JPH089727B2 - Vertical furnace operating method and vertical furnace equipment - Google Patents

Vertical furnace operating method and vertical furnace equipment

Info

Publication number
JPH089727B2
JPH089727B2 JP14829388A JP14829388A JPH089727B2 JP H089727 B2 JPH089727 B2 JP H089727B2 JP 14829388 A JP14829388 A JP 14829388A JP 14829388 A JP14829388 A JP 14829388A JP H089727 B2 JPH089727 B2 JP H089727B2
Authority
JP
Japan
Prior art keywords
oxygen
furnace
flow rate
wind box
air
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
JP14829388A
Other languages
Japanese (ja)
Other versions
JPH01318883A (en
Inventor
昌幸 岡田
和夫 星野
芳夫 小林
滋 松永
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nippon Steel Nisshin Co Ltd
Original Assignee
Nisshin Steel Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nisshin Steel Co Ltd filed Critical Nisshin Steel Co Ltd
Priority to JP14829388A priority Critical patent/JPH089727B2/en
Publication of JPH01318883A publication Critical patent/JPH01318883A/en
Publication of JPH089727B2 publication Critical patent/JPH089727B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Landscapes

  • Refinement Of Pig-Iron, Manufacture Of Cast Iron, And Steel Manufacture Other Than In Revolving Furnaces (AREA)
  • Vertical, Hearth, Or Arc Furnaces (AREA)

Description

【発明の詳細な説明】 〔産業上の利用分野〕 本発明は、通風性を不良とする金属原材を装入した場
合でも炉内圧力を上昇させたり変動させたりすることの
ない竪型炉の操業方法及び竪型炉設備に関するものであ
る。
DETAILED DESCRIPTION OF THE INVENTION [Industrial application] The present invention is a vertical furnace that does not increase or fluctuate the internal pressure of a furnace even when a metal raw material having poor ventilation is charged. The present invention relates to the operating method and vertical furnace equipment of.

〔従来の技術〕[Conventional technology]

竪型炉は、これに金属原材を装入し、炉壁の外側に設
けられた風箱に導かれた酸素含有ガス(一般に空気)を
風箱の内圧により羽口から炉内に所定の酸素供給量とな
るように吹き込み、炉内のコークスを燃焼させて金属原
材を溶解,精錬して溶銑及び溶滓を炉の下部の出銑樋及
び出滓樋から流出させるように操業される。
In a vertical furnace, a metal raw material is charged into the furnace, and an oxygen-containing gas (generally air) introduced into a wind box provided outside the furnace wall is blown into the furnace from the tuyere by the internal pressure of the wind box. It is operated so that oxygen is blown in, the coke in the furnace is burned to melt and smelt the metal raw material, and the hot metal and slag are discharged from the tap pipe and slag pipe at the bottom of the furnace. .

この溶銑及び溶滓の流出状態を後方除滓連続出銑式竪
型炉を例としてその下部の断面図を示す第4図により更
に詳細に説明する。
The outflow state of the molten pig iron and molten slag will be described in more detail with reference to FIG. 4 which is a sectional view of the lower portion of the continuous slag slagging vertical type vertical furnace as an example.

炉本体1の出銑樋2側の炉壁下端1aは出滓樋3側の炉
壁下端1bよりも僅かに低くなつており、また出滓樋3側
の炉壁下端1bを基準とする出銑樋2の上端2aの高さX及
び出滓樋3の上端3aの高さY(これらをダムの高さと言
う)では高さXが高さYよりも僅かに低くなつている。
炉本体1内で溶製された溶銑4と溶滓5とは炉本体1の
下部に溜り、そして溶銑4の比重が溶滓5のそれよりも
大きいことから溶銑4は出銑樋2から、また溶滓5は出
滓樋5からそれぞれ流出することになる。このような竪
型炉において、出銑樋2及び出滓樋3のダムの高さX及
びYは、次のように決められる。溶銑4及び溶滓5が第
4図に示す如く最も標準的な状態で炉本体1内と出銑樋
2内及び出滓樋3内とで圧力がバランスしているとした
ときに、次式が成立する。
The lower end 1a of the furnace wall on the tapping gutter 2 side of the furnace body 1 is slightly lower than the lower end 1b of the furnace wall on the side of the tapping gutter 3, and the lower end 1b of the furnace wall on the side of the tapping gutter 3 is used as a reference. At the height X of the upper end 2a of the pigtail 2 and the height Y of the upper end 3a of the slag gutter 3 (these are referred to as the height of the dam), the height X is slightly lower than the height Y.
The molten pig iron 4 and molten slag 5 melted in the furnace body 1 accumulate in the lower portion of the furnace body 1, and since the specific gravity of the molten pig iron 4 is larger than that of the molten slag 5, the molten pig iron 4 is discharged from the tapping gutter 2. Further, the molten slag 5 will flow out from the slag gutter 5. In such a vertical furnace, the heights X and Y of the dams of the tap pipe 2 and the tap pipe 3 are determined as follows. Assuming that the molten iron 4 and the molten slag 5 are in the most standard condition as shown in FIG. 4 and the pressures in the furnace body 1 and the tap sluice 2 and the slag trough 3 are balanced, Is established.

先ず出銑樋2側では X×γi=S1×γs+P ここで γi:溶銑4の比重量 S1 :炉本体1内の溶滓5の厚さ γs:溶滓5の比重量 P :炉本体1のガス内圧 が成立する。First, on the side of the tap pipe 2 X × γi = S 1 × γs + P where γi: specific weight of molten pig iron S 1 : thickness of molten slag 5 in furnace body 1 γs: specific weight of molten slag 5 P: furnace body The gas internal pressure of 1 is established.

同様に出滓樋3側でも、 S2×γs+M×γi=S1+P S2M=Y ここで S2:出滓樋3内の溶滓5の厚さ M :出滓樋3内の溶銑4の厚さ が成立する。Similarly, on the outlet sluice 3 side, S 2 × γs + M × γi = S 1 + P S 2 M = Y where S 2 : Thickness of molten slag 5 in the outlet sluice 3 M: Hot metal in the outlet sluice 3 A thickness of 4 holds.

以上のように、理想的な操業状態における出銑樋2及
び出滓樋3のダムの高さX及びYと、溶銑4と溶銑5と
の比重量γi,γs,炉本体1内と出滓樋3内の溶滓5の厚
さS1,S2及び炉本体1のガス内圧Pとの関係が示される
が、実際の操業状態においては往々にして上記諸式は成
立していない場合が起こるので、安定操業を続けるため
には、現実に設置されているダムの高さX,Yと必要なダ
ムの高さの差が小さく且つ変動を極力なくすように操業
する必要がある。操業中においては普通上記γi,γs,
S1,S2の変動は小さいから、結局炉本体1のガス内圧P
を適切に且つ変動が小さくなるような操業をする必要が
ある。
As described above, the dam heights X and Y of the tap gutter 2 and the tap gutter 3 in the ideal operating state, the specific weights γi, γs of the hot metal 4 and the hot metal 5, the inside of the furnace body 1 and the slag The relationship between the thicknesses S 1 and S 2 of the molten slag 5 in the gutter 3 and the gas internal pressure P of the furnace body 1 is shown, but in the actual operating conditions, the above equations often do not hold. Therefore, in order to continue stable operation, it is necessary to operate so that the difference between the height X and Y of the dam actually installed and the required height of the dam is small and fluctuations are minimized. During operation, the above γi, γs,
Since the fluctuations of S 1 and S 2 are small, the gas internal pressure P of the furnace body 1 is eventually
It is necessary to operate properly and with small fluctuations.

従来、上記のような必要を満たすために、使用する金
属原材として炉内での通風性の良いものが使用されてい
た。その理由は、若し金属原材により炉内の通風性を著
しく悪化させた場合、酸素含有ガスの吹き込み圧を高く
したり燃焼後のガスの排気を抑えられて炉内圧力が高く
なるため、出銑樋2及び出滓樋3側と炉本体1内との圧
力バランスが崩れ、各樋から溶銑や溶滓が吹き出すこと
になるからである。そのため、従来の操業方法によれ
ば、炉内の通風性を不良にする金属原材、例えばスラ
ジ,ダスト,スケール,クラツプ細片等の粉粒状のもの
や極端に大径(例えば許容限度である炉径の1/3以上)
の塊状のもの等は使用出来ない欠点があつた。
Conventionally, in order to satisfy the above-mentioned needs, a metal raw material used has good ventilation in a furnace. The reason is that if the ventilation of the inside of the furnace is significantly deteriorated by the metal raw material, the pressure inside the furnace becomes high by increasing the blowing pressure of the oxygen-containing gas or suppressing the exhaust of the gas after combustion, This is because the pressure balance between the side of the tappipe 2 and the tappipe 3 and the inside of the furnace main body 1 is disrupted, and the hot metal and the slag are blown out from each gutter. Therefore, according to the conventional operation method, a metal raw material that deteriorates ventilation in the furnace, for example, a granular material such as sludge, dust, scale, and clasp fine particles, or an extremely large diameter (for example, an allowable limit) (1/3 or more of furnace diameter)
However, there was a drawback that the block-shaped ones could not be used.

また、このような現象が起こつた場合、炉本体内の圧
力を下げるため、羽口から吹き込む酸素含有ガス量を減
少させる方法が取られるが、このことにより炉内へ供給
される酸素量が減つて燃焼コークス量が減少するため、
溶解速度が落ちるという欠点もあつた。
When such a phenomenon occurs, the pressure in the furnace body is lowered, and the amount of oxygen-containing gas blown from the tuyere is reduced.However, this reduces the amount of oxygen supplied to the furnace. As the amount of combustion coke decreases,
There was also a drawback that the dissolution rate decreased.

〔発明が解決しようとする課題〕[Problems to be Solved by the Invention]

本発明者らは上記のような従来技術の欠点を解消し、
それぞれ製鋼工程で生じるところの、転炉ダストや高炉
ダストの如きダスト,酸洗工程で生じた酸洗スラジの如
きスラジ,熱延工程で生じた熱延スケール,スクラツプ
細片の如き製鋼原料として再使用可能である成分を多量
に含有しているがそのまま竪型炉内に装入すると通風を
不良にする金属原材の有効利用の必然性に立ち至り、通
風を不良にする金属原材を使用しても炉内と出銑や出銑
樋との圧力バランスを崩さずしかも金属原材の溶解速度
もほぼ一定に保つことの出来る竪型炉の操業方法及びそ
の実施に適する竪型炉設備を構成することを本発明の課
題とする。
The present inventors have solved the above-mentioned drawbacks of the prior art,
Reproduced as dusts such as converter dust and blast furnace dust, sludge such as pickling sludge generated in pickling process, hot rolled scale produced in hot rolling process, and steelmaking raw materials such as scraps produced in the steelmaking process. Although it contains a large amount of components that can be used, if it is charged into the vertical furnace as it is, it will be necessary to effectively use the metal raw material that causes poor ventilation. Even if the pressure balance between the inside of the furnace and the taphole or tappipe is not disturbed, and the melting rate of the metal raw materials can be kept almost constant, the operation method of the vertical furnace and the vertical furnace equipment suitable for its implementation are constructed. This is an object of the present invention.

〔課題を解決するための手段〕[Means for solving the problem]

本発明者らは種々の検討した結果、酸素含有ガスとし
て空気と酸素ガスとを併用し、通風性を不良にする金属
原材を使用した場合でもその通風性の不良な程度に応じ
て酸素合計量を一定とする条件下に空気及び酸素ガスの
各流量を増減して常に炉内圧を一定に維持するように構
成することによつて上記課題を解決出来ることを究明し
て本発明を成した。
As a result of various investigations by the present inventors, air and oxygen gas are used together as oxygen-containing gas, and even when a metal raw material that causes poor ventilation is used, the total amount of oxygen depends on the degree of poor ventilation. The present invention has been made by clarifying that the above problems can be solved by increasing and decreasing the respective flow rates of air and oxygen gas under conditions of keeping the amount constant and constantly maintaining the pressure inside the furnace constant. .

従来でも空気に酸素ガスを混入したいわゆる酸素富化
空気の使用は試みられているが、その目的は燃料節約,
粗悪コークス対策,省エネルギー,溶銑の温度や流動性
の向上等であり、従つてその使用方法も通風性を不良と
する金属原料を使用したときの炉内圧力上昇と変動とを
防止するためにその不良程度に応じて流量を調節すると
いうようなものではなかつた。
Conventionally, the use of so-called oxygen-enriched air in which oxygen gas is mixed with air has been tried, but the purpose is to save fuel,
Countermeasures against poor coke, energy saving, improvement of hot metal temperature and fluidity, etc. Therefore, in order to prevent the rise and fluctuation of pressure in the furnace when using metal raw materials with poor ventilation, It was not something like adjusting the flow rate according to the degree of failure.

以下、図面によつて本発明に係る竪型炉の操業方法及
び竪型炉設備を詳細に説明する。
Hereinafter, a vertical furnace operating method and a vertical furnace facility according to the present invention will be described in detail with reference to the drawings.

第1図は本発明に係る竪型炉設備の1実施例の系統
図、第2図(イ),(ロ)及び(ハ)は炉内圧制御のた
めの操作要領の説明図、第3図(イ),(ロ),
(ハ),(ニ)及び(ホ)は本発明の実施状態の1例を
示す説明図である。
FIG. 1 is a system diagram of one embodiment of a vertical furnace equipment according to the present invention, FIGS. 2 (a), (b) and (c) are explanatory diagrams of an operating procedure for controlling the pressure inside the furnace, and FIG. (A), (b),
(C), (d), and (e) are explanatory views showing an example of an implementation state of the present invention.

先ず、本発明に係る竪型炉の操業方法について説明す
る。
First, a method for operating a vertical furnace according to the present invention will be described.

竪型炉例えば第1図中に示す後方除滓連続出銑式の竪
型炉1′は、一般に前記したように操業される。すなわ
ち、炉本体1の上部にある装入口1cから金属原料,コー
クスを含む原料(図示省略)を装入し風箱6(第1図の
竪型炉1′では簡略に示してあるが、風箱6は炉本体1
の周囲を囲うように設置されている)に導かれた酸素含
有ガスを風箱6の内圧により羽口から炉内に所定の酸素
供給量となるように吹き込まれる。上記所定の酸素供給
量は、金属の種類,原料の種類等により適度な溶解速度
となるように定められる。炉内に吹き込まれた酸素含有
ガスはコークスを燃焼させ、その反応熱により金属原材
を溶解させ、溶的となつてコークス層を落下する間に溶
滓を分離されて精錬された溶銑及び溶滓は下部の出銑樋
2及び出滓樋3からそれぞれ流出することは前記の通り
である。
A vertical furnace, for example, a vertical furnace 1'of a continuous slag-removing tapping type shown in FIG. 1 is generally operated as described above. That is, a metal raw material and a raw material containing coke (not shown) are charged from a charging port 1c at the upper part of the furnace main body 1 and a wind box 6 (not shown in the vertical furnace 1'of FIG. Box 6 is the furnace body 1
The oxygen-containing gas introduced into the furnace is blown into the furnace from the tuyere by the internal pressure of the wind box 6 so that a predetermined amount of oxygen is supplied. The predetermined oxygen supply amount is determined so as to have an appropriate dissolution rate depending on the type of metal, the type of raw material and the like. The oxygen-containing gas blown into the furnace burns the coke, melts the metal raw material by the reaction heat, and while it is soluble, it separates the slag while the coke is falling and the smelted hot metal and molten metal are refined. As described above, the slag flows out from the bottom tap gutter 2 and the bottom tap gutter 3, respectively.

本発明方法においては、上記の如く操業するに際して
酸素含有ガスとして空気と酸素ガスとを併用し、そして
重要なことは、金属原材として少なくともその一部に通
風性を不良にする金属原材を使用し、炉内における通風
性の不良な程度を炉内圧によつて上下する風箱6の内圧
によつて判断し、この風箱6の内圧が一定圧を維持する
ように空気と酸素ガスとの風箱6への流量をそれらに含
まれる酸素合計流量が前記所定の酸素供給量を維持する
条件下にそれぞれを調節するのである。そのため、空気
と酸素ガスとをそれぞれ個別に流量調節可能な別経路を
経て風箱6に導いて、この別経路において両者の流量を
上記の如く調節するのである。このようにして風箱6の
内圧を一定圧に維持することにより炉内圧の上昇及び変
動を防止することが出来るのである。
In the method of the present invention, air and oxygen gas are used together as the oxygen-containing gas in the operation as described above, and, importantly, at least a part of the metal raw material is a metal raw material that causes poor ventilation. The degree of poor ventilation in the furnace is judged by the internal pressure of the wind box 6 which is raised and lowered by the internal pressure of the furnace, and air and oxygen gas are mixed so that the internal pressure of the wind box 6 maintains a constant pressure. The respective flow rates to the wind box 6 are adjusted under the condition that the total flow rate of oxygen contained therein maintains the predetermined oxygen supply amount. Therefore, the air and the oxygen gas are guided to the wind box 6 via separate paths capable of individually adjusting the flow rates, and the flow rates of both of them are adjusted as described above in this separate path. In this way, by maintaining the internal pressure of the wind box 6 at a constant pressure, it is possible to prevent the internal pressure of the furnace from rising and fluctuating.

次に、上記の竪型炉の操業方法の実施に適する本発明
に係る竪型炉設備について第1図により説明する。
Next, the vertical furnace equipment according to the present invention, which is suitable for carrying out the above-described vertical furnace operating method, will be described with reference to FIG.

竪型炉設備の本来の使用目的は、上部から原料を装入
し羽口から酸素含有ガスを吹き込み下部から連続的に出
銑させるためのものであることは従来と変わりはない。
このような竪型炉設備において、本発明に係る竪型炉設
備では炉本体1の羽口7に連通している風箱6にその内
圧を測定する圧力計8が設置されている。この圧力計8
は制御装置に圧力信号を発信することの出来るものであ
る。風箱6に酸素含有ガスを導くためのガス配管の一部
又は全部として、空気供給源9及び酸素ガス供給源10か
らそれぞれ別経路を成して空気配管11及び酸素ガス配管
12が設けられている。第1図では上記両配管11,12は風
箱6前で合流して共通のガス配管12′となつている。空
気供給源9及び酸素ガス供給源10は常にそれぞれ空気及
び酸素ガスを補給されて加圧状態に保たれている。上記
別経路を成す空気配管11及び酸素ガス配管12毎にそれぞ
れ空気流量計13,酸素ガス流量計14と電磁流量調節弁15,
16とが設置されている。この空気流量計13,酸素ガス流
量計14も前記圧力計8と同様に制御装置に流量信号を発
信することのできるものである。そして上記圧力計8,空
気流量計13,酸素ガス流量計14及び電磁流量調節弁15,16
を有機的に関連させて作動させるために、制御装置17と
空気配管11及び酸素ガス12毎に調節機18,19とが設置さ
れている。制御装置17は、風箱6に設置された圧力計8
からの圧力信号20を受けて空気と酸素ガスとの酸素合計
流量が所定の酸素供給量を維持する条件下に風箱6の内
圧を一定圧に維持するための空気流量及び酸素ガス流量
を計算して各流量変更指令信号21,22を各調節器18,19に
発するものである。各調節器18,19はそれぞれ制御装置1
7からの流量変更指令信号21,22と空気流量計13,酸素ガ
ス流量計14からの流量信号23,24とを受けてその差をな
くすための開度修正信号を発するものである。以上の各
機器と竪型炉1′とから本発明に係る竪型炉設備は構成
されている。
The original purpose of using the vertical furnace equipment is to charge the raw material from the upper part and blow the oxygen-containing gas from the tuyere to continuously tap the iron from the lower part.
In such a vertical furnace equipment, in the vertical furnace equipment according to the present invention, a pressure gauge 8 for measuring the internal pressure is installed in the wind box 6 communicating with the tuyere 7 of the furnace body 1. This pressure gauge 8
Is capable of transmitting a pressure signal to the control device. As a part or all of the gas pipe for guiding the oxygen-containing gas to the wind box 6, a separate route is formed from the air supply source 9 and the oxygen gas supply source 10, and the air pipe 11 and the oxygen gas pipe are provided.
Twelve are provided. In FIG. 1, the two pipes 11 and 12 are joined together in front of the wind box 6 to form a common gas pipe 12 '. The air supply source 9 and the oxygen gas supply source 10 are constantly replenished with air and oxygen gas, respectively, and are kept in a pressurized state. An air flow meter 13, an oxygen gas flow meter 14, and an electromagnetic flow rate control valve 15, respectively for each of the air pipe 11 and the oxygen gas pipe 12 that form the separate path.
16 and are installed. Like the pressure gauge 8, the air flow meter 13 and the oxygen gas flow meter 14 can also send a flow rate signal to the control device. And the pressure gauge 8, the air flow meter 13, the oxygen gas flow meter 14 and the electromagnetic flow control valves 15, 16
In order to operate in an organically related manner, the controller 17, the air pipe 11 and the regulators 18 and 19 for each oxygen gas 12 are installed. The control device 17 is a pressure gauge 8 installed in the wind box 6.
Calculates the air flow rate and the oxygen gas flow rate for maintaining the internal pressure of the wind box 6 at a constant pressure under the condition that the total oxygen flow rate of the air and the oxygen gas maintains the predetermined oxygen supply rate by receiving the pressure signal 20 from Then, the flow rate change command signals 21 and 22 are issued to the controllers 18 and 19, respectively. Each controller 18, 19 is a control device 1
The flow rate change command signals 21 and 22 from 7 and the flow rate signals 23 and 24 from the air flow meter 13 and the oxygen gas flow meter 14 are received, and an opening degree correction signal for eliminating the difference is issued. The vertical furnace equipment according to the present invention is constituted by the above-mentioned devices and the vertical furnace 1 '.

〔作用〕[Action]

本発明に係る竪型炉設備は上記構成により次のように
作用する。
The vertical furnace equipment according to the present invention operates as follows with the above configuration.

操業されている竪型炉1′の或る時点における風箱6
の内圧が制御装置17に設定されている設定圧力P1に合致
しており空気流量がVa-1で酸素ガス流量がVo-1であつ
て、これらの酸素合計流量が制御装置17に設定されてい
る所定の酸素供給量Vtoに合致しているとする。炉内の
通風性に変化がなければ風箱6の圧力計8は動かず、制
御装置17は何らの指示も出さない。
The wind box 6 at a certain point of the vertical furnace 1'in operation
The internal pressure of the valve matches the set pressure P 1 set in the controller 17, the air flow rate is V a-1 and the oxygen gas flow rate is V o-1, and the total flow rate of these oxygen flows to the controller 17. It is assumed that the set predetermined oxygen supply amount Vto is met. If there is no change in ventilation in the furnace, the pressure gauge 8 of the wind box 6 does not move, and the control device 17 does not give any instruction.

このような状態から、通風性を不良にする金属原材の
使用等により圧力計8で測定される圧力が風箱6の設定
圧力P1を越えようとするときは、空気流量を第2図
(イ)に示す如くVa-1からVa-2に減少させて、酸素ガス
を第2図(ロ)に示す如くVo-1からVo-2に増加させる指
令が制御装置17から各調節器18,19へ出される。そして
各調節器18,19からそれぞれ各電磁流量調節弁15,16に開
度修正信号が発信されて空気及び酸素ガスの流量が調節
されるのである。すなわち、風箱6の内圧を設定圧力P1
に保つため、制御装置17から調節器18,19へ流量変更指
令が出され、空気流量がVa-1から減少すると同時に、酸
素ガス流量がVo-1からVo-2へ増加する。このことにより
炉内へ機器する全酸素量すなわち供給空気中の酸素量と
供給酸素ガスの酸素量との和を所定の酸素供給Vtoに保
つて炉内での金属原材の溶解速度が低下するのを防止す
る。そして空気及び酸素ガスの合計流量としては調節前
より減少し、このことにより風箱6の内圧(従つて炉内
圧)の上昇は直ちに修正されて元に戻るのである。若し
上記の調節が不充分又は更に炉内圧従つて風箱6の内圧
が上昇しようとするときは、続いて前記と同様の制御が
行われる。また、上記とは逆に炉内圧従つて風箱6の内
圧が設定圧力P1よりも低下しようとするときは、制御機
構は上記とは逆に作用し、酸素合計流量を所定の酸素供
給Vtoに保ちながら空気供給量を増加させ酸素ガス流量
を減少させて設定圧力P1を一定に維持しようとするので
ある。このようにして空気及び酸素ガスの合計流量は使
用する金属原材の通風性によつて調節され変化するが、
それらの酸素合計流量及び風箱6の内圧は第2図(ハ)
に示す如く常に一定していて、炉内の溶解,精錬を常に
安定状態に保つことが出来るのである。
From such a state, when the pressure measured by the pressure gauge 8 is about to exceed the set pressure P 1 of the wind box 6 due to the use of a metal raw material that impairs ventilation, the air flow rate is set to the value shown in FIG. The controller 17 issues a command to decrease V a-1 to V a-2 as shown in (a) and increase the oxygen gas from V o- 1 to V o-2 as shown in FIG. 2 (b). Issued to each regulator 18,19. Then, an opening degree correction signal is transmitted from each of the regulators 18 and 19 to each of the electromagnetic flow rate control valves 15 and 16 to regulate the flow rates of air and oxygen gas. That is, the internal pressure of the wind box 6 is set to the set pressure P 1
In order to maintain the above condition, the controller 17 issues a flow rate change command to the controllers 18 and 19, and the air flow rate decreases from V a-1 and at the same time, the oxygen gas flow rate increases from V o- 1 to V o-2 . This keeps the total amount of oxygen to be fed into the furnace, that is, the sum of the amount of oxygen in the supply air and the amount of oxygen of the supply oxygen gas at a predetermined oxygen supply Vto, and reduces the dissolution rate of the metal raw material in the furnace. Prevent. Then, the total flow rate of air and oxygen gas decreases from before the adjustment, and as a result, the increase in the internal pressure of the wind box 6 (and therefore the internal pressure of the furnace) is immediately corrected and returned to the original value. If the above adjustment is insufficient or the internal pressure of the wind box 6 is about to increase due to the internal pressure of the furnace, the same control as described above is subsequently performed. In contrast to the above, when the internal pressure of the wind box 6 is about to drop below the set pressure P 1 due to the internal pressure of the furnace, the control mechanism acts in the opposite manner to the above, and the total oxygen flow rate is adjusted to the predetermined oxygen supply Vto. The air supply amount is increased and the oxygen gas flow rate is decreased while keeping the set pressure to keep the set pressure P 1 constant. In this way, the total flow rate of air and oxygen gas is adjusted and changed according to the ventilation of the metal raw material used,
The total oxygen flow rate and the internal pressure of the wind box 6 are shown in Fig. 2 (C).
As shown in (4), it is always constant, and the melting and refining in the furnace can always be kept stable.

〔実施例〕〔Example〕

以下、実施例により本発明を具体的に説明する。 Hereinafter, the present invention will be specifically described with reference to examples.

第1図に示し系統図の設備を用い、次の条件で操業し
た。
Using the equipment shown in the system diagram in FIG. 1, the plant was operated under the following conditions.

竪型炉内径 1m 設定酸素供給量 16.8Nm3/分 設定風箱内圧 (炉内圧1000mm水柱に相当) 溶解速度 7T/時間 原料コークス 鋳物コークス 金属原材 銑鉄及び鋼屑 金属原材の通風性は、装入順に最初は良いもの、次にに
不良なもの、最後に再び良いものであつた。操業状態を
各項に分けて第3図に示す。
Vertical furnace inner diameter 1m Set oxygen supply amount 16.8Nm 3 / min Set wind box internal pressure (furnace internal pressure 1000mm equivalent to water column) Melt rate 7T / hour Raw coke Cast coke Metal raw material Pig iron and steel scrap Metal raw material ventilation is The loading order was good first, then bad, and finally good again. The operating condition is shown in Fig. 3 divided into each item.

空気流量及び酸素ガス流量は第3図(ロ),(ハ)に
示す如く装入した金属原材の通風性に従つて減増した
が、酸素合計流量は同図(ニ)に示す如くほぼ一定して
設定酸素供給量と同じ量を維持しており、従つて同図
(ホ)に示す如く溶解速度の大きな変動もなく、しかも
同図(イ)に示す如く風箱の大きな変動はなく、従つて
炉内圧も同様で各樋からの溶銑,溶滓の吹き出しは全く
なかつた。
The air flow rate and oxygen gas flow rate decreased according to the ventilation of the metal raw material charged as shown in Fig. 3 (b) and (c), but the total oxygen flow rate was almost as shown in Fig. 3 (d). The amount of oxygen supply is maintained at the same level as the set amount, so there is no large change in the dissolution rate as shown in (e) in the figure, and there is no large change in the wind box as shown in (b) in the figure. Therefore, the furnace pressure was the same, and no hot metal or slag was blown out from each gutter.

〔発明の効果〕〔The invention's effect〕

以上詳述した如く、本発明に係る竪型炉の操業方法及
び竪型炉設備は、酸素含有ガスとして空気と酸素ガスと
を併用し、それらの酸素合計流量を所定の一定量に維持
する条件下に各流量を調節し合計流量を増減させて炉内
圧を一定に維持するように構成したことにより、使用す
る原料が通風性を不良とするものであつてもまたその程
度が変動しても、溶解速度を一定に保ちながら炉内圧力
を一定の設定値に保つことが可能である。このことによ
り、樋から溶銑,溶滓が吹き出すこともなく安定した操
業を行うことが出来るのであり、その工業的価値の非常
に大きなものである。
As described above in detail, the vertical furnace operating method and the vertical furnace equipment according to the present invention use air and oxygen gas together as the oxygen-containing gas, and maintain the oxygen total flow rate thereof at a predetermined constant amount. By adjusting each flow rate below to increase or decrease the total flow rate to maintain the internal pressure of the furnace at a constant level, even if the raw material used has poor ventilation and the degree of fluctuation It is possible to keep the pressure in the furnace at a constant set value while keeping the melting rate constant. As a result, stable operation can be carried out without blowing hot metal or molten slag from the gutter, and its industrial value is extremely large.

【図面の簡単な説明】[Brief description of drawings]

第1図は、本発明に係る竪型炉設備の1実施例の系統
図、第2図(イ),(ロ)及び(ハ)は炉内圧制御のた
めの操作要領の説明図、第3図(イ),(ロ),
(ハ),(ニ)及び(ホ)は本発明の実施状態の1例を
示す説明図であり、第4図は竪型炉下部の模式断面図で
ある。 1′……竪型炉 1……炉本体 1a……出銑樋側の炉壁下端 1b……出滓樋側の炉壁下端 1c……装入口 2……出銑樋 2a……上端 3……出滓樋 3a……上端 4……溶銑 5……溶滓 6……風箱 7……羽口 8……圧力計 9……空気供給源 10……酸素ガス供給源 11……空気配管 12……酸素ガス配管 12′……共通のガス配管 13……空気流量計 14……酸素ガス流量計 15,16……電磁流量調節弁 17……制御装置 18,19……調節器 20……圧力信号 21,22……流量変更指令信号 23,24……流量信号 25,26……開度修正信号 M……出滓樋内の溶銑の厚さ P……炉本体のガス内圧 S1……炉本体の溶滓の厚さ S2……出滓樋内の溶滓の厚さ Va-1,Va-2……空気流量 Vo-1,Vo-2……酸素ガス流量 Vto……所定の酸素供給量 X……出銑樋側のダムの高さ Y……出滓樋側のダムの高さ
FIG. 1 is a system diagram of one embodiment of the vertical furnace equipment according to the present invention, and FIGS. 2 (a), (b) and (c) are explanatory diagrams of an operating procedure for controlling the pressure inside the furnace, and FIG. Figure (a), (b),
(C), (D), and (E) are explanatory views showing an example of the implementation state of the present invention, and FIG. 4 is a schematic cross-sectional view of the lower portion of the vertical furnace. 1 '…… Vertical furnace 1 …… Main body 1a …… Bottom end of furnace wall on tap gutter side 1b …… Bottom end of furnace wall on tap gutter side 1c …… Inlet 2 …… Tap gutter 2a …… Top end 3 …… Debris gutter 3a …… Top end 4 …… Molten iron 5 …… Molten slag 6 …… Wind box 7 …… Tuyere 8 …… Pressure gauge 9 …… Air supply source 10 …… Oxygen gas supply source 11 …… Air Piping 12 …… Oxygen gas piping 12 ′ …… Common gas piping 13 …… Air flow meter 14 …… Oxygen gas flow meter 15,16 …… Electromagnetic flow control valve 17 …… Control device 18,19 …… Regulator 20 …… Pressure signal 21,22 …… Flow rate change command signal 23,24 …… Flow rate signal 25,26 …… Opening degree correction signal M …… The thickness of the hot metal in the slag trough P …… The gas pressure S in the furnace body 1 …… Thickness of slag in the furnace body S 2 …… Thickness of slag in the outlet slag V a-1 , V a-2 …… Air flow rate V o-1 , V o-2 …… Oxygen Gas flow rate Vto …… Predetermined oxygen supply amount X …… Height of the dam on the tapping gutter side Y …… Height of the dam on the tapping gutter side

Claims (2)

【特許請求の範囲】[Claims] 【請求項1】竪型炉の上部から金属原材,コークスその
他の原料を装入し風箱に導かれた酸素含有ガスを風箱の
内圧により羽口から炉内に所定の酸素供給量となるよう
に吹き込み炉内コークスを燃焼させて連続的に出銑する
に当り、通風性を不良にする金属原材を少なくとも一部
に使用し、酸素含有ガスとして空気と酸素ガスとをそれ
ぞれ個別に流量調節可能な別経路を経て風箱に導き、空
気及び酸素ガスの各流量をそれらの酸素合計流量が所定
の酸素供給量を維持する条件下に調節して風箱の内圧を
一定圧に維持することにより、炉内圧の変動を防止する
ことを特徴とする竪型炉の操業方法。
1. An oxygen-containing gas introduced into a wind box by charging metal raw materials, coke and other raw materials from the upper part of a vertical furnace, and a predetermined oxygen supply amount from the tuyere into the furnace by the internal pressure of the wind box. In order to burn the coke in the blowing furnace and continuously tap it, the metal raw material that causes poor ventilation is used at least in part, and air and oxygen gas are separately supplied as oxygen-containing gas. It is guided to the wind box through another path with adjustable flow rate, and each flow rate of air and oxygen gas is adjusted under the condition that the total flow rate of oxygen keeps the specified oxygen supply amount to maintain the internal pressure of the wind box at a constant pressure. The method for operating a vertical furnace is characterized by preventing fluctuations in the internal pressure of the furnace.
【請求項2】上部から原料を装入し羽口から酸素含有ガ
スを吹き込み下部から連続的に出銑させる竪型炉設備に
おいて、炉本体(1)の羽口(7)に連通していて炉内
に吹き込まれる酸素含有ガスが導かれる風箱(6)にそ
の内圧を測定する圧力計(8)が設置されており、風箱
(6)に酸素含有ガスを導くガス配管の一部又は全部が
空気供給源(9)及び酸素ガス供給源(10)からそれぞ
れ別経路を成して設けられていて各経路毎にそれぞれ空
気流量計(13)及び酸素ガス流量計(14)と共に電磁流
量調節弁(15),(16)が設置されており、風箱(6)
に設置された圧力計(8)からの圧力信号(20)を受け
て空気と酸素ガスとの酸素合計流量が所定の酸素供給量
を維持する条件下に風箱(6)の内圧を一定圧に維持す
るための空気流量及び酸素ガス流量を計算して各流量変
更指令信号(21),(22)を発する制御装置(17)が設
置されており、上記各経路毎に制御装置(17)からの上
記流量変更指令信号(21),(22)と空気流量計(1
3),酸素ガス流量計(14)からの流量信号(23),(2
4)とを受けてその差をなくすための各開度修正信号(2
5),(26)を当該電磁流量調節弁(15),(16)に発
信する調節器(18),(19)が設置されていることを特
徴とする竪型炉設備。
2. A vertical furnace facility in which a raw material is charged from the upper part and an oxygen-containing gas is blown from the tuyere to continuously tap the lower part, which is connected to the tuyere (7) of the furnace body (1). A pressure gauge (8) for measuring the internal pressure is installed in a wind box (6) through which the oxygen-containing gas blown into the furnace is introduced, and a part of a gas pipe for guiding the oxygen-containing gas to the wind box (6) or All are provided in separate paths from the air supply source (9) and the oxygen gas supply source (10), and each path has an electromagnetic flow rate together with an air flow meter (13) and an oxygen gas flow meter (14). Control box (15), (16) is installed, wind box (6)
In response to the pressure signal (20) from the pressure gauge (8) installed in the air conditioner, the internal pressure of the wind box (6) is kept constant under the condition that the total oxygen flow rate of air and oxygen gas maintains a predetermined oxygen supply amount. A controller (17) for calculating the air flow rate and the oxygen gas flow rate for maintaining the flow rate and issuing each flow rate change command signal (21), (22) is installed, and the control apparatus (17) is provided for each of the above paths. Flow rate change command signals (21) and (22) from the air flow meter (1
3), flow signal from oxygen gas flow meter (14) (23), (2
4) Each opening correction signal (2
Vertical furnace equipment characterized in that regulators (18), (19) for transmitting the electromagnetic flow control valves (15), (16) to the electromagnetic flow control valves (15), (5), (26) are installed.
JP14829388A 1988-06-17 1988-06-17 Vertical furnace operating method and vertical furnace equipment Expired - Lifetime JPH089727B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP14829388A JPH089727B2 (en) 1988-06-17 1988-06-17 Vertical furnace operating method and vertical furnace equipment

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP14829388A JPH089727B2 (en) 1988-06-17 1988-06-17 Vertical furnace operating method and vertical furnace equipment

Publications (2)

Publication Number Publication Date
JPH01318883A JPH01318883A (en) 1989-12-25
JPH089727B2 true JPH089727B2 (en) 1996-01-31

Family

ID=15449537

Family Applications (1)

Application Number Title Priority Date Filing Date
JP14829388A Expired - Lifetime JPH089727B2 (en) 1988-06-17 1988-06-17 Vertical furnace operating method and vertical furnace equipment

Country Status (1)

Country Link
JP (1) JPH089727B2 (en)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP5262354B2 (en) * 2008-06-30 2013-08-14 Jfeスチール株式会社 Hot metal production method using vertical melting furnace

Also Published As

Publication number Publication date
JPH01318883A (en) 1989-12-25

Similar Documents

Publication Publication Date Title
CA2315502C (en) Control of molten metal level in a direct smelting vessel
US4456476A (en) Continuous steelmaking and casting
US4504311A (en) Process and apparatus for a direct formation of molten iron
US3970446A (en) Method of refining an iron base melt
US4419128A (en) Continuous melting, refining and casting process
US3897047A (en) Apparatus for and method of refining an iron base melt
JPH089727B2 (en) Vertical furnace operating method and vertical furnace equipment
US3406027A (en) Method for regulating the thermal balance of a bath of molten material during a continuous refining process of the material
US6129776A (en) Operation method of vertical furnace
EP0996749B1 (en) Method for controlling a smelting reduction process
US3865579A (en) Method and apparatus for the production of steel
SU1695828A3 (en) Method of blowing melt in furnace
US5759232A (en) Method of charging materials into cupola
US3690632A (en) Blast furnace control based on measurement of pressures at spaced points along the height of the furnace
JP2533921B2 (en) Smelting reduction furnace tapping method
US4219353A (en) Method of operating a lead blast furnace
CN1056887C (en) Control method of oxygen concentration for vertical quick melting furnace
US3088821A (en) Open hearth steelmaking process
JPH09125122A (en) Method for controlling oxygen concentration corresponding to molten metal tapping temperature in vertical type quick melting furnace
KR100376479B1 (en) A method and an apparatus for producing low silicon iron of blast furnace
KR20040049627A (en) Method for controlling burden distribution in blast furnace
CA1216156A (en) Blast furnace control method
KR20000042525A (en) Method of operating melting furnace
SU1301845A1 (en) Device for controlling gas supply to converter tuyeres
JPH01174888A (en) Method for discharging constant quantity of melt