JP3363716B2 - Temperature measurement device for mold members that mold and process glass molded products - Google Patents

Temperature measurement device for mold members that mold and process glass molded products

Info

Publication number
JP3363716B2
JP3363716B2 JP26290996A JP26290996A JP3363716B2 JP 3363716 B2 JP3363716 B2 JP 3363716B2 JP 26290996 A JP26290996 A JP 26290996A JP 26290996 A JP26290996 A JP 26290996A JP 3363716 B2 JP3363716 B2 JP 3363716B2
Authority
JP
Japan
Prior art keywords
temperature
mold
thermocouple
temperature measurement
mold member
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP26290996A
Other languages
Japanese (ja)
Other versions
JPH10111180A (en
Inventor
伸行 中川
潔 山本
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Canon Inc
Original Assignee
Canon Inc
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Canon Inc filed Critical Canon Inc
Priority to JP26290996A priority Critical patent/JP3363716B2/en
Publication of JPH10111180A publication Critical patent/JPH10111180A/en
Application granted granted Critical
Publication of JP3363716B2 publication Critical patent/JP3363716B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Landscapes

  • Measuring Temperature Or Quantity Of Heat (AREA)

Description

【発明の詳細な説明】 【0001】 【発明の属する技術分野】本発明は熱電対により温度測
定および温度制御する熱間加工(熱処理)装置に関する
ものである。 【0002】特に、本発明はガラス材料を加熱加圧して
所定形状、例えば、レンズ、プリズム、ミラー、等のガ
ラス成形品に成形加工する温度測定装置及び、温度測定
方法に顕著な効果を期待できる発明である。 【0003】 【従来の技術】図3は固体内部の温度を熱電対により測
定する場合の代表的な模式図である。図中101は熱電
対、102は被温度測定物、103は熱電対を挿入する
穴である。固体内部の測温では熱電対への熱の移動が主
に伝導によって行われる。よって、熱電対と被温度測定
物の穴との接触を良好にすることが重要であり、そのた
めの工夫として、(1)熱電対と挿入穴との隙間に熱伝
導の良い物質で充填したり、(2)熱電対の挿入長を十
分に長くしたり、挿入穴径をシビアにする手段などがあ
る。 【0004】 【発明が解決しようとしている課題】しかしながら、実
用的には上記(1)(2)の手段を採用するのが困難な
場合が多い。まず、被温度測定物の交換や段取り替えな
どが必要な場合では、上記(1)の充填する方法では熱
電対の着脱毎に充填材のメンテナンスが必要となり時間
的にも経済的にも効率が悪い。しかも、その充填材が製
品を汚す不良原因となる場合もある。 【0005】また、被温度測定物が小さい場合には、上
記(2)の熱電対の挿入長を十分に長くとる事は不可能
である。挿入穴径をシビアにするにも限界があり、適度
なクリアランスがないと熱電対の先端が曲がったりした
場合などは、装着ができなくなる。 【0006】特に、真空下の測温では、上記クリアラン
スの影響が顕著に現れる。なぜなら、大気下、あるいは
不活性ガス下では、そのクリアランスに気体の層が存在
する為、気体による熱伝導が接触不良の温度誤差を補っ
ているからである。真空下の測温現象としては測温部の
熱電対は実温度よりかなり低い値を示すという問題が発
生する。しかも、そのクリアランスのばらつきがそのま
ま温度ばらつきになり高精度の温度制御が必要な工程で
は製品不良の原因となりうる。 【0007】したがって、本発明は上述した課題に鑑み
てなされたものであり、その目的とするところは、固体
内部の温度を高精度で測温する方法を提供する事にあ
る。 【0008】更に、本発明はガラス材料を加熱加圧して
ガラス成形品を成形加工する装置、例えば、ガラスレン
ズ、プリズム、ミラーなどのガラス成形品をプレス成形
する加工装置の温度測定に好適な温度測定装置を提案す
ることにある。 【0009】又、更に、本発明はガラス成形加工方法で
あって、ガラス材料を加熱、加圧してガラス成形品を加
工する際のガラス材料の温度測定を高精度測定を含めた
ガラス成形加工方法を提案することにある。 【0010】 【課題を解決するための手段】上述の課題を解決し、目
的を達成するために、本発明の温度測定装置は、真空下
においてガラス材料を加熱加圧してガラス成形品を成形
加工する型部材の温度測定装置であって、前記型部材は
超硬合金製材料で作り、前記型部材に温度測定用孔を設
け、前記型部材の熱膨張係数より高い熱膨張係数を有す
る材料から成る円筒部材に熱電対のシース部を挿通して
固定し、前記円筒部材を前記温度測定用孔内に挿入し、
前記ガラス材料の成形温度に前記型部材を加熱した際
に、前記円筒部材が前記温度測定用孔の壁面に密着する
ように前記温度測定用孔と前記円筒部材の隙間の寸法を
設定したことを特徴としている。 【0011】 【0012】 【0013】 【0014】 【0015】 【0016】 【発明の実施の形態】以下、本発明の好適な実施例につ
いて、添付図面を参照して詳細に説明する。 【0017】図1は、光学素子の成形型を示した図であ
る。これは、加熱軟化されたガラス素材を上下一対の成
形用型部材によってプレスする事により、非球面レンズ
などの高精度な光学素子を成形する方法であり、成形型
の温度は高精度なコントロールを必要とする。 【0018】図中1、2は対向する側に光学機能面を有
した上型、下型である。3、4はヒーター、5、6は上
下に駆動する図示しない駆動源を有したプレス軸であ
る。7はガラス素材、8、9はそれぞれ1、2の型に設
けられた穴である。10、11は先端に高熱膨張部材を
固定した熱電対ユニットであり、これを図2で、もう少
し詳細に説明する。 【0019】図中20はφ1.0mmのKタイプ熱電対
である。シース部はステンレスからなっている。21は
ステンレスからなる円筒部材で、中心部に20の熱電対
が入る様に高精度で仕上げられた貫通穴が設けられてい
る。また、その両端は溶接により20の熱電対が固定さ
れている。もちろん、この固定方法は適当な接着剤を用
いても構わない。 【0020】次に、上型1、下型2に設けられた、それ
ぞれ8、9の穴と円筒部材21の直径の関係を説明す
る。上下型1、2の材質は超硬合金で、熱膨張率が5.
5×10-6/℃である。また、円筒部材21のそれは1
8×10-6/℃である。本実施例では、580℃で成形
する為、この温度域を考慮したそれぞれの直径の設定と
なる。 【0021】つまり、穴8、9の直径はφ5.0mmで
あり、成形温度では上記熱膨張率の関係で、φ5.015
mmとなる。よって、成形温度域で円筒部材がφ5.01
5mmの穴に密着する為には、円筒部材の直径は熱膨張
率から逆算してφ4.966mmにすれば良い。穴径がφ
5.015mm、円筒部材径がφ4.966mmで、両者の差
(クリアランス)は49μmある為、段取り替え時の熱
電対ユニット10、11の着脱は容易に行える。尚、こ
の円筒部材の長さは8mmである。 【0022】仮に、円筒部材を使わない場合を考える
と、熱電対の熱膨張率は18×10-6/℃、φ1.0m
mの熱電対は成形温度でφ1.01mmとなる。成形温
度で上下型1、2の穴8、9に密着する為には穴径は、
同じく逆算してφ1.007mmとなる。 【0023】熱電対径φ1.0mmと穴径φ1.007
mmには7μmの差(クリアランス)しかなく、これで
は熱電対の着脱が非常に困難になってしまう。φ1.0
mmあるいはφ1.6mmの熱電対は曲がりやすい為、
そのクリアランスは最低でも0.1mmを必要とする。 【0024】しかし、真空下で成形を行う為、0.1m
mのクリアランスを取ると、先の〔発明が解決しようと
している課題〕で述べたように、温度誤差が発生する。
実際のテスト結果では実温度(580℃)に比べて5〜
10℃も低く測温された。 【0025】本件で構成された温度測定方法を用いた光
学素子の成形では、真空下でも実温度にほぼ等しい測温
が可能な為、高精度な温度コントロールが行え、高品質
な光学素子の生産が可能となった。 【0026】具体的成形事例として、回折格子を成形し
た結果を述べる。 【0027】回折格子やプリズムを成形する場合、成形
品の転写面に成形雰囲気ガスのガス残りと言う不良が発
生し易いため、成形室を真空にして成形する。 【0028】最初は従来の温度測定方法(型部材にφ
1.1mmの穴を開け、そこにφ1.0mmの熱電対
を挿入する。)で成形した。 【0029】20個の成形品中11個が融着やワレ、面
転写不良で不良品となった。しかし、本発明に係る温度
測定装置、及び測定方法で実施した場合、温度不良が原
因と見られる不良がまったく見られず、70個の成形品
のすべてが良品となった。 【0030】尚、本発明は、その趣旨を逸脱しない範囲
で上記実施例を修正または変形したものに適用可能で、
かつ、他の熱間加工装置にも適用可能である。 【0031】 【発明の効果】以上説明した様に、本発明の温度測定方
法によれば、使用温度域で被温度測定部材の穴と熱電対
の先端の部材が熱膨張の差により密着する為、極めて高
精度に温度測定が実行される効果がある。 【0032】更に、ガラス成形装置の温度測定装置にお
いて、加熱されたガラス材料を成形加工する型部材に温
度測定用孔を設け、測定手段の熱電対に前記型部材の材
料の熱膨張係数より高い熱膨張係数の中間部材を取り付
け、前記中間部材を介して前記熱電対を前記型部材の温
度測定用孔に固定したことにより加工すべきガラス材料
の温度をより精度よく測定できる装置を提供できた。 【0033】更に、本発明は、ガラス材料を成形加工す
る型部材に温度測定用孔を設け、熱電対に前記型部材の
熱膨張係数より高い熱膨張係数の中間部材を固定し、該
中間部材と共に前記熱電対を前記温度測定用孔内に挿入
し、前記型部材の温度が前記ガラス材料の加工温度に達
した状態で、前記中間部材と前記型部材の温度測定用孔
の周面とが接触状態を保つようにしたガラス成形品の温
度測定方法を提案したことによりガラス成形品の成形精
度の向上を図ることができた。 【0034】例えば、前記したガラス材料を型部材内で
加熱、加圧操作して型部材の転写面形状を転写してレン
ズ、プリズム、ミラー等の光学製品を成形加工する場合
には、成形のための高温度、高圧力のためにガラス材
料、ガラス組成成分が型部材の前記転写面に付着し、該
付着物の除去が必要である。そのため、成形加工工程の
サイクルにおいてメンテナンス補修が行われるが、本発
明はメンテナンスの作業性に優れている。
Description: BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a hot working (heat treatment) apparatus for measuring and controlling a temperature by a thermocouple. In particular, the present invention can be expected to have a remarkable effect on a temperature measuring apparatus and a temperature measuring method for forming a glass material such as a lens, a prism, a mirror, etc. by heating and pressing a glass material into a predetermined shape. It is an invention. [0003] FIG. 3 is a typical diagram showing a case where the temperature inside a solid is measured by a thermocouple. In the figure, 101 is a thermocouple, 102 is an object to be measured, and 103 is a hole for inserting a thermocouple. In temperature measurement inside a solid, the transfer of heat to a thermocouple is performed mainly by conduction. Therefore, it is important to improve the contact between the thermocouple and the hole of the object to be measured. As a device for this purpose, (1) filling the gap between the thermocouple and the insertion hole with a substance having good heat conductivity; (2) Means for sufficiently increasing the insertion length of the thermocouple, or making the insertion hole diameter severe. However, practically, it is often difficult to employ the above-mentioned means (1) and (2). First, when it is necessary to replace or set up the object to be measured, the filling method described in (1) above requires maintenance of the filler every time the thermocouple is attached and detached, which is efficient in terms of time and economy. bad. In addition, the filler may cause a defective product. When the object to be measured is small, it is impossible to make the insertion length of the thermocouple (2) sufficiently long. There is also a limit in making the insertion hole diameter severe, and if the tip of the thermocouple is bent without proper clearance, the thermocouple cannot be mounted. [0006] In particular, when measuring the temperature under vacuum, the influence of the above-mentioned clearance appears remarkably. This is because, under the atmosphere or under an inert gas, since a gas layer exists in the clearance, heat conduction by the gas compensates for the temperature error of poor contact. As a phenomenon of temperature measurement under vacuum, there is a problem that the thermocouple of the temperature measurement section shows a value considerably lower than the actual temperature. In addition, the variation in the clearance becomes a temperature variation as it is, which may cause a product defect in a process requiring high-precision temperature control. Therefore, the present invention has been made in view of the above-mentioned problems, and an object of the present invention is to provide a method for measuring the temperature inside a solid with high accuracy. Further, the present invention relates to a temperature suitable for temperature measurement of an apparatus for forming a glass molded article by heating and pressing a glass material to form a glass molded article, for example, a processing apparatus for press-molding a glass molded article such as a glass lens, a prism and a mirror. It is to propose a measuring device. Further, the present invention relates to a method for forming a glass, which comprises measuring the temperature of the glass material when processing the glass material by heating and pressing the glass material, including high-precision measurement. It is to propose. [0010] In order to solve the above-mentioned problems and achieve the object, a temperature measuring apparatus of the present invention heats and presses a glass material under vacuum to form a glass molded product. A temperature measuring device for a mold member, wherein the mold member is made of a cemented carbide material, a hole for temperature measurement is provided in the mold member, and a material having a coefficient of thermal expansion higher than the coefficient of thermal expansion of the mold member. The sheath of the thermocouple is inserted into and fixed to the cylindrical member, and the cylindrical member is inserted into the temperature measurement hole,
When the mold member is heated to the molding temperature of the glass material, the dimension of the gap between the temperature measurement hole and the cylindrical member is set so that the cylindrical member is in close contact with the wall surface of the temperature measurement hole. Features. Hereinafter, preferred embodiments of the present invention will be described in detail with reference to the accompanying drawings. FIG. 1 is a view showing a mold for an optical element. This is a method of forming a high-precision optical element such as an aspherical lens by pressing a heat-softened glass material with a pair of upper and lower forming mold members, and controlling the temperature of the forming mold with high precision. I need. In the figures, reference numerals 1 and 2 denote an upper mold and a lower mold having optical functional surfaces on opposite sides. Reference numerals 3 and 4 denote heaters, and reference numerals 5 and 6 denote press shafts having a driving source (not shown) for driving up and down. 7 is a glass material, and 8 and 9 are holes provided in the molds 1 and 2, respectively. Numerals 10 and 11 denote thermocouple units having a high thermal expansion member fixed to the tip, which will be described in more detail with reference to FIG. In the figure, reference numeral 20 denotes a K type thermocouple having a diameter of 1.0 mm. The sheath is made of stainless steel. Reference numeral 21 denotes a cylindrical member made of stainless steel, and has a through hole that is finished with high precision so that 20 thermocouples can be inserted into the center. At both ends, twenty thermocouples are fixed by welding. Of course, this fixing method may use an appropriate adhesive. Next, the relationship between the holes 8 and 9 provided in the upper mold 1 and the lower mold 2 and the diameter of the cylindrical member 21 will be described. The upper and lower dies 1 and 2 are made of cemented carbide and have a coefficient of thermal expansion of 5.
5 × 10 −6 / ° C. Moreover, that of the cylindrical member 21 is 1
8 × 10 −6 / ° C. In this embodiment, since the molding is performed at 580 ° C., each diameter is set in consideration of this temperature range. That is, the diameter of the holes 8 and 9 is φ5.0 mm, and at the forming temperature, φ5.015
mm. Accordingly, the cylindrical member has a diameter of 5.01 in the molding temperature range.
In order to closely fit the hole of 5 mm, the diameter of the cylindrical member may be calculated to be 4.966 mm from the coefficient of thermal expansion. Hole diameter is φ
5.015 mm, the diameter of the cylindrical member is 4.966 mm, and the difference (clearance) between the two is 49 μm. Therefore, the thermocouple units 10 and 11 can be easily attached and detached during setup change. The length of the cylindrical member is 8 mm. Assuming that the cylindrical member is not used, the coefficient of thermal expansion of the thermocouple is 18 × 10 −6 / ° C., φ1.0 m
The m thermocouple has a molding temperature of φ1.01 mm. In order to make close contact with the holes 8 and 9 of the upper and lower dies 1 and 2 at the molding temperature, the hole diameter is
Similarly, the reverse calculation is performed to obtain φ1.007 mm. Thermocouple diameter φ1.0mm and hole diameter φ1.007
mm has a difference (clearance) of only 7 μm, which makes it very difficult to attach and detach the thermocouple. φ1.0
mm or φ1.6mm thermocouple is easy to bend,
The clearance requires at least 0.1 mm. However, since molding is performed under vacuum,
If a clearance of m is taken, a temperature error occurs as described in the above-mentioned [Problems to be Solved by the Invention].
In the actual test results, 5 to 5
The temperature was measured as low as 10 ° C. In the molding of the optical element using the temperature measuring method constituted in the present invention, it is possible to measure the temperature almost equal to the actual temperature even under vacuum, so that it is possible to control the temperature with high precision and to produce a high quality optical element. Became possible. As a specific molding example, a result of molding a diffraction grating will be described. When a diffraction grating or a prism is formed, defects such as residual gas of the forming atmosphere gas are likely to occur on the transfer surface of the formed product. First, a conventional temperature measurement method (φ
Drill a 1.1mm hole and place a φ1.0mm thermocouple there.
Insert ). Eleven of the 20 molded products were defective due to fusion, cracking, and poor surface transfer. However, when the measurement was performed using the temperature measuring device and the measuring method according to the present invention, no defect due to a temperature defect was found at all, and all 70 molded products were non-defective. The present invention can be applied to a modification or a modification of the above embodiment without departing from the spirit thereof.
And it is applicable also to other hot working devices. As described above, according to the temperature measuring method of the present invention, the hole of the member to be measured and the member at the tip of the thermocouple are brought into close contact with each other due to the difference in thermal expansion in the operating temperature range. This has the effect of performing the temperature measurement with extremely high accuracy. Further, in the temperature measuring device of the glass forming apparatus, a hole for temperature measurement is provided in a mold member for forming and processing the heated glass material, and a thermocouple of the measuring means has a higher thermal expansion coefficient than the material of the mold member. By attaching an intermediate member having a coefficient of thermal expansion and fixing the thermocouple to the temperature measurement hole of the mold member via the intermediate member, it was possible to provide an apparatus capable of measuring the temperature of the glass material to be processed with higher accuracy. . Further, according to the present invention, a temperature measuring hole is provided in a mold member for forming and processing a glass material, and an intermediate member having a thermal expansion coefficient higher than the thermal expansion coefficient of the mold member is fixed to a thermocouple. With the thermocouple inserted into the temperature measurement hole, the temperature of the mold member reaches the processing temperature of the glass material, the intermediate member and the peripheral surface of the temperature measurement hole of the mold member Proposal of a method for measuring the temperature of a glass molded article in which the contact state is maintained could improve the molding accuracy of the glass molded article. For example, when the above glass material is heated and pressed in a mold member to transfer the transfer surface shape of the mold member to form an optical product such as a lens, a prism, a mirror, etc. Therefore, the glass material and the glass composition component adhere to the transfer surface of the mold member due to the high temperature and high pressure, and it is necessary to remove the attached matter. Therefore, maintenance repair is performed in the cycle of the forming process, but the present invention is excellent in workability of maintenance.

【図面の簡単な説明】 【図1】本発明に関わる温度測定方法の実施例の構成を
示した図である。 【図2】図1における温度測定手段の拡大図である。 【図3】従来の温度測定方法を示した図である。 【符号の説明】 8、9 上下型1、2に設けられた穴 20 熱電対 21 円筒部
BRIEF DESCRIPTION OF THE DRAWINGS FIG. 1 is a diagram showing a configuration of an embodiment of a temperature measuring method according to the present invention. FIG. 2 is an enlarged view of a temperature measuring unit in FIG. FIG. 3 is a diagram showing a conventional temperature measuring method. [Description of Signs] 8, 9 Holes 20 provided in upper and lower dies 1, 2 Thermocouple 21 Cylindrical part

フロントページの続き (58)調査した分野(Int.Cl.7,DB名) G01K 1/14 - 1/16 G01K 7/02 C03B 11/00 - 11/12 Continuation of the front page (58) Field surveyed (Int.Cl. 7 , DB name) G01K 1/14-1/16 G01K 7/02 C03B 11/00-11/12

Claims (1)

(57)【特許請求の範囲】 【請求項1】 真空下においてガラス材料を加熱加圧し
てガラス成形品を成形加工する型部材の温度測定装置で
あって、前記型部材は超硬合金製材料で作り、前記型部
材に温度測定用孔を設け、前記型部材の熱膨張係数より
高い熱膨張係数を有する材料から成る円筒部材に熱電対
のシース部を挿通して固定し、前記円筒部材を前記温度
測定用孔内に挿入し、前記ガラス材料の成形温度に前記
型部材を加熱した際に、前記円筒部材が前記温度測定用
孔の壁面に密着するように前記温度測定用孔と前記円筒
部材の隙間の寸法を設定したことを特徴としたガラス成
形品を成形加工する型部材の温度測定装置。
(1) A temperature measuring device for a mold member for forming a glass molded product by heating and pressing a glass material under vacuum, wherein the mold member is made of a cemented carbide material. The mold member is provided with a hole for temperature measurement, a sheath portion of a thermocouple is inserted and fixed to a cylindrical member made of a material having a higher thermal expansion coefficient than the thermal expansion coefficient of the mold member, and the cylindrical member is The temperature measurement hole and the cylinder are inserted into the temperature measurement hole and when the mold member is heated to the molding temperature of the glass material, the cylindrical member is in close contact with the wall surface of the temperature measurement hole. A temperature measuring device for a mold member for forming and processing a glass molded product, wherein a dimension of a gap between members is set.
JP26290996A 1996-10-03 1996-10-03 Temperature measurement device for mold members that mold and process glass molded products Expired - Fee Related JP3363716B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP26290996A JP3363716B2 (en) 1996-10-03 1996-10-03 Temperature measurement device for mold members that mold and process glass molded products

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP26290996A JP3363716B2 (en) 1996-10-03 1996-10-03 Temperature measurement device for mold members that mold and process glass molded products

Publications (2)

Publication Number Publication Date
JPH10111180A JPH10111180A (en) 1998-04-28
JP3363716B2 true JP3363716B2 (en) 2003-01-08

Family

ID=17382300

Family Applications (1)

Application Number Title Priority Date Filing Date
JP26290996A Expired - Fee Related JP3363716B2 (en) 1996-10-03 1996-10-03 Temperature measurement device for mold members that mold and process glass molded products

Country Status (1)

Country Link
JP (1) JP3363716B2 (en)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US7719401B2 (en) * 2006-04-26 2010-05-18 Northrop Grumman Corporation Temperature probe and method of making the same

Also Published As

Publication number Publication date
JPH10111180A (en) 1998-04-28

Similar Documents

Publication Publication Date Title
TW452572B (en) Process and apparatus for hot forming precision structures in flat glass
JP3363716B2 (en) Temperature measurement device for mold members that mold and process glass molded products
JP2001058837A (en) Method for molding optical element and device for molding optical element
JPH0570156A (en) Apparatus and method for aligning parallel opposite molded surfaces
JPS61286236A (en) Slow cooling method for optical glass element
JPH0435427B2 (en)
JPS6227334A (en) Method for forming optical element
JPH06122525A (en) Apparatus for forming optical element, forming method and optical element
JP3201888B2 (en) Optical element manufacturing method
JP2002316826A (en) Method for forming optical element
JPS6260623A (en) Injection compression molding method and device
JP4197990B2 (en) Optical element molding method and molding apparatus
JPS63162539A (en) Forming of optical member
JPS6227336A (en) Forming device for optical parts
JP3748130B2 (en) Optical element molding method
JPH02293335A (en) Formation of optical element and forming apparatus therefor
JP2504997B2 (en) Optical element molding method
JP3023202B2 (en) Optical element molding method
JPH02267127A (en) Method for forming optical element and device therefor
JPH07142519A (en) Lead frame preheating equipment
JP2002274869A (en) Molding die for optical device and method of molding optical device
JPH03193630A (en) Method for molding optical element
JPS6291431A (en) Forming of optical element
JPH0517165A (en) Production of optical element
JPS62103603A (en) Fiber array plate

Legal Events

Date Code Title Description
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20021008

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20071025

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20081025

Year of fee payment: 6

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20091025

Year of fee payment: 7

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20091025

Year of fee payment: 7

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20101025

Year of fee payment: 8

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20101025

Year of fee payment: 8

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20111025

Year of fee payment: 9

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20111025

Year of fee payment: 9

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20121025

Year of fee payment: 10

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20131025

Year of fee payment: 11

LAPS Cancellation because of no payment of annual fees