JPS62103603A - Fiber array plate - Google Patents

Fiber array plate

Info

Publication number
JPS62103603A
JPS62103603A JP60161250A JP16125085A JPS62103603A JP S62103603 A JPS62103603 A JP S62103603A JP 60161250 A JP60161250 A JP 60161250A JP 16125085 A JP16125085 A JP 16125085A JP S62103603 A JPS62103603 A JP S62103603A
Authority
JP
Japan
Prior art keywords
optical fiber
plate
glass
fiber layer
softening point
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP60161250A
Other languages
Japanese (ja)
Inventor
Tsutomu Maruyama
勉 丸山
Etsuji Yoshida
吉田 悦二
Akihiro Koga
古賀 章裕
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
AGC Inc
Original Assignee
Asahi Glass Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Asahi Glass Co Ltd filed Critical Asahi Glass Co Ltd
Priority to JP60161250A priority Critical patent/JPS62103603A/en
Publication of JPS62103603A publication Critical patent/JPS62103603A/en
Pending legal-status Critical Current

Links

Abstract

PURPOSE:To obtain a fiber array plate which has not dark points and curve and is superior in image transmission characteristic, vacuum air-tightness, and insulating property by using >= two kinds of glass as materials of glass plane plate welded thermally to an optical fiber layer when the fiber array plate is produced by thermal welding and applying a pressure uniformly to the optical fiber layer to relax and reduce the distortion. CONSTITUTION:Glass plane plates 2 having 100X10<-7>/ deg.C thermal expansion coefficient, 620 deg.C softening point, and 4mm thickness and glass plane plates 3 having 105X10<-1>/ deg.C coefficient of thermal expansion, a softening point 65 deg.C higher than that of glass plane plates 2, and 8mm thickness are used to heat and pressure the optical fiber layer (6mm layer thickness), which has 80X10<-7>/ deg.C coefficient of thermal expansion and 600 deg.C softening point, at 555 deg.C and 4kg/cm<2>, and thereafter, they are cut and ground to obtain a fiber array plate having 160mm width, 20mm height, and 7mm thickness. Thus, the distortion generated for thermal welding is relaxed and reduced as much as possible to prevent the occurrence of cracks in the thermal welding process and to reduce ununiform deformation of optical fibers.

Description

【発明の詳細な説明】 [産業上の利用分野] 本発明はファイバーアレイプレートに関するものである
DETAILED DESCRIPTION OF THE INVENTION [Field of Industrial Application] The present invention relates to a fiber array plate.

[従来の技術] 熱融着により作製されるファイバーアレイプレート(以
下FAPと書く)は、真空気密性、耐絶縁性等、の要求
される陰極線管のフェースプレートを主として、種々の
用途に供せられている。しかしながら該熱融着の工程に
は幾つかの困難性がある。すなわち、光学ファイバーは
コア・クラッド、更に用途によっては吸収体と二種或い
は三種のガラスから成り、各々のガラスに要求される諸
特性が異なる為、熱融着工程を支配する熱膨張係数、転
移点、軟化点等の熱的性質を最適に選定することが困難
となり、熱融着時に光学ファイバー層に歪が発生する。
[Prior Art] Fiber array plates (hereinafter referred to as FAP) manufactured by heat fusion can be used for various purposes, mainly as face plates for cathode ray tubes that require vacuum tightness, insulation resistance, etc. It is being However, there are some difficulties in the heat fusion process. In other words, an optical fiber consists of a core, cladding, and depending on the application, an absorber and two or three types of glass, and since the various properties required for each glass are different, the coefficient of thermal expansion and transition that govern the thermal fusing process are different. It becomes difficult to optimally select thermal properties such as point and softening point, and distortion occurs in the optical fiber layer during thermal fusion.

更に該工程において熱融着をたすけるための加圧に際し
て、光学ファイバー層の中心から周囲へと加圧方向に垂
直に圧力勾配が生じやすく、この為光学ファイバー層に
歪が導ン講れる。これらを原因とする歪は往々にして光
学ファイバー層にクラックを生ゼしめてFAPの気密性
や絶縁性を破壊する為、歪を減少させ、クラックに至ら
しめない様に熱融着時の加熱、加圧等の条件が選定され
るが、その条件の管理及び融着工程全体は複雑なものと
なっている。又、加圧に際して往々にして発生する圧力
勾配は、光学ファイバーを不均一に変形させて光学ファ
イバー層を弯曲させたり、融着度を不均一なものし、真
空気密性を不完全なものにするばかりでなく、光学ファ
イバーの過剰な変形による暗点即ち、像伝送に与らない
光学ファイバーを局所的に発生させたり、弯曲による不
完全な像伝送を与える原因となる。
Furthermore, when pressurizing to assist in thermal fusion in this step, a pressure gradient tends to occur from the center of the optical fiber layer to the periphery perpendicular to the pressurizing direction, which causes strain to be introduced into the optical fiber layer. Strain caused by these things often causes cracks in the optical fiber layer and destroys the airtightness and insulation properties of the FAP. Conditions such as pressurization are selected, but the management of these conditions and the entire fusion process are complicated. In addition, the pressure gradient that often occurs during pressurization may deform the optical fiber non-uniformly, causing the optical fiber layer to curve, or making the degree of fusion non-uniform, resulting in incomplete vacuum tightness. In addition, excessive deformation of the optical fiber may locally generate dark spots, that is, optical fibers that do not participate in image transmission, or may cause incomplete image transmission due to curvature.

以上の問題点は、陰極線管のフェースプレートに主に見
られる様に、光学ファイバー層に支持部材として硝子平
面板を配して、光学ファイバー相互の融着と同時に光学
ファイバー層に対して該硝子平面板を融着させる場合に
は一層深刻な問題となる。
The above problem can be solved by disposing a flat glass plate as a supporting member on the optical fiber layer, as seen mainly in the face plate of a cathode ray tube, and simultaneously fusing the optical fibers together. The problem becomes even more serious when flat plates are fused together.

[発明の解決しようとする問題点] 本発明は前述した熱融着工程および/または該工程にお
ける加圧にもとづく欠点を解消した。真空気密性や耐絶
縁性が優れ、かつ暗点や弯曲のない像伝送特性の優れた
ファイバーアレイプレートを提供することを目的とする
[Problems to be Solved by the Invention] The present invention solves the above-described drawbacks due to the heat-sealing process and/or the pressure applied in the process. The purpose of the present invention is to provide a fiber array plate that has excellent vacuum tightness and insulation resistance, and has excellent image transmission characteristics without dark spots or curvature.

また、本発明は、上記したファイバーアレイプレートの
製造方法を提供することを目的とする。
Another object of the present invention is to provide a method for manufacturing the above-described fiber array plate.

[問題点を解決するための手段] 本発明は、互いに異なる熱物性をもつ二種以上の硝子平
面板の間に光学ファイバー層を挟み硝子平面板と光学フ
ァイ/ヘ一層を一体化してなることを特徴とするファイ
バーアレイプレートを提供するものである。
[Means for Solving the Problems] The present invention is characterized in that an optical fiber layer is sandwiched between two or more types of glass flat plates having different thermophysical properties, and the glass flat plate and the optical fiber layer are integrated. The present invention provides a fiber array plate.

また本発明は上記ファイバーアレイプレートの製造方法
を提供するものである。
The present invention also provides a method for manufacturing the above-mentioned fiber array plate.

以下本発明を図面に従って説明する。第3図は本発明に
係るファイバーアレイプレートの一実施例を示す断面図
である。lは光学ファイバー、2.3は硝子平面板であ
る。光学ファイバー1は相互に、かつ硝子平面板28よ
び3と加熱・加圧により融着されて一体化され、全体と
してファイバーアレイプレートを形成している。
The present invention will be explained below with reference to the drawings. FIG. 3 is a sectional view showing an embodiment of the fiber array plate according to the present invention. 1 is an optical fiber, and 2.3 is a flat glass plate. The optical fibers 1 are fused and integrated with each other and the glass flat plates 28 and 3 by heating and pressure, forming a fiber array plate as a whole.

硝子平面板2.3の熱物性は、光学ファイバーの熱物性
と類似のものが望ましいが、光学ファイバーの熱物性の
差が、熱膨張係数で(−1O〜+20) X 10−1
7 ’C1軟化点で一50〜+80°C程度の範囲にあ
ればよい、該硝子平面板2.3の厚みはその熱物性や光
学ファイ/へ一層の厚みによっても変わり得るが通常1
0mm以下でよい。また硝子平面板2と3は熱物性が異
なる。VAえば硝子平面板3は2より軟化点が高くても
低くてもよい、また硝子平面板は光学フ7・Cバー層の
L下に同様に配置する必要もなく、例えば光学ファイバ
ー層の下面に一種類のものを、J−面に二種類のものを
配置しても本発明の目的は達せられる。
The thermal properties of the glass flat plate 2.3 are preferably similar to those of the optical fiber, but the difference in the thermal properties of the optical fiber is (-10 to +20) x 10-1 in terms of thermal expansion coefficient.
The thickness of the flat glass plate 2.3 may vary depending on its thermophysical properties and the thickness of the optical fiber, but it is usually 1.
It may be 0 mm or less. Further, the glass flat plates 2 and 3 have different thermophysical properties. For example, the glass flat plate 3 may have a softening point higher or lower than that of VA 2, and the glass flat plate does not need to be placed under L of the optical fiber 7/C bar layer, for example, on the lower surface of the optical fiber layer. The object of the present invention can also be achieved by arranging one type of material on the J-plane and two types of materials on the J-plane.

本発明のフ」イム−アレイプレートの製造方法は、熱融
着時に発生する歪を極力緩和、減少させると同時に光学
ファイバー層を均一に加圧することにより熱融着工程に
おけるクラックの発生を防止しかつ光学ファイバーの不
均一な変形を低減するものである。
The method for manufacturing a film array plate of the present invention minimizes and reduces the distortion that occurs during heat fusion, and at the same time uniformly presses the optical fiber layer to prevent the occurrence of cracks during the heat fusion process. It also reduces non-uniform deformation of the optical fiber.

第1図は本発明に係る製造方法の一実施例を示す断面図
である0図において、4は枠体、lは光学ファイバーで
あり、2.3は光学ファイバー1の層を支持し、かつ該
ファイバー層に熱融着される硝子平面板である。又、5
は該硝子平面板を介して光学ファイバー層を加圧する押
し板であり、図中の矢印方向に加圧する0図には示して
ないが、枠体及び押し板と硝子平面板及び光学ファイバ
ー層との間には、板状或いは粉末状の剥離剤(fa型剤
)が設けられる。そしてこれら全体を大気中或いは真空
下で加熱、加圧することによって光学ファイバー、硝子
平面板を相互に熱融着して一体化させるが、このとき発
生する歪は熱物性を適宜選択した硝子平面板を用いるこ
とによって緩和、減少される。この目的で用いられる硝
子平面板の熱物性は、光学ファイバー層類似のものが望
ましいが、光学ファイバー層に対して、8膨張係数で(
−10〜+20) x  10−1/”O1軟化点で一
50〜+80℃程度であれば良く、同時に該硝子平面板
によって光学ファイバー層は均一に加圧される。また、
該硝子平面板の厚みはその熱物性や、光学ファイバー層
の厚みによっても変わるが通常10mm以下で良く、逆
に厚過ぎると該硝子平面板の変形が大きくなって、光学
ファイバー層の歪は減少されるが変形は増加する恐れが
ある。この為該硝子平面板よりも軟化点の高い硝子平面
板を同時に用いることによって光学ファイバー層の変形
を防ぐ、これら硝子平面板は光学ファイバー層に近い方
にいずれを配置しても良く、又、光学ファイバー層の上
下に同様に配置する必要もなく1例えば該ファイバー層
の下面に一種、上面に二種でもその目的は達せられる。
FIG. 1 is a sectional view showing an embodiment of the manufacturing method according to the present invention. In FIG. 0, 4 is a frame, l is an optical fiber, 2.3 supports a layer of optical fiber 1, and A flat glass plate is heat-sealed to the fiber layer. Also, 5
is a push plate that presses the optical fiber layer through the flat glass plate, and applies pressure in the direction of the arrow in the figure.Although not shown in the figure, the frame and press plate, the flat glass plate, and the optical fiber layer are A plate-like or powder-like release agent (FA-type agent) is provided between the two. Then, by heating and pressurizing the whole in the air or under vacuum, the optical fiber and the flat glass plate are thermally fused and integrated. can be alleviated and reduced by using The thermophysical properties of the flat glass plate used for this purpose are preferably similar to the optical fiber layer, but with an expansion coefficient of 8 (
-10~+20) x 10-1/''O1 The softening point may be about -50~+80°C, and at the same time, the optical fiber layer is uniformly pressurized by the flat glass plate.
The thickness of the flat glass plate varies depending on its thermophysical properties and the thickness of the optical fiber layer, but it is usually 10 mm or less; on the other hand, if it is too thick, the deformation of the flat glass plate increases and the distortion of the optical fiber layer decreases. However, deformation may increase. For this reason, deformation of the optical fiber layer is prevented by simultaneously using a glass flat plate with a higher softening point than the glass flat plate, and any of these glass flat plates may be placed closer to the optical fiber layer. It is not necessary to arrange them in the same manner above and below the optical fiber layer; for example, one type of fiber layer may be placed on the bottom surface of the fiber layer, and two types of fibers may be placed on the top surface of the fiber layer to achieve the purpose.

[実施例] 実施例1 第1図に示される配置において熱膨張係数80XIO−
7/’C1軟化点600℃の光学ファイノく一層(厚み
約8m+s)に対して熱膨張係数が100XIO−’1
/℃、軟化点が620℃で厚みが41の硝子平面板2を
用い、更に熱膨張係数がto5X 10−’/ ”Cで
硝子平面板2よりも軟化点が65℃高く、厚みが811
I11の硝子平面板3を用いて555℃、 4kg/c
m2で加熱、加圧を行ない、その後切断、研府して、第
3図に示される巾゛160mm、高さ20++++s、
厚み7IIIIIのFAPを作製した。
[Example] Example 1 In the arrangement shown in Fig. 1, the thermal expansion coefficient is 80XIO-
7/'C1 Thermal expansion coefficient is 100XIO-'1 for an optical fiber layer (thickness approximately 8m+s) with a softening point of 600℃
/°C, a glass flat plate 2 with a softening point of 620°C and a thickness of 41°C is used, and a thermal expansion coefficient of to5
555℃, 4kg/c using I11 glass flat plate 3
Heated and pressurized with m2, then cut and polished to a width of 160 mm and a height of 20+++s as shown in Figure 3.
A FAP with a thickness of 7III was produced.

実施例2 第2図に示される配とにおいて熱膨張係数100 Xl
0−7/℃、軟化点660℃の光学ファイバー層(厚み
約15■)に対して熱膨張係数が90X10=/’0.
軟化点が620℃で厚み約3鵬lの硝子平面板7と熱膨
張係数が90X10−7/’Cで該硝子平面板7よりも
軟化点が40℃高い硝子平面板6(厚み5+am)、更
に熱膨張係数が105X to−7/°Cで硝子平面板
7よりも軟化点が85℃高い(ひ平面板3(厚み約51
履)とを用いて570°0.14kg/cm2で加熱、
加圧を行ないその後切断、研磨して巾200■、高さ3
0+s+s、厚さ8■のFAPを作製した。
Example 2 Thermal expansion coefficient 100 Xl in the arrangement shown in Fig. 2
0-7/℃ and a softening point of 660℃ for an optical fiber layer (thickness about 15cm), the thermal expansion coefficient is 90X10=/'0.
A glass flat plate 7 with a softening point of 620° C. and a thickness of about 3 μl; a glass flat plate 6 (thickness 5+ am) with a thermal expansion coefficient of 90×10-7/′C and a softening point 40° C. higher than that of the glass flat plate 7; Furthermore, the coefficient of thermal expansion is 105X to -7/°C, and the softening point is 85°C higher than that of the glass flat plate 7.
Heating at 570°0.14kg/cm2 using
Apply pressure, then cut and polish to a width of 200cm and a height of 3mm.
A FAP with a thickness of 0+s+s and a thickness of 8 cm was produced.

実施例3 第1図に示される配置で光学ファイバー層の厚みが約4
05mのFAPを作製し、熱融着後、硝子平面板を切断
、除去し、第4図に示される30+amX 30mm、
厚さ 8+*mのFAPを作った。
Example 3 In the arrangement shown in FIG. 1, the thickness of the optical fiber layer was approximately 4
A FAP of 0.5 m in length was prepared, and after heat fusion, the glass plane plate was cut and removed to form a 30+am x 30 mm piece as shown in Figure 4.
A FAP with a thickness of 8+*m was made.

上記いずれの例においても作製されたFAPは、融着不
良や暗点、弯曲等の欠陥の発生が従来方法によるものに
比して局以下となっており、真空気密性、耐絶縁性、像
伝送特性の優れたものとなっている。又、熱融着時の加
熱、冷却速度を従来例の倍の速度にしたり、融着温度で
の炉内温度分布が± 5°Cとやや大きな値となっても
FAPの品質は変わらず、熱融着工程の安定性・歩留・
生産性が大きく向上した。
In all of the above examples, the FAPs produced had fewer defects such as poor fusion, dark spots, and curvature than those produced by conventional methods, and had poor vacuum tightness, insulation resistance, and image quality. It has excellent transmission characteristics. In addition, even if the heating and cooling speed during thermal fusion is doubled compared to conventional methods, or the temperature distribution in the furnace at the fusion temperature is increased to a rather large value of ±5°C, the quality of FAP remains unchanged. Stability, yield, and
Productivity has improved significantly.

[発明−二あf゛効果] 以上の様に、熱融着によりFAPを製造する際に、光学
ファイバー層に熱融着される硝子平面板に二種以上の硝
子を用いることによって。
[Invention - Second Effect] As described above, when manufacturing FAP by thermal fusion, two or more types of glasses are used in the glass plane plate that is thermally fused to the optical fiber layer.

光学ファイバー層の均一加圧と歪の緩和、減少が可能と
なり、得られた本発明のファイバーアレイプレート(F
AP)は暗点や弯曲のない像伝送特性の擾れたものであ
り、かつ真空気密性、耐絶縁性が優れている。また本発
明の製造方法により、これまで条件の管理が厳格でかつ
複雑なためFAPの製造歩留を低減させていた熱融着工
程の管理が容易となって、上記各性能の優れたFAPの
製造が高歩留で実現できる。
The fiber array plate of the present invention (F
AP) has poor image transmission characteristics without dark spots or curvature, and has excellent vacuum tightness and insulation resistance. In addition, the manufacturing method of the present invention makes it easier to manage the heat fusion process, which has previously been difficult to manage due to strict and complicated conditions, reducing the manufacturing yield of FAP. Manufacturing can be achieved with high yield.

また本発明によって熱融着工程での問題のため従来本発
明の発明者の検討結果からFA Pt−構成する硝子材
料(光学ファイバーのコア、クラッド、更に必要によっ
ては吸収体、及び支持硝子平面板)の相互の熱膨張係数
の差が±l0X10−1/’0以内、軟化点の差が±4
0℃以内が好ましいとして制限されていた硝子材料の選
択中が広がり、広範F稍−子材料の使用が可能となる。
In addition, due to problems in the heat fusion process, the present invention has been developed based on the results of studies conducted by the inventor of the present invention to solve problems in the heat fusion process. ) The difference in mutual thermal expansion coefficient is within ±l0X10-1/'0, and the difference in softening point is ±4
The selection of glass materials, which was previously limited to temperatures preferably within 0°C, has expanded, and a wide range of F glass materials can now be used.

【図面の簡単な説明】[Brief explanation of drawings]

第1図、第2図は本発明のファイバーアレイプレートの
製造方法の実施例を示す断面図であり、図中の矢印は熱
融着工程における加圧の方向である。第3図、第4図は
本発明のファイバーアレイプレートの実施例を示す断面
図である。
FIGS. 1 and 2 are cross-sectional views showing an embodiment of the fiber array plate manufacturing method of the present invention, and the arrows in the figures indicate the direction of pressure in the heat fusion process. FIGS. 3 and 4 are cross-sectional views showing embodiments of the fiber array plate of the present invention.

Claims (6)

【特許請求の範囲】[Claims] (1)互いに異なる熱物性をもつ二種以上の硝子平面板
の間に光学ファイバー層を挟み硝子平面板と光学ファイ
バー層を一体化してなることを特徴とするファイバーア
レイプレート。
(1) A fiber array plate characterized in that an optical fiber layer is sandwiched between two or more types of glass flat plates having different thermophysical properties, and the glass flat plate and the optical fiber layer are integrated.
(2)互いに異なる熱物性をもつ二種以上の硝子平面板
のうち少なくとも一種は、光学ファイバー層と同程度ま
たはそれ以下の軟化点を有する硝子平面板であることを
特徴とする特許請求の範囲第1項記載のファイバーアレ
イプレート。
(2) Claims characterized in that at least one of the two or more types of glass flat plates having mutually different thermophysical properties is a glass flat plate having a softening point comparable to or lower than that of the optical fiber layer. The fiber array plate according to item 1.
(3)互いに異なる熱物性をもつ二種以上の硝子平面板
のうち一種は光学ファイバー層と同程度またはそれ以下
の軟化点を有する硝子平面板であり、別の一種は前記硝
子平面板より高い軟化点を有する硝子平面板であること
を特徴とする特許請求の範囲第1項記載のファイバーア
レイプレート。
(3) Among two or more types of glass flat plates having mutually different thermophysical properties, one type is a glass flat plate having a softening point comparable to or lower than that of the optical fiber layer, and the other type is a glass flat plate having a softening point higher than the above glass flat plate. The fiber array plate according to claim 1, which is a flat glass plate having a softening point.
(4)互いに異なる熱物性をもつ二種以上の硝子平面板
の間に光学ファイバー層を挟み熱融着させることにより
硝子平面板と光学ファイ バー層を一体化することを特徴とするファイバーアレイ
プレートの製造方法。
(4) A method for manufacturing a fiber array plate, which comprises integrating a glass flat plate and an optical fiber layer by sandwiching an optical fiber layer between two or more types of glass flat plates having different thermophysical properties and thermally fusing them. .
(5)互いに異なる熱物性をもつ二種以上の硝子平面板
のうち少なくとも一種は、光学ファイバー層と同程度ま
たはそれ以下の軟化点を有する硝子平面板であることを
特徴とする特許請求の範囲第4項記載のファイバーアレ
イプレートの製造方法。
(5) Claims characterized in that at least one of the two or more types of glass flat plates having mutually different thermophysical properties is a glass flat plate having a softening point comparable to or lower than that of the optical fiber layer. 5. The method for manufacturing a fiber array plate according to item 4.
(6)互いに異なる熱物性をもつ二種以上の硝子平面板
のうち一種は光学ファイバー層と同程度またはそれ以下
の軟化点を有する硝子平面板であり、別の一種は前記硝
子平面板より高い軟化点を有する硝子平面板であること
を特徴とする特許請求の範囲第4項記載のファイバーア
レイプレートの製造方法。
(6) Among two or more types of glass flat plates having mutually different thermophysical properties, one type is a glass flat plate having a softening point comparable to or lower than that of the optical fiber layer, and the other type is a glass flat plate having a softening point higher than the above glass flat plate. 5. The method of manufacturing a fiber array plate according to claim 4, wherein the fiber array plate is a flat glass plate having a softening point.
JP60161250A 1985-07-23 1985-07-23 Fiber array plate Pending JPS62103603A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP60161250A JPS62103603A (en) 1985-07-23 1985-07-23 Fiber array plate

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP60161250A JPS62103603A (en) 1985-07-23 1985-07-23 Fiber array plate

Publications (1)

Publication Number Publication Date
JPS62103603A true JPS62103603A (en) 1987-05-14

Family

ID=15731510

Family Applications (1)

Application Number Title Priority Date Filing Date
JP60161250A Pending JPS62103603A (en) 1985-07-23 1985-07-23 Fiber array plate

Country Status (1)

Country Link
JP (1) JPS62103603A (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE102009009367A1 (en) * 2009-02-18 2010-08-19 Schott Ag Optical fiber for transmission of radiation and manufacturing process
CN105121115A (en) * 2013-01-21 2015-12-02 株式会社日本制钢所 Manufacturing method for fibre-reinforced resin substrate or resin molded article, and plasticizing exhauster used in manufacturing method

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE102009009367A1 (en) * 2009-02-18 2010-08-19 Schott Ag Optical fiber for transmission of radiation and manufacturing process
JP2012518189A (en) * 2009-02-18 2012-08-09 ショット アクチエンゲゼルシャフト Optical waveguide for electromagnetic wave transmission and manufacturing method thereof
DE102009009367B4 (en) * 2009-02-18 2018-01-11 Schott Ag Optical fiber for transmission of radiation and manufacturing process
CN105121115A (en) * 2013-01-21 2015-12-02 株式会社日本制钢所 Manufacturing method for fibre-reinforced resin substrate or resin molded article, and plasticizing exhauster used in manufacturing method
US10442143B2 (en) 2013-01-21 2019-10-15 The Japan Steel Works, Ltd. Manufacturing method for fibre-reinforced resin substrate or resin molded article

Similar Documents

Publication Publication Date Title
JP2727745B2 (en) Bending method for bent laminated glass and raw glass for laminated glass
US3216807A (en) Method for making fiber optical devices
US3626040A (en) Method of making fused bundles of light-conducting fibers
JP2556050B2 (en) Glass capillary tube and method of manufacturing the same
US4126804A (en) Strip microchannel electron multiplier array support structure
JPH06317714A (en) Anamorphic fused optical fiber bundle
US4606960A (en) Process for making honeycomb sandwich panels
JPS62103603A (en) Fiber array plate
US3226589A (en) Fiber type light transferring devices and method of making the same
JPH03336B2 (en)
JPS62212237A (en) Forming of glass article
JPS587367A (en) Manufacture of on-demand type nozzle assembly
JPS59165006A (en) Production of optical fiber plate
TWM557740U (en) Stacked molding structure and glass molding apparatus
JPS6265217A (en) Manufacture of magnetic head
JPH03272544A (en) Manufacture of display device
JPS59140422A (en) Manufacture of flexible liquid crystal display element
JP3481968B2 (en) Optical element molding method
KR20010004641A (en) fixture of heat exchanger
US6887118B2 (en) Method for manufacturing a glass panel for a cathode ray tube
US6054000A (en) Pressure plate and process for production of liquid crystal panel using said pressure plate
JPS6117933B2 (en)
JPS63210046A (en) Production of laminated glass
JP3220515B2 (en) Optical element molding method
JPS5823143A (en) Manufacture of shadow-mask-type color picture tube