of the valves is held at a predetermined valve opening and the feedback control is performed only by the other valve, so that both valves are opened at the same time. It is possible to prevent hunting from occurring by performing feedback control of the valve.

【0040】なお、設定流量Qが切替流量A未満の場合
には子弁25のみで制御を行うが、設定流量Qの最小値
minは子弁25の20%弁開度に対応する流量とし、
設定流量Qの最大値maxは、子弁25の80%弁開度
に対応するガス流量に親弁24の80%弁開度に対応す
るガス流量を加算した値とする。しかし前述したように
この値は基準とする一定圧力における各弁24,25の
通過流量であるので、圧力の変動に応じて、たとえば子
弁25の弁開度を20%未満とする場合があったり、ま
たは親弁24の弁開度が80%以上となる場合も生じ
る。
When the set flow rate Q is less than the switching flow rate A, control is performed only by the slave valve 25. However, the minimum value min of the set flow rate Q is a flow rate corresponding to the 20% valve opening of the slave valve 25.
The maximum value max of the set flow rate Q is a value obtained by adding the gas flow rate corresponding to the 80% valve opening degree of the slave valve 25 to the gas flow rate corresponding to the 80% valve opening degree of the parent valve 24. However, as described above, since this value is the flow rate of passage through each valve 24, 25 at a constant reference pressure, the valve opening of the slave valve 25 may be less than 20% depending on the pressure fluctuation. Or the valve opening of the parent valve 24 may be 80% or more.

【0041】本実施形態では、弁の容量が異なる2つの
弁を制御する場合の弁制御方法として説明したが、本発
明はこのような場合に限らず、2つの弁の容量が等しい
場合であってもよく、また本実施形態と逆に、第1流路
30に介在される弁が容量の大きい親弁であり、第2流
路に介在される弁が容量の小さい子弁となる親子弁であ
ってもよい。
In the present embodiment, the valve control method for controlling two valves having different valve capacities has been described. However, the present invention is not limited to such a case, and the case where the two valves have the same capacity. Alternatively, conversely to the present embodiment, the valve interposed in the first flow path 30 is a large-capacity master valve, and the valve interposed in the second flow path is a small-capacity slave valve. May be

【0042】さらに、本発明の弁制御方法は2つの弁を
並列に接続した弁のみに適用する場合に限らず、たとえ
ば3つまたはそれ以上の弁を並列に接続し、各弁の弁開
度を制御する場合の弁制御方法にも適用することができ
る。
Furthermore, the valve control method of the present invention is not limited to the case where two valves are connected in parallel, and for example, three or more valves are connected in parallel and the valve opening degree of each valve is increased. It can also be applied to a valve control method for controlling

【0043】[0043]

【0044】[0044]

【発明の効果】以上のように本発明によれば、第1弁と
第2弁との切換わりにおいて制御困難となるといったこ
とが防がれ、広範囲の設定流量に対して高精度に制御す
ることができる。
As described above, according to the present invention, it is possible to prevent the control from being difficult when switching between the first valve and the second valve, and to control the set flow rate in a wide range with high accuracy. be able to.

【0045】また、両方の弁を同時に完全に閉じるとい
ったことが確実に防がれるので、底吹き転炉の羽口22
のノズル先端が詰まるといったことを確実に防止するこ
とができる。こうして底吹き転炉の羽口22に供給する
ガスの流量を正確に設定し、しかも羽口22が凝固した
鋼によって閉塞する恐れはない。
Further, it is surely prevented that both valves are completely closed at the same time, so that the tuyere 22 of the bottom blowing converter is surely prevented.
It is possible to reliably prevent clogging of the tip of the nozzle. Thus, the flow rate of the gas supplied to the tuyere 22 of the bottom blowing converter is accurately set, and there is no possibility that the tuyere 22 will be blocked by the solidified steel.

【図面の簡単な説明】[Brief description of drawings]

【図1】本発明の実施の一形態である弁制御方法を用い
た底吹き転炉20の流量制御系統図である。
FIG. 1 is a flow rate control system diagram of a bottom blowing converter 20 using a valve control method according to an embodiment of the present invention.

【図2】設定流量Qと子弁25および親弁24の弁開度
との関係を示すグラフである。
FIG. 2 is a graph showing the relationship between the set flow rate Q and the valve opening degrees of the slave valve 25 and the master valve 24.

【図3】制御手段37の演算機36の制御方法を示すフ
ローチャートである。
FIG. 3 is a flowchart showing a method of controlling a computer 36 of a control means 37.

【図4】従来の弁制御方法を用いる底吹き転炉1の流量
制御系統図である。
FIG. 4 is a flow control system diagram of a bottom blowing converter 1 using a conventional valve control method.

【図5】従来の親子弁2の設定流量Qと子弁5および親
弁4との関係を示すグラフである。
FIG. 5 is a graph showing the relationship between the set flow rate Q of the conventional parent-child valve 2 and the child valve 5 and the parent valve 4.

【図6】第2の従来技術の弁制御方法における設定流量
Qと子弁5および親弁4の弁開度との関係を示すグラフ
である。
FIG. 6 is a graph showing the relationship between the set flow rate Q and the valve opening degrees of the slave valve 5 and the master valve 4 in the second conventional valve control method.

【符号の説明】[Explanation of symbols]

20 底吹き転炉 21 親子弁 24 親弁 25 子弁 30 第1流路 31 小流量検出器 32 第2流路 33 大流量検出器 34 第1コントローラ 35 第2コントローラ 36 演算機 37 制御手段 20 Bottom blowing converter 21 Parent-child petition 24 Profanity 25 petals 30 First flow path 31 Small flow rate detector 32 Second channel 33 Large flow rate detector 34 First Controller 35 Second controller 36 computing machine 37 Control means

───────────────────────────────────────────────────── フロントページの続き (58)調査した分野(Int.Cl.7,DB名) G05D 7/00 - 7/06 C21C 5/28 - 5/50 ─────────────────────────────────────────────────── ─── Continuation of front page (58) Fields surveyed (Int.Cl. 7 , DB name) G05D 7 /00-7/06 C21C 5/28-5/50

Claims (2)

(57)【特許請求の範囲】(57) [Claims] 【請求項1】 (a)ガス源からのガスを底吹き転炉2
0の羽口22に供給する第1流路30と、 (b)第1流路30に介在される第1弁25と、 (c)第1弁25をバイパスして第1流路30に接続さ
れる第2流路32と、 (d)第2流路32に介在され、全開時の流量が、第1
弁25の全開時の流量を越える第2弁24と、 (e)第1弁25を通過するガスの流量を検出する第1
流量検出器31と、 (f)第2弁24を通過するガスの流量を検出する第2
流量検出器33と、 (g)羽口22に供給する流量Qを設定する流量設定手
段と、 (h)第1および第2流量検出器31,33の出力と流
量設定手段の出力とに応答し、 (h1)設定流量Qが、第1弁25の全開近傍である予
め定める上限弁開度に対応する第1流量A未満であると
き、 第1流量検出器31の検出流量F1が、設定流量Qに対
応するように第1弁25の開度を制御し、 第2弁24は、全閉とし、 (h2)第2流量Bを、第1流量Aと、第2弁24の全
閉近傍である予め定める下限弁開度に対応する流量との
和とし、 設定流量Qが、第1流量A以上であって、第2流量B未
満であるとき、 第2流量検出器33の検出流量F2が、第2弁24を、
その第2弁24の前記下限弁開度に対応する流量になる
ように、第2弁24の開度を保持し、 第1弁25の開度を、第1および第2流量検出器31,
33の検出流量F1,F2の和が設定流量Qになるよう
に制御し、 (h3)設定流量Qが、第2流量B以上であるとき、 第1弁25の開度を、第1流量検出器31の検出流量F
1が第1流量Aになるように、保持し、 第2弁24の開度を、第1および第2検出器31,33
の検出流量F1,F2の和が設定流量Qになるように制
御する制御手段37とを含むことを特徴とする底吹き転
炉のガス供給装置。
1. A bottom blowing converter 2 for (a) gas from a gas source.
0 to the tuyere 22; (b) the first valve 25 interposed in the first flow channel 30; (c) the first valve 25 bypassing the first flow channel 30; The second flow path 32 to be connected is (d) the second flow path 32, and the flow rate at the time of full opening is the first
A second valve 24 that exceeds the flow rate of the valve 25 when it is fully opened, and (e) a first valve that detects the flow rate of gas passing through the first valve 25.
Flow rate detector 31, and (f) second for detecting the flow rate of gas passing through the second valve 24
Responsive to the flow rate detector 33, (g) flow rate setting means for setting the flow rate Q supplied to the tuyere 22, and (h) the outputs of the first and second flow rate detectors 31 and 33 and the output of the flow rate setting means. (H1) When the set flow rate Q is less than the first flow rate A corresponding to a predetermined upper limit valve opening near the fully open position of the first valve 25, the detected flow rate F1 of the first flow rate detector 31 is set to The opening degree of the first valve 25 is controlled so as to correspond to the flow rate Q, the second valve 24 is fully closed, and (h2) the second flow rate B is set to the first flow rate A and the second valve 24 is fully closed. When the set flow rate Q is greater than or equal to the first flow rate A and less than the second flow rate B, the detected flow rate of the second flow rate detector 33 is defined as the sum of the flow rates corresponding to the predetermined lower limit valve opening in the vicinity. F2 opens the second valve 24,
The opening of the second valve 24 is held and the opening of the first valve 25 is adjusted so that the flow rate corresponds to the lower limit valve opening of the second valve 24.
33 is controlled so that the sum of the detected flow rates F1 and F2 of 33 becomes the set flow rate Q. (h3) When the set flow rate Q is the second flow rate B or more, the opening degree of the first valve 25 is set to the first flow rate detection value. Flow rate F of detector 31
1 so as to be the first flow rate A, and the opening degree of the second valve 24 is set to the first and second detectors 31, 33.
And a control means 37 for controlling the sum of the detected flow rates F1 and F2 of (1) to become a set flow rate Q.
【請求項2】 第1弁25の第1流量Aは、 第2弁24の前記下限弁開度に対応する流量と、 第1弁25の全閉近傍である予め定める下限弁開度に対
応する流量との和よりも大きいことを特徴とする請求項
1記載の底吹き転炉のガス供給装置。
2. The first flow rate A of the first valve 25 corresponds to a flow rate corresponding to the lower limit valve opening of the second valve 24 and a predetermined lower limit valve opening near the fully closed position of the first valve 25. 2. The gas supply device for a bottom blowing converter according to claim 1, wherein the gas supply device has a flow rate larger than the sum of the flow rate and the flow rate.
JP36157499A 1999-12-20 1999-12-20 Gas supply system for bottom blow converter Expired - Fee Related JP3365753B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP36157499A JP3365753B2 (en) 1999-12-20 1999-12-20 Gas supply system for bottom blow converter

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP36157499A JP3365753B2 (en) 1999-12-20 1999-12-20 Gas supply system for bottom blow converter

Publications (2)

Publication Number Publication Date
JP2001175336A JP2001175336A (en) 2001-06-29
JP3365753B2 true JP3365753B2 (en) 2003-01-14

Family

ID=18474130

Family Applications (1)

Application Number Title Priority Date Filing Date
JP36157499A Expired - Fee Related JP3365753B2 (en) 1999-12-20 1999-12-20 Gas supply system for bottom blow converter

Country Status (1)

Country Link
JP (1) JP3365753B2 (en)

Families Citing this family (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP4331539B2 (en) * 2003-07-31 2009-09-16 株式会社フジキン Gas supply device to chamber and chamber internal pressure control method using the same
JP4399227B2 (en) * 2003-10-06 2010-01-13 株式会社フジキン Chamber internal pressure control device and internal pressure controlled chamber
JP5646956B2 (en) * 2010-11-04 2014-12-24 東京エレクトロン株式会社 Liquid flow control device, liquid flow control method, and storage medium
JP5843746B2 (en) * 2012-11-28 2016-01-13 本田技研工業株式会社 Fuel cell system
CN107420110B (en) * 2017-08-30 2023-04-18 中铁工程装备集团有限公司 Shield tunneling machine cutter head scouring nozzle anti-blocking device and control method
JP6939758B2 (en) * 2018-11-28 2021-09-22 Jfeスチール株式会社 Boiler steam temperature control method and steam temperature control device
WO2021013355A1 (en) * 2019-07-25 2021-01-28 Siemens Aktiengesellschaft Conveyor assembly with two conveyor elements connected in parallel

Also Published As

Publication number Publication date
JP2001175336A (en) 2001-06-29

Similar Documents

Publication Publication Date Title
JP3365753B2 (en) Gas supply system for bottom blow converter
US4687020A (en) Fluid mass flow controller
JPH03201103A (en) Composite control circuit
CN103014238B (en) AOD converter side blowing gun pipeline system flow control method
JPS6397347A (en) Control method for molten surface in mold in continuous casting machine
JPS61174308A (en) Furnace pressure control device in converter waste gas treatment device
JPS59104562A (en) Device and method for trouble detection of control system
JPH04313107A (en) Mass flow controller
JPS6211045B2 (en)
JPS626602B2 (en)
JP2811041B2 (en) Equilibrium liquid level controller
JPS61284515A (en) Method for controlling flow rate of gas to be blown to refining furnace
JPS6315324B2 (en)
JPS6221845B2 (en)
JPH0569019A (en) Method and device for controlling elongation percentage
JPH06304726A (en) Method for controlling molten metal surface level
JPH06221511A (en) Pouring method of oxygen into feed water for boiler
JPS6361883A (en) Operating device for jet layer furnace
JPH11325001A (en) Flow control device
JPS6215606B2 (en)
JP2002147749A (en) Automatic combustion control system
JPH089727B2 (en) Vertical furnace operating method and vertical furnace equipment
JPS59146904A (en) Method for controlling amount of hydrogen to be produced in hydrogen producing device
JPH02291004A (en) Mass-flow meter and mass-flow controller
KR100396136B1 (en) Method for Controlling a Flow Ratio of Oxy-Coal Using a Master Oxy-Coal Flow Controller

Legal Events

Date Code Title Description
R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

S111 Request for change of ownership or part of ownership

Free format text: JAPANESE INTERMEDIATE CODE: R313113

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20081101

Year of fee payment: 6

FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20091101

Year of fee payment: 7

FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20091101

Year of fee payment: 7

S531 Written request for registration of change of domicile

Free format text: JAPANESE INTERMEDIATE CODE: R313531

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20101101

Year of fee payment: 8

FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20111101

Year of fee payment: 9

FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20121101

Year of fee payment: 10

FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20131101

Year of fee payment: 11

FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20141101

Year of fee payment: 12

LAPS Cancellation because of no payment of annual fees