JP3362065B2 - Coal ash reforming method - Google Patents

Coal ash reforming method

Info

Publication number
JP3362065B2
JP3362065B2 JP02423293A JP2423293A JP3362065B2 JP 3362065 B2 JP3362065 B2 JP 3362065B2 JP 02423293 A JP02423293 A JP 02423293A JP 2423293 A JP2423293 A JP 2423293A JP 3362065 B2 JP3362065 B2 JP 3362065B2
Authority
JP
Japan
Prior art keywords
coal ash
particles
fluidized bed
unburned carbon
reforming
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP02423293A
Other languages
Japanese (ja)
Other versions
JPH06233971A (en
Inventor
和明 浮田
光裕 石井
拓男 野尻
康晴 宇都宮
誠也 亀井
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Shikoku Research Institute Inc
Shikoku Electric Power Co Inc
Sumitomo Osaka Cement Co Ltd
Original Assignee
Shikoku Research Institute Inc
Shikoku Electric Power Co Inc
Sumitomo Osaka Cement Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Shikoku Research Institute Inc, Shikoku Electric Power Co Inc, Sumitomo Osaka Cement Co Ltd filed Critical Shikoku Research Institute Inc
Priority to JP02423293A priority Critical patent/JP3362065B2/en
Publication of JPH06233971A publication Critical patent/JPH06233971A/en
Application granted granted Critical
Publication of JP3362065B2 publication Critical patent/JP3362065B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Landscapes

  • Combined Means For Separation Of Solids (AREA)

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【産業上の利用分野】本発明は、石炭焚き火力発電所等
で多量に発生する石炭灰の改質方法に関し、特にこの石
炭灰を、セメント混和材、建材、骨材等として使用でき
る状態にまで改質する方法に関するものである。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a method for reforming a large amount of coal ash generated in a coal-fired thermal power plant, etc., and particularly to a state in which the coal ash can be used as a cement admixture, a building material, an aggregate, etc. It relates to a method of reforming up to.

【0002】[0002]

【従来の技術】エネルギー多様化対策により、近年、石
炭焚きボイラの設置が増加の一途をたどっている。石炭
焚きボイラの廃ガス中には大量のダスト(灰)が含まれ
ている。この石炭灰を、通常、乾式電気集塵機、又はマ
ルチサイクロンのような乾式集塵機によって大部分回収
している。
2. Description of the Related Art In recent years, the installation of coal-fired boilers has been increasing due to energy diversification measures. A large amount of dust (ash) is contained in the waste gas of a coal-fired boiler. This coal ash is usually mostly recovered by a dry electrostatic precipitator or a dry precipitator such as a multi cyclone.

【0003】従来、回収された灰のうち未燃炭素分の少
ないものは、フライアッシュと称してフライアッシュセ
メント原料、あるいはセメント混和材として活用されて
いる。しかし、大半は埋立地等へ投棄されている。
[0003] Conventionally, among the collected ash, one having a low unburned carbon content is called fly ash and is utilized as a fly ash cement raw material or a cement admixture. However, most are dumped in landfills.

【0004】フライアッシュセメントに使用されるフラ
イアッシュは、遊離の未燃炭素分が多いと、製品の表面
が黒色化すること、コンクリート用の混和剤を吸着する
ことなど、様々な不都合を生じる。このため、JIS
A 6201により、その大部分が未燃炭素である強熱
減量が5%以下に規定されている。
The fly ash used for fly ash cement has various disadvantages such as blackening of the surface of the product and adsorption of an admixture for concrete when the amount of free unburned carbon is large. Therefore, JIS
According to A 6201, the loss on ignition, which is mostly unburned carbon, is specified to be 5% or less.

【0005】ところが最近では、NOx(窒素酸化物)
規制の強化に対応して、低NOx燃焼方式が実施されて
いるが、これによってフライアッシュ中に混入する未燃
炭素量が増大し、フライアッシュをセメント混和材とし
て有利に利用するのが困難になっている。従って、フラ
イアッシュから未燃炭素を除去することが必要である。
However, recently, NOx (nitrogen oxide)
A low NOx combustion system has been implemented in response to stricter regulations, but this increases the amount of unburned carbon mixed in fly ash, making it difficult to use fly ash as a cement admixture advantageously. Has become. Therefore, it is necessary to remove unburned carbon from fly ash.

【0006】従来の未燃炭素の除去方法として、特開昭
64−80477号公報に、振動流動層を利用した技術
が開示されている。この方法は、未燃炭素が多く含まれ
る粒子の比重が未燃炭素を含まない粒子の比重よりも低
いことを利用し、振動で流動状態を安定化した流動層で
密度分級を行って、未燃炭素を分離除去する方法であ
る。
As a conventional method for removing unburned carbon, Japanese Patent Application Laid-Open No. 64-80477 discloses a technique utilizing an oscillating fluidized bed. This method utilizes the fact that the specific gravity of particles that contain a large amount of unburned carbon is lower than the specific gravity of particles that do not contain unburned carbon, and density classification is performed in a fluidized bed whose fluidized state is stabilized by vibration. This is a method of separating and removing fuel carbon.

【0007】この技術においては、流動層に3Hz程度
の振動数で振動を与えつつ、層全体が流動化し始める空
気流速(最小流動化速度)の1〜4倍でエアーを送り込
み、気泡の生じない安定な流動状態を保ちつつ、密度分
級を行っている。
In this technique, air is sent at a rate of 1 to 4 times the air flow velocity (minimum fluidization rate) at which the entire bed starts to fluidize while vibrating the fluidized bed at a frequency of about 3 Hz, and no bubbles are generated. Density classification is performed while maintaining a stable flow state.

【0008】[0008]

【発明が解決しようとする課題】しかし、実際の石炭灰
には、粒径10μm以下の付着性の強い微粒子が多量に
含まれている。一方、上記の従来技術では、空気流速
(空塔速度)が小さいので、付着性の強い微粒子を含む
実際の石炭灰を、安定に流動化させることは困難であ
る。
However, the actual coal ash contains a large amount of highly adherent fine particles having a particle size of 10 μm or less. On the other hand, in the above-mentioned conventional technique, since the air velocity (superficial velocity) is low, it is difficult to stably fluidize the actual coal ash containing fine particles having strong adhesion.

【0009】これを防ぐためには、原料である石炭灰中
から、粒径10μm以下の微粒子を予め除去する必要が
ある。しかし、石炭灰から多量の微粒子を除く前処理に
は、大規模な設備を必要とするので、システムが複雑と
なり、コストが高く、現実的ではない。また、粒径10
μm以下の微粒子には、セメント混和材として有効な粒
子が多く含まれている(特公平2−49264号)た
め、粒径10μm以下の粒子の除去は、利用面からも好
ましくない。
In order to prevent this, it is necessary to previously remove fine particles having a particle size of 10 μm or less from the raw material coal ash. However, the pretreatment for removing a large amount of fine particles from coal ash requires a large-scale facility, which makes the system complicated, costly, and unrealistic. Also, the particle size 10
Since many fine particles having a particle size of 10 μm or less are contained in particles effective as a cement admixture (Japanese Patent Publication No. 2-49264), removal of particles having a particle size of 10 μm or less is not preferable in terms of utilization.

【0010】本発明の課題は、粒径10μm以下の付着
性の強い微粒子を含む実際の石炭灰について、振動流動
層を利用して石炭灰中の未燃炭素を除去するのに際し、
未燃炭素が相対的に多く含まれる密度の低い粒子を、効
率よく分離、除去できるようにすることである。
An object of the present invention is to remove unburned carbon in coal ash by using an oscillating fluidized bed for an actual coal ash containing fine particles having strong adherence and having a particle size of 10 μm or less,
The purpose is to enable efficient separation and removal of particles having a low density that contain a relatively large amount of unburned carbon.

【0011】[0011]

【課題を解決するための手段】本発明は、粒径10μm
以下の粒子を含む石炭灰より振動流動層を用いて、未燃
炭素が相対的に多く含まれる密度の低い粒子を分離する
ことによって、石炭灰中の未燃炭素量を減らす石炭灰の
改質方法であって、前記振動流動層における流動化空気
の空塔速度を0.5乃至4.0cm/秒とし、振動数を10
Hz以上とし、振幅を0.1乃至2.0mmとする、石炭灰
の改質方法に係るものである。
The present invention has a particle size of 10 μm.
Reformation of coal ash to reduce the amount of unburned carbon in coal ash by separating low density particles containing relatively large amount of unburned carbon by using a vibrating fluidized bed than the coal ash containing the following particles: In the method, the superficial velocity of fluidized air in the vibrating fluidized bed is 0.5 to 4.0 cm / sec, and the frequency is 10
It relates to a method for reforming coal ash at a frequency of not less than Hz and an amplitude of 0.1 to 2.0 mm.

【0012】[0012]

【作用】流動層を利用して密度分級を行う際、分離を妨
げる最大の原因は、粒子の混合である。粒子の混合が生
じる原因としては、空気流の偏在、気泡の発生、壁との
相互作用などが考えられるが、中でも気泡による影響が
著しい。
When the density classification is performed using the fluidized bed, the biggest cause of the separation is the mixing of particles. Possible causes of the mixing of particles are uneven distribution of air flow, generation of bubbles, interaction with walls, etc., among which the influence of bubbles is remarkable.

【0013】一方、分離効率を高めるためには、流動層
内の空隙率を大きくし、比重差のある粒子同士を相互に
移動させ易くすることが必要である。そのためには、流
動層内に導入する流動化空気の流速を高くして、粒子間
にできるだけ多くの空間を設けることが、効果的であ
る。しかし、単に流速を高くすると、大きな気泡が発生
し易くなるので、粒子の混合が起こり、分離効率がかえ
って下がる。特に石炭灰のように付着性の強い10μm
以下の微粒子が含まれている場合は、より大きな気泡が
発生し易くなり、粒子の混合が促進されるため、好まし
くない。
On the other hand, in order to increase the separation efficiency, it is necessary to increase the porosity in the fluidized bed so that particles having a difference in specific gravity can easily move to each other. For that purpose, it is effective to increase the flow velocity of the fluidizing air introduced into the fluidized bed to provide as many spaces as possible between the particles. However, if the flow rate is simply increased, large bubbles tend to be generated, so that particles are mixed and the separation efficiency is rather lowered. 10 μm with strong adhesion, especially as coal ash
When the following fine particles are contained, larger bubbles are likely to be generated and the mixing of the particles is promoted, which is not preferable.

【0014】本発明者は、上記の二律背反を解決すべ
く、流動化空気の空塔速度及び振動条件と、気泡の状態
及び粒子の混合状態の関係を詳細に調べた。そして、こ
の過程で、振動流動層に気泡を生じさせるような流動速
度の大きい条件下で気泡が発生しているのにもかかわら
ず、粒子の混合が全く起こらないか、あるいは、僅かな
混合しか起こらない特異な条件領域があることを発見し
た。
In order to solve the above-mentioned trade-off, the present inventor examined in detail the relationship between the superficial velocity and vibration conditions of fluidized air, and the state of bubbles and the mixed state of particles. And, in this process, although the bubbles are generated under the condition that the flow velocity is high such that the bubbles are generated in the vibrating fluidized bed, the particles are not mixed at all, or only a small amount is mixed. We have found that there are unique conditions that do not occur.

【0015】これにより、微細な気泡によって粒子同士
の分離が促進されるのと同時に、粒子同士の混合も抑制
される結果、10μm以下の微粒子を含む石炭灰を、極
めて効率よく密度分級できるようになった。
As a result, the separation of the particles from each other is promoted by the fine air bubbles, and at the same time, the mixing of the particles is suppressed. As a result, coal ash containing fine particles of 10 μm or less can be extremely efficiently classified in density. became.

【0016】本発明者が発見した特異な条件領域は、流
動化空気の空塔速度と振動条件としての振動数及び振幅
とによって、規定される。
The unique condition region discovered by the present inventor is defined by the superficial velocity of fluidized air and the vibration frequency and amplitude as vibration conditions.

【0017】本発明においては、流動化空気の空塔速度
を、あえて気泡の発生する領域に設定する。具体的に
は、0.5乃至4.0cm/秒とし、更に好ましくは1.0乃
至3.0cm/秒とする。
In the present invention, the superficial velocity of the fluidized air is intentionally set in the region where bubbles are generated. Specifically, it is 0.5 to 4.0 cm / sec, and more preferably 1.0 to 3.0 cm / sec.

【0018】空塔速度が0.5cm/秒未満であると、チ
ャンネリングや流動の偏在化等により均一な流動状態が
得られないことから、分離が行われない。空塔速度が4.
0cm/秒を超えると、気泡が大きくなり、層内が激し
く攪拌されるため、混合が促進されて分離効果が減少す
るとともに、飛び出し粒子が増加して有効な成分が失わ
れる。
If the superficial velocity is less than 0.5 cm / sec, a uniform flow state cannot be obtained due to channeling, uneven distribution of flow, etc., so that separation is not performed. Sky tower speed is 4.
When it exceeds 0 cm / sec, the bubbles become large and the inside of the layer is vigorously stirred, so that the mixing is promoted and the separation effect is reduced, and the number of particles that fly out is increased and the effective component is lost.

【0019】振動数については、粒度構成によって異な
るが、10Hz以上の範囲内に最適な条件が存在する。
振動数が低すぎる場合はチャンネリング等が起こり均一
な流動化ができないため、分離が行われない。振動数
は、60Hz以下とすることが更に好ましい。振動数が
60Hzを超えると、振幅を大きくすることが困難とな
ることや、機械的な強度を高くする必要があることか
ら、装置自体のコストアップにつながる。
Regarding the frequency, there is an optimum condition within the range of 10 Hz or higher, although it depends on the grain size composition.
If the frequency is too low, channeling etc. will occur and uniform fluidization will not be possible, so separation will not occur. The frequency is more preferably 60 Hz or less. When the frequency exceeds 60 Hz, it becomes difficult to increase the amplitude and it is necessary to increase the mechanical strength, which leads to an increase in the cost of the device itself.

【0020】振幅については、0.1乃至2.0 mmとする
が、0.3乃至1.0mmの範囲とすると更に好ましい。振
幅が0.1mm未満であると、物理的に振動が伝わらない
ため振動による効果が発現されない。振幅が2.0mmを
超えると、分散板と粉体層の間に物理的な空隙を生じる
結果、大きな気泡の発生を促進するとともに、粒子自体
の混合が激しくなり良好な流動状態が得られなくなる。
The amplitude is 0.1 to 2.0 mm, more preferably 0.3 to 1.0 mm. When the amplitude is less than 0.1 mm, the vibration is not physically transmitted, so that the effect due to the vibration is not exhibited. If the amplitude exceeds 2.0 mm, physical voids are generated between the dispersion plate and the powder layer, which promotes the generation of large bubbles and violent mixing of the particles themselves, making it impossible to obtain a good flow state. .

【0021】本発明は、未燃炭素の多く含まれる粒子の
比重が、未燃炭素を含まない粒子の比重よりも低いこと
を利用し、密度分級によって未燃炭素を多く含む粒子を
分離しようとするものである。ただし、石炭灰の様に粒
度分布が広いものを処理する場合、粒度分級の影響があ
らわれて大粒子径のものが層内に沈み込むことがある。
The present invention utilizes the fact that the specific gravity of particles containing a large amount of unburned carbon is lower than the specific gravity of particles containing no unburned carbon, and attempts to separate particles containing a large amount of unburned carbon by density classification. To do. However, when treating a material having a wide particle size distribution, such as coal ash, the effect of particle size classification may appear and a particle having a large particle size may sink into the layer.

【0022】このため、本発明の改質処理を実施する前
に、粒径100μm以上の大粒径粒子を除去しておく
と、大粒径粒子が層内に沈み込むのを防止できる。この
段階では、たとえば気泡流動層や風力分級装置を使用で
きるが、これらに限定されるものではない。
Therefore, by removing the large-sized particles having a particle size of 100 μm or more before carrying out the modification treatment of the present invention, it is possible to prevent the large-sized particles from sinking into the layer. At this stage, for example, a bubbling fluidized bed or an air classifier can be used, but the present invention is not limited thereto.

【0023】[0023]

【実施例】以下、更に具体的な実施例について述べる。
振動流動層を得るため、図1に模式的に示した装置を試
作し、使用した。
EXAMPLES More specific examples will be described below.
In order to obtain a vibrating fluidized bed, an apparatus schematically shown in FIG. 1 was prototyped and used.

【0024】石炭灰供給用ホッパー1より振動フィーダ
ー2を通じて定量的に原料石炭灰を供給した。エアー供
給装置3によって、本体下部より流動化ガスを風箱へと
供給し、ガス分散板4を通して流動化ガスを流動層5に
送り込み、流動層5内の石炭灰を流動化させた。
Raw coal ash was quantitatively supplied from the hopper 1 for supplying coal ash through the vibrating feeder 2. Fluidizing gas was supplied to the wind box from the lower part of the main body by the air supply device 3, and the fluidizing gas was sent to the fluidized bed 5 through the gas dispersion plate 4 to fluidize the coal ash in the fluidized bed 5.

【0025】この際、流動層本体の下部より、回転式振
動発生装置6によって垂直方向への振動を与えた。流動
層5内で密度分級され、表面付近に浮いてきた未燃炭素
分の多い粒子は、表面よりわずかに上部に取り付けられ
たノズル7によって吸引し、系外に排出し、次いでバグ
フィルター8で回収した。
At this time, vertical vibration was applied from the lower part of the fluidized bed body by the rotary vibration generator 6. Particles having a large amount of unburned carbon that have been density-classified in the fluidized bed 5 and floated near the surface are sucked by a nozzle 7 mounted slightly above the surface, discharged to the outside of the system, and then a bag filter 8 is used. Recovered.

【0026】目的とする製品は、流動層の上部にある未
燃炭素分の多い粒子と混合しないように、もぐり堰9を
くぐらせた。次いで、この製品は、溢流堰10を超えて
製品溜11に流れ込む。製品回収装置12で製品を定期
的に吸引し、回収する。なお、製品溜12では、滞留に
よる製品の詰まりを防止するため、下からエアーを供給
し、製品を常時流動化させている。
The desired product was passed through the moat weir 9 so as not to mix with the unburned carbon-rich particles on the upper part of the fluidized bed. The product then flows over the overflow weir 10 and into the product reservoir 11. The product collecting device 12 periodically sucks and collects the product. In the product reservoir 12, air is supplied from below to constantly fluidize the product in order to prevent clogging of the product due to retention.

【0027】上記した装置を用い、未燃炭素の割合が8.
5%の原料石炭灰を改質した。ただし、粒度分級による
影響を抑えるため、予め粒径100μm以上の粒子を除
去したものを用いた。石炭灰を処理する際の空塔速度、
振幅、振動数を、表1に示すように変更した。そして、
流動層の状態を観測すると共に、得られた製品中の未燃
炭素の割合を測定した。
Using the above apparatus, the unburned carbon content was 8.
5% of raw coal ash was modified. However, in order to suppress the influence of the particle size classification, particles having a particle size of 100 μm or more were removed in advance. Superficial velocity when processing coal ash,
The amplitude and frequency were changed as shown in Table 1. And
The state of the fluidized bed was observed and the ratio of unburned carbon in the obtained product was measured.

【0028】[0028]

【表1】 [Table 1]

【0029】表1から解るように、空塔速度が0.2 、0.
3 cm/秒の例では、流動が不充分であり、空塔速度が
5.0cm/秒の例では、混合が大きくなる。また、振動
数が5Hzになると、均一に流動化しない。振幅が2.5
cmになると、やはり混合が大きくなる。本発明の範囲
内で、その大部分が未燃炭素である強熱減量が5%以下
の製品を得ることができるようになった。
As can be seen from Table 1, the superficial velocity is 0.2, 0.
In the case of 3 cm / sec, the flow is insufficient and the superficial velocity is
In the case of 5.0 cm / sec, the mixing becomes large. Further, when the frequency is 5 Hz, the fluidization is not uniform. Amplitude is 2.5
When it becomes cm, the mixing becomes large. Within the scope of the present invention, it has become possible to obtain products with a loss on ignition of 5% or less, most of which is unburned carbon.

【0030】[0030]

【発明の効果】以上説明したように、本発明によれば、
粒径10μm以下の付着性の強い微粒子を含む石炭灰
を、振動流動層によって改質するのに際し、気泡が発生
しているのにもかかわらず、粒子の混合が全く起こらな
いか、僅かな混合しか起こらない条件で処理することが
できる。
As described above, according to the present invention,
When coal ash containing fine particles having a strong adherence with a particle size of 10 μm or less is modified by an oscillating fluidized bed, even if bubbles are generated, the particles are not mixed at all or are slightly mixed. It can be processed under conditions that only occur.

【0031】これにより、微細な気泡によって粒子同士
の分離が促進されるのと同時に、粒子同士の混合も抑制
される結果、微粒子を含む石炭灰を、極めて効率よく密
度分級できるようになった。
As a result, the separation of the particles from each other is promoted by the fine air bubbles, and at the same time, the mixing of the particles is suppressed. As a result, the coal ash containing the particles can be extremely efficiently classified in density.

【図面の簡単な説明】[Brief description of drawings]

【図1】本発明による石炭灰の改質方法を実施するのに
適した未燃炭素除去装置の一実施例を示す模式図であ
る。
FIG. 1 is a schematic view showing an example of an unburned carbon removing apparatus suitable for carrying out the method for reforming coal ash according to the present invention.

【符号の説明】[Explanation of symbols]

1 石炭灰供給ホッパー 2 振動フィーダー 3 エアー供給装置 4 ガス分散板 5 流動層 6 回転式振動発生装置 7 ノズル 8 バグフィルター 9 もぐり堰 10 溢流堰 11 製品溜 12 製品回収装置 1 Coal ash supply hopper 2 vibrating feeder 3 Air supply device 4 gas dispersion plate 5 fluidized bed 6 Rotational vibration generator 7 nozzles 8 bug filters 9 Moguri weir 10 overflow weir 11 product pool 12 Product collection device

───────────────────────────────────────────────────── フロントページの続き (72)発明者 野尻 拓男 大阪市大正区南恩加島7丁目1番34号 大阪セメント株式会社 中央研究所内 (72)発明者 宇都宮 康晴 大阪市大正区南恩加島7丁目1番34号 大阪セメント株式会社 中央研究所内 (72)発明者 亀井 誠也 大阪市大正区南恩加島7丁目1番34号 大阪セメント株式会社 中央研究所内 (56)参考文献 特開 昭64−80477(JP,A) 特開 昭60−61050(JP,A) 特開 昭52−2492(JP,A) 特開 平5−337442(JP,A) (58)調査した分野(Int.Cl.7,DB名) B07B 1/00 - 15/00 B01J 8/00 - 8/46 ─────────────────────────────────────────────────── ─── Continuation of the front page (72) Inventor Takuo Nojiri 7-34, Minamienkajima, Taisho-ku, Osaka-shi Osaka Cement Co., Ltd. Central Research Laboratory (72) Inventor Yasuharu Utsunomiya 7-chome, Minamienkajima, Taisho-ku, Osaka 1-34 Osaka Cement Co., Ltd. Central Research Laboratory (72) Inventor Seiya Kamei 7-34, Minami Enkajima, Taisho-ku, Osaka City Osaka Cement Co., Ltd. Central Research Laboratory (56) Reference JP-A-64-80477 ( JP, A) JP 60-61050 (JP, A) JP 52-2492 (JP, A) JP 5-337442 (JP, A) (58) Fields investigated (Int.Cl. 7 , DB name) B07B 1/00-15/00 B01J 8/00-8/46

Claims (4)

(57)【特許請求の範囲】(57) [Claims] 【請求項1】10μm以下の粒子を含む石炭灰より振動
流動層を用いて、未燃炭素が相対的に多く含まれる密度
の低い粒子を分離することによって、石炭灰中の未燃炭
素量を減らす石炭灰の改質方法であって、前記振動流動
層における流動化空気の空塔速度を該振動流動層内に気
泡が発生する0.5乃至4.0cm/秒とし、該振動流動
層内に与える振動の振動数を10Hz以上、振幅を0.
1乃至2.0mmとする、石炭灰の改質方法。
1. An unburned carbon amount in coal ash is separated by separating low density particles containing relatively large amount of unburned carbon from a coal ash containing particles of 10 μm or less by using an oscillating fluidized bed. A method of reforming coal ash for reducing the superficial velocity of fluidized air in the vibrating fluidized bed, wherein
The vibration flow is set to 0.5 to 4.0 cm / sec at which bubbles are generated.
The frequency of vibration given to the layer is 10 Hz or more, and the amplitude is 0.
A method for reforming coal ash, which is 1 to 2.0 mm.
【請求項2】前記空塔速度を1.0乃至3.0cm/秒と
する、請求項1記載の石炭灰の改質方法。
2. The method for reforming coal ash according to claim 1, wherein the superficial velocity is set to 1.0 to 3.0 cm / sec.
【請求項3】前記振幅を0.3乃至1.0mmとする、請
求項1記載の石炭灰の改質方法。
3. The method for reforming coal ash according to claim 1, wherein the amplitude is 0.3 to 1.0 mm.
【請求項4】石炭灰を改質するのに先立って、粒径10
0μm以上の粒子を石炭灰から除去する、請求項1記載
の石炭灰の改質方法。
4. Particle size of 10 prior to reforming coal ash.
The method for reforming coal ash according to claim 1, wherein particles of 0 μm or more are removed from the coal ash.
JP02423293A 1993-02-12 1993-02-12 Coal ash reforming method Expired - Fee Related JP3362065B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP02423293A JP3362065B2 (en) 1993-02-12 1993-02-12 Coal ash reforming method

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP02423293A JP3362065B2 (en) 1993-02-12 1993-02-12 Coal ash reforming method

Publications (2)

Publication Number Publication Date
JPH06233971A JPH06233971A (en) 1994-08-23
JP3362065B2 true JP3362065B2 (en) 2003-01-07

Family

ID=12132517

Family Applications (1)

Application Number Title Priority Date Filing Date
JP02423293A Expired - Fee Related JP3362065B2 (en) 1993-02-12 1993-02-12 Coal ash reforming method

Country Status (1)

Country Link
JP (1) JP3362065B2 (en)

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP6119077B2 (en) * 2013-02-04 2017-04-26 中山名古屋共同発電株式会社 Foreign matter separator
JP6350165B2 (en) * 2014-09-19 2018-07-04 株式会社Ihi How to treat fly ash

Also Published As

Publication number Publication date
JPH06233971A (en) 1994-08-23

Similar Documents

Publication Publication Date Title
US7328805B2 (en) Method and system for beneficiating gasification slag
JP6756951B2 (en) Fine aggregate, pumice stone, volcanic glass, mixed cement and perlite
EP0114477B2 (en) Method of and apparatus for removing sulfur oxides from hot flue gases
JP2007054773A (en) Unburned carbon removal method in coal ash
US5996808A (en) Fly ash processing using inclined fluidized bed and sound wave agitation
US4389019A (en) Method of and apparatus for the dry separation of pyrite from coal
JP3362065B2 (en) Coal ash reforming method
JPH10505782A (en) Apparatus and method for gravity separation of solid particles
JP5745058B2 (en) Filtration apparatus and filtration method
JP2001121084A (en) Method for refining fly ash and purified fly ash powder
JPS59127660A (en) Treatment of coal ash and low grade coal
CN112517397B (en) Sorting method and sorting device
CN112221712B (en) Production system for recovering metal from household garbage incinerator slag
CN107824431A (en) A kind of method of wet method carbide slag screening removal of impurities
CN112958275A (en) Method for flotation of coal from coal-containing casting dust
JP2002516379A (en) Equipment and method for separating residual substances from waste heat treatment equipment
JP2846623B2 (en) Slag reforming method and apparatus
JP2004025152A (en) Treatment method of incineration ash
JPH08266830A (en) Method of reducing unburned coal in coal ash
SE8902797L (en) SET TO REDUCE NOZZLE OF THE NOZZLE OR OTHER SUPPLY ORGANIZATIONS
JP3975041B2 (en) Pyrolysis residue treatment apparatus and waste treatment system
JPH05337442A (en) Method for separating and removing unburned carbon from fly ash
CN219334975U (en) Apparatus for producing based on concrete regeneration top-quality aggregate is selected separately
US3564084A (en) Recovering pozzolanic material,a carbon concentrate,an iron concentrate and sintered aggregate from fly ash
JP7425891B2 (en) electrostatic separator

Legal Events

Date Code Title Description
R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20071018

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20081018

Year of fee payment: 6

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20081018

Year of fee payment: 6

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20081018

Year of fee payment: 6

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20091018

Year of fee payment: 7

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20101018

Year of fee payment: 8

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20101018

Year of fee payment: 8

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20111018

Year of fee payment: 9

LAPS Cancellation because of no payment of annual fees