JP2004025152A - Treatment method of incineration ash - Google Patents

Treatment method of incineration ash Download PDF

Info

Publication number
JP2004025152A
JP2004025152A JP2002189798A JP2002189798A JP2004025152A JP 2004025152 A JP2004025152 A JP 2004025152A JP 2002189798 A JP2002189798 A JP 2002189798A JP 2002189798 A JP2002189798 A JP 2002189798A JP 2004025152 A JP2004025152 A JP 2004025152A
Authority
JP
Japan
Prior art keywords
ash
fluidized
fluidized bed
incinerated ash
furnace
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2002189798A
Other languages
Japanese (ja)
Other versions
JP4167857B2 (en
Inventor
Shigeyoshi Tagashira
田頭 成能
Yukihiro Shiraishi
白石 幸弘
Teruhiro Shindo
進藤 照浩
Koji Murakoshi
村越 浩二
Masayuki Futamatsu
二松 雅之
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Kobe Steel Ltd
Original Assignee
Kobe Steel Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Kobe Steel Ltd filed Critical Kobe Steel Ltd
Priority to JP2002189798A priority Critical patent/JP4167857B2/en
Publication of JP2004025152A publication Critical patent/JP2004025152A/en
Application granted granted Critical
Publication of JP4167857B2 publication Critical patent/JP4167857B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Images

Landscapes

  • Processing Of Solid Wastes (AREA)
  • Devices And Processes Conducted In The Presence Of Fluids And Solid Particles (AREA)
  • Fluidized-Bed Combustion And Resonant Combustion (AREA)
  • Gasification And Melting Of Waste (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To provide a treatment method of incineration ash capable of reducing the amount of harmful substances such as heavy metals in incineration ash by a small number of processes by removing ash adhering to the surfaces of particles of incineration ash in a closed apparatus generating no dust. <P>SOLUTION: The treatment method of incineration ash (1) is characterized by supplying incineration ash of urban waste refuse and/or industrial waste to the fluidized bed of a fluidized bed furnace and grinding ash adhering to particles of incineration ash by a fluidizing medium in the fluidized bed to remove the same. In a process (2), the incineration ash of urban waste refuse and/or industrial waste is supplied to the fluidized bed of the fluidized bed furnace and heated in the fluidized bed to be dried and the ash adhering to the surfaces of the particles of the incineration ash is ground by the fluidized medium to be removed. <P>COPYRIGHT: (C)2004,JPO

Description

【0001】
【発明の属する技術分野】
本発明は、焼却灰の処理方法に関する技術分野に属し、詳細には、都市ごみ及び/又は産業廃棄物の焼却灰の処理方法に関し、特には、ストーカ式焼却炉による都市ごみ及び/又は産業廃棄物の焼却後に炉下から排出される主灰(炉下焼却灰)、または、この焼却炉の後段の集塵装置によって捕集される煤塵(集塵灰)と前記主灰とを混合したいわゆる混合灰についての処理方法に関する技術分野に属するものである。
【0002】
【従来の技術】
ストーカ式焼却炉から排出される焼却灰(主灰、または、主灰と集塵灰を混合した混合灰)の主成分は、酸化ケイ素、酸化カルシウムおよびアルミナであり、天然の岩石や土砂とほぼ同様の成分である。いわゆる資源循環型社会の形成のためには、これらを建設・土木工事の資材に利用できるように資源化することが強く望まれている。
【0003】
これらの焼却灰中には、鉄、銅、アルミなどの金属分が含まれており、これを取り除く必要がある。
【0004】
更に、これらの焼却灰は、もともとの廃棄物中に含まれていた有害物質(重金属など)を高い含有率で含んでいる。このため、これらの焼却灰をそのまま建設資材に再利用すると、将来的に重金属などが雨水などに溶出して、更なる環境汚染を引き起こす可能性がある。そこで、簡便な方法によって焼却灰から有害な重金属の溶出の恐れのある物質を取り除き、資源化可能な状態にするような技術が望まれる。
【0005】
これらの焼却灰は、焼却炉から水槽に落とされ、それを掻きあげて排出するのが一般的である。この場合、焼却灰は乾灰から湿灰(湿った状態の灰)となる。金属分などを磁選などにより分離する場合でも、このような湿灰では灰相互の付着などが起こり、高効率での分別は困難であった。
【0006】
また、焼却後の灰ではあるものの、一定量の未燃物が含まれており、長期的な安定性の観点から問題があった。土木・建築用に資材化するには、これらの未燃物(未燃の有機物)を取り除くことが望まれる。
【0007】
更に、焼却炉施設によっては、灰の排出時に、主灰と飛灰とを混合して排出する設備構成となっているものもあり、飛灰は有害物質を比較的多く含むことなどから、その除去を行う必要があった。
【0008】
また、ベルトコンベヤやふるいなどを多用すると、処理系統における粉塵の発生が無視できないものとなる。そこで、粉塵の発生しない、クローズ系による処理が望まれていた。
【0009】
焼却灰を資源化する方法は、これまでにも種々の方法が提示されており、代表的なものとして、特許第2670417 号公報や特開平10−211484 号公報に示されたものなどが知られている。
【0010】
これらの方法の中、特許第2670417 号公報記載の方法は、焼却灰から金属片やクリンカなどの溶塊を機械的に取り除いた後、酸および薬剤を含んだ洗浄槽で焼却灰を洗浄して重金属などの有害物質を取り除き、続いて脱水・乾燥工程を経た後に、鉄分を除去し更に非鉄金属分を除去し、この後、粒度調整を行う方法である。
【0011】
この方法では、洗浄水を使用する必要があり、一定量の洗浄水を系外に排出する必要がある。しかし、廃棄物処理場においては、場外排水が認められない場合が多く、改善が望まれる。その上、処理系統が複雑であり、維持管理に多くの手間がかかる。
【0012】
一方、特開平10−211484 号公報記載の方法は、焼却灰を振動ふるい等により磁選・分級する第一工程の後、流動乾燥粉砕機を利用して粉砕する方法である。しかし、この方法では、湿灰をそのまま磁選・分級することになり、その分離効率が高くない上に、焼却灰に含まれる重金属などの有害物質を除去することができず、焼却灰を資源化して用いた場合に有害性が懸念される。
【0013】
【発明が解決しようとする課題】
焼却灰の粒子を仔細に観察すると、図1に示すような構造になっている。すなわち、酸化ケイ素、酸化アルミニウム等を多く含む灰の粒子80の表面に微粒81が付着している構造となっている。つまり、焼却灰の粒子80の表面に付着灰81が有る構造となっている。このような構造は、焼却灰の中でも湿灰において顕著であり、焼却灰の粒子表面に、水分などによって練り固められた微粒が付着している構造となっている。さらに、この湿灰の中でも混合灰において一層顕著であり、灰粒子に飛灰が付着している。つまり、灰粒子表面に飛灰が付着灰として存在している。
【0014】
重金属等の有害物質の中、溶出の原因になるものは主にこれらの付着灰に含まれている。従って、焼却灰の粒子表面の付着灰を実質的に取り除くことによって、資源化に適した部分のみを取り出すことができる。
【0015】
このような処理を少ない工程数で且つ発塵のない閉鎖された装置で行うことが望まれる。
【0016】
本発明は、このような事情に着目してなされたものであって、その目的は、少ない工程数で且つ発塵のない閉鎖された装置で焼却灰の粒子表面の付着灰を除去して焼却灰中の重金属等の有害物質の量を低減することができる焼却灰の処理方法を提供しようとするものである。
【0017】
【課題を解決するための手段】
上記の目的を達成するために、本発明に係る焼却灰の処理方法は、請求項1〜7記載の焼却灰の処理方法(第1発明〜第7発明に係る焼却灰の処理方法)としており、それは次のような構成としたものである。
【0018】
即ち、請求項1記載の焼却灰の処理方法は、都市ごみ及び/又は産業廃棄物の焼却灰を流動床炉の流動層に供給し、この流動層にて焼却灰の粒子表面の付着灰を流動媒体で研磨することにより除去することを特徴とする焼却灰の処理方法である(第1発明)。
【0019】
請求項2記載の焼却灰の処理方法は、都市ごみ及び/又は産業廃棄物の焼却灰を流動床炉の流動層に供給し、この流動層にて焼却灰を加熱して乾燥し、この焼却灰の粒子表面の付着灰を流動媒体で研磨することにより除去することを特徴とする焼却灰の処理方法である(第2発明)。
【0020】
請求項3記載の焼却灰の処理方法は、流動化気体を予熱してから前記流動層に供給する請求項2記載の焼却灰の処理方法である(第3発明)。請求項4記載の焼却灰の処理方法は、燃料を前記流動層に供給する請求項2または3記載の焼却灰の処理方法である(第4発明)。
【0021】
請求項5記載の焼却灰の処理方法は、前記流動層から排出された焼却灰を含む流動媒体を焼却灰と流動媒体とに分離した後、この分離された流動媒体を前記流動層に供給する請求項1〜4のいずれかに記載の焼却灰の処理方法である(第5発明)。
【0022】
請求項6記載の焼却灰の処理方法は、前記流動床炉の断面積が流動床部とその上方のフリーボード部とで異なり、後者のフリーボード部の断面積の方が小さい請求項1〜5のいずれかに記載の焼却灰の処理方法である(第6発明)。
【0023】
請求項7記載の焼却灰の処理方法は、可燃物を前記流動層に供給する請求項1〜6のいずれかに記載の焼却灰の処理方法である(第7発明)。
【0024】
【発明の実施の形態】
本発明は例えば次のようにして実施する。
都市ごみ及び/又は産業廃棄物の焼却灰を流動床炉の流動層(以下、流動床ともいう)に供給し、この流動層にて焼却灰の粒子表面の付着灰を流動媒体で研磨することにより除去する。あるいは、流動層にて焼却灰を加熱して乾燥することも行う。即ち、都市ごみ及び/又は産業廃棄物の焼却灰を流動床炉の流動層に供給し、この流動層にて焼却灰を加熱して乾燥し、この焼却灰の粒子表面の付着灰を流動媒体で研磨することにより除去する。なお、本発明法による付着灰の除去の程度は、焼却灰中の重金属等の有害物質の量を大幅に低減できる程度であればよい。
【0025】
この研磨により除去された付着灰は、流動床炉の流動化気体とともに炉内を上昇し、流動床炉の上部より炉外へ排出される。一方、この研磨により付着灰が除去された焼却灰の粒子は、流動媒体とともに流動床炉の底部(炉底)から抜き出される。この後、必要に応じて(流動媒体を流動床炉で再利用する場合等)、焼却灰の粒子と流動媒体とに分離される。
【0026】
このような形態で本発明が実施される。以下、本発明について主にその作用効果を説明する。
【0027】
本発明に係る焼却灰の処理方法は、前述の如く、都市ごみ及び/又は産業廃棄物の焼却灰を流動床炉の流動層に供給し、この流動層にて焼却灰の粒子表面の付着灰を流動媒体で研磨することにより除去するようにしている(第1発明)。
【0028】
この研磨により除去された付着灰は、粒径が小さいので、流動床炉の流動化気体の流れに乗って流動化気体とともに炉内を上昇し、流動床炉の上部から炉外へ排出することができる。一方、この研磨により付着灰が除去された焼却灰の粒子は、流動媒体とともに流動床炉の底部(炉底)から抜き出すことができる。
【0029】
前述のように、焼却灰において重金属等の有害物質は主に灰粒子表面の付着灰に含まれている。それ故に、上記のようにして流動媒体とともに炉底から抜き出された焼却灰の粒子は、重金属等の有害物質の量が極めて少ないものである。
【0030】
従って、本発明に係る焼却灰の処理方法によれば、焼却灰の粒子表面の付着灰を除去して焼却灰中の重金属等の有害物質の量を大幅に低減することができる。
【0031】
なお、上記のようにして炉底から抜き出された焼却灰の粒子は、流動媒体と混在しており、両者は混合物となっているが、後述するように流動媒体としては例えば自然砂、珪砂、アルミナ粉末等の粒状物質を用いることができ、これらは土木や建築用等の資材として使用可能な粒状物質であるので、かかる粒状物質を流動媒体として用いた場合、前記混合物は分離しなくても土木や建築用等の資材として支障なく利用できる。前記混合物は、必要に応じて(流動媒体を流動床炉で再利用する場合等)、焼却灰の粒子と流動媒体とに分離すればよく、分離の必要性は必ずしもない。
【0032】
また、本発明に係る焼却灰の処理方法は、その工程は流動床炉を用いて行われる。この炉外では、必要に応じて焼却灰の粒子と流動媒体との分離を行う程度である。従って、少ない工程数で且つ発塵のない閉鎖された装置で行うことができる。
【0033】
以上より、本発明に係る焼却灰の処理方法によれば、少ない工程数で且つ発塵のない閉鎖された装置で焼却灰の粒子表面の付着灰を除去して焼却灰中の重金属等の有害物質の量を低減することができるといえる。
【0034】
また、本発明に係る焼却灰の処理方法は、前述の如く、都市ごみ及び/又は産業廃棄物の焼却灰を流動床炉の流動層に供給し、この流動層にて焼却灰を加熱して乾燥し、この焼却灰の粒子表面の付着灰を流動媒体で研磨することにより除去するようにしている(第2発明)。
【0035】
この方法は、前述の方法(第1発明に係る焼却灰の処理方法)に対し、流動床炉の流動層にて焼却灰を加熱して乾燥することも行うこととしたものである。この方法は、流動床炉の流動層に供給される焼却灰が湿灰である場合に特に有効であり、焼却灰の粒子表面の付着灰の研磨による除去を容易にすることができる。即ち、焼却灰が湿灰である場合、乾灰である場合に比べて、焼却灰の粒子表面の付着灰の研磨による除去が難しい傾向があるが、この方法によれば流動層にて湿灰が加熱されて乾燥されるので、乾灰の場合と同様に、焼却灰の粒子表面の付着灰の研磨による除去を容易にすることができる。
【0036】
本発明は、前述の本発明の目的を達成すべく、鋭意研究を行い、その結果、得られた知見に基づき完成されたものである。即ち、都市ごみ及び/又は産業廃棄物の焼却灰を流動床炉の流動層(流動床)に供給し、この流動層にて焼却灰の粒子表面の付着灰を流動媒体で研磨すると、この付着灰を焼却灰の粒子から除去することができ、このため、焼却灰中の重金属等の有害物質の量を低減することができるという知見を得た。また、流動床炉の流動層にて焼却灰を加熱して乾燥することも行うと、流動床炉の流動層に供給される焼却灰が湿灰である場合においても、乾灰の場合と同様に、焼却灰の粒子表面の付着灰の研磨による除去を容易にすることができるという知見を得た。本発明は、かかる知見に基づき完成されたものである。
【0037】
本発明において、流動床炉の流動層にて焼却灰を加熱して乾燥する場合、その方法については特には限定されないが、流動床炉に流動層形成のための流動化気体を導入(供給)する前にこれを予熱し、しかる後、この予熱された流動化気体を流動床炉に供給すると、この流動化気体により、流動床炉の流動層にて焼却灰を加熱して乾燥することができる(第3発明)。
【0038】
燃料を流動床炉の流動層に供給すると、この燃料が流動層において燃焼し、その発熱により、焼却灰を加熱して乾燥することができる(第4発明)。この燃料の供給を前記予熱された流動化気体の流動床炉への供給と共に行うと、焼却灰を加熱して乾燥することがより容易にできる。
【0039】
前述の流動媒体とともに炉底から抜き出された焼却灰の粒子、即ち、流動床炉の流動層から排出された焼却灰を含む流動媒体を、焼却灰と流動媒体とに分離した後、この分離された流動媒体を前記流動層に供給すると、これを流動床炉で再利用することができ、流動床炉への流動媒体の新たな補充をほとんど必要とせずに運転(焼却灰の処理)を続けることができる(第5発明)。
【0040】
流動床炉として、流動床炉の断面積が流動床部とその上方のフリーボード部とで異なり、後者のフリーボード部の断面積の方が小さい形状のものを用いると、流動床炉の流動層の直上での流動化気体の流速よりも、フリーボード部での流動化気体の流速が大きくなり、このため、一旦流動化気体の気流中に補足した付着灰の粒子をより確実に排気口より炉外へ排出することができるようになる(第6発明)。
【0041】
可燃物を流動床炉の流動層に供給すると、焼却灰の乾燥に必要な熱量のうち一部または全部をこの可燃物の燃焼熱で補うことができる。この方法によれば、第4発明で述べた燃料を節約することができるという利点を得ることができる(第7発明)。
【0042】
本発明において、流動媒体としては、流動層にて焼却灰の粒子表面の付着灰を流動媒体で研磨して除去することができるものであればよく、その種類は特には制限されず、種々のものを用いることができ、例えば、自然砂、珪砂、アルミナ粉末などを用いることができる。これら例示の流動媒体は、土木や建築用等の資材として使用可能な粒状物質であるので、かかる粒状物質を流動媒体として用いた場合、焼却灰の粒子と共に炉底から抜き出された流動媒体は分離しなくても混合物の状態で土木や建築用等の資材として支障なく利用できる。このような点からすると、流動媒体としては資材として使用可能な粒状物質を用いることが望ましい。
【0043】
流動床炉の流動化気体としては、その種類は特には制限されず、種々のものを用いることができ、例えば、空気、燃焼排ガス、あるいは両者の混合気体などを用いることができる。流動化気体中の酸素濃度としては、流動床炉に供給される焼却灰中の未燃物を確実に燃焼させるためには、5〜21%であることが望ましい。
【0044】
流動床炉の流動層(流動床)にて焼却灰を加熱して乾燥しようとする場合、流動層の温度が低すぎると焼却灰の乾燥が十分に行われず、一方、高すぎると炉内上方にクリンカの生成を起す。また、灰中の未燃物を燃焼させるためには、それに足る温度にすることが望まれる。これらの点からすると、流動層の温度は250 〜700 ℃とすることが望ましく、更には500 〜700 ℃とすることが望ましい。
【0045】
前述の如く、研磨により除去された付着灰は、粒径が小さいので、流動床炉の流動化気体の流れに乗って流動化気体とともに炉内を上昇し、流動床炉の上部から炉外へ排出することができる。この際の気流速度(流動化気体の流れの速度)が小さすぎると、流動媒体の攪拌が十分でなく、前記付着灰の炉外への排出が進まず、この付着灰が流動層内に再度取り込まれる恐れがあり、一方、高すぎるとブロワの消費エネルギ増大を招くのみならず、流動媒体をも炉外へ吹き飛ばしてしまう。かかる点から、この際の気流速度としては、毎秒0.3 〜3mとすることが望ましく、更には毎秒0.5 〜2mとすることが望ましい。
【0046】
焼却灰の粒子と共に炉底から抜き出された流動媒体を焼却灰の粒子と流動媒体とに分離する場合、その分離のための装置としては、その種類は特には制限されず、種々のものを用いることができ、例えば、振動ふるい、トロンメルなどを用いることができる。
【0047】
燃料を流動床炉の流動層に供給する場合、その燃料としては、その種類は特には制限されず、種々のものを用いることができ、例えば、都市ガス、プロパン、ブタンなどの気体を用いることができ、また、灯油、重油などの液体を用いてもよい。
【0048】
可燃物を流動床炉の流動層に供給する場合、その可燃物としては、その種類は特には制限されず、種々のものを用いることができ、例えば、廃プラスチック、木材チップなどを用いることができる。
【0049】
本発明法による付着灰の除去の程度は、焼却灰中の重金属等の有害物質の量を大幅に低減できる程度であればよい。即ち、焼却灰を資源化あるいは資材化可能な程度に付着灰を実質的に取り除くことができる程度であればよい。
【0050】
本発明に係る焼却灰の処理方法により付着灰が除去された焼却灰は、重金属の溶出もごく微量であり、土木や建築用の資材として使用可能である。この焼却灰の中に鉄、アルミ、銅などの金属が含まれる場合もあるが、これは磁選装置、非鉄金属選別装置などによって容易に分離することができる。この場合、灰が乾燥された状態であると、灰粒子相互の付着がなく、分離の効率は高い。
【0051】
【実施例】
本発明の実施例を以下説明する。なお、本発明はこの実施例に限定されるものではない。
【0052】
〔実施例1〕
本発明に係る焼却灰の処理方法を遂行するための装置の具体例を図2に示す。この装置の構成および使用形態例を、以下説明する。流動床炉1の下部には、流動媒体11が充填されており、分散板12により支持されている。分散板12には多数のノズル13が取り付けられており、風箱14に接続されている。流動床炉1には、排気口15および焼却灰投入口16が設けられている。なお、前記流動媒体11としては、例えば自然砂、珪砂、アルミナ粉末などを用いることができる。
【0053】
流動化気体2は、ブロワ21により昇圧され、熱交換器22を経て熱源23により昇温され、流動床炉の風箱14からノズル13を経て炉内部に吹き込まれ、流動媒体11を流動化した後に炉内部を上昇し、排気口15より炉外に排出される。その後、排ガス処理装置25を経て、系外に排出される。なお、前記流動化気体2としては、例えば空気、燃焼排ガス、あるいは、両者の混合気体などを用いることができる。流動化気体中の酸素濃度としては、焼却灰中の未燃物を確実に燃焼させることを勘案すると、5〜21%の範囲にあることが好ましい。
【0054】
焼却灰3は、焼却灰ホッパ31に一時貯留され、切出し装置32により適宜切出されて焼却灰投入口16より炉内に投入される。投入された焼却灰33は、流動層内の高温により乾燥され、また、流動媒体11により表面を研磨され付着灰が除去される。除去された付着灰は粒径が非常に小さなものが多く、流動化気体2とともに炉内を上昇し、炉外に排出される。なお、焼却灰33を十分に乾燥すると共に焼却灰33中の未燃物を燃焼させるためには、流動床炉1の流動層(流動床)の温度は250 ℃以上とすることが望ましく、更には500 ℃以上とすることが望ましく、一方、炉内上方でのクリンカの生成を防止するためには、流動層の温度は700 ℃以下とすることが望ましく、更には500 ℃以下とすることが望ましい。また、流動媒体11を十分攪拌し、付着灰の炉外への排出を進め、付着灰が流動層内に再度取り込まれることを防止するためには、前記流動化気体2の気流速度は毎秒0.3 m以上とすることが望ましく、更には毎秒0.5 m以上とすることが望ましく、一方、ブロワの消費エネルギ増大を抑え、また、流動媒体の炉外への吹き飛ばしを防止するためには、前記流動化気体2の気流速度は毎秒3m以下とすることが望ましく、更には毎秒2m以下とすることが望ましい。
【0055】
更に、付着灰の除去後の焼却灰と流動媒体は、連続排出装置4により流動床炉1の炉底から抜き出される。この後、分離装置41により焼却灰42と、流動媒体43とに分離することができる。この分離装置41としては、例えば振動ふるい、トロンメルなどを用いることができる。
【0056】
上記装置を用いて本発明の実施例1に係る焼却灰の処理を行った。このとき、流動媒体11としては珪砂を用い、流動化気体2としては空気を用いた。流動床炉1の流動層の温度は、550 ℃とした。流動化気体2の気流速度は毎秒1mとした。分離装置41としては振動ふるいを用いた。
【0057】
流動床炉1の流動層に供給する焼却灰としては、湿灰を用いた。この湿灰は、ストーカ式焼却炉による都市ごみの炉下焼却灰であって水槽に落とされた後に掻きあげられて集められたものと、焼却炉後段の集塵装置で集められれた飛灰とを混合したいわゆる混合灰である。
【0058】
この焼却灰(湿灰)中の重金属含有量は、水銀:1.4mg/kg、鉛:2400mg/kg 、亜鉛:8400mg/kg 等であり、また、ダイオキシン類の含有量は、0.045ng−TEQ/g であった。
【0059】
上記焼却灰(湿灰)を流動床炉1の流動層に供給し、この流動層にて焼却灰を加熱して乾燥し、この焼却灰の粒子表面の付着灰を流動媒体で研磨することにより除去する処理を行った。この処理後の焼却灰を流動媒体と共に流動床炉1の炉底から抜き出した後、分離装置41により焼却灰42と流動媒体43とに分離した。そして、この焼却灰42のうち5〜25mmの粒径のものについて、重金属含有量およびダイオキシン含有量を測定し、また、資源化する上で重要である耐溶出性の試験を行った。
【0060】
この結果、上記処理後の焼却灰中の重金属含有量は、水銀:0.01mg/kg 未満、鉛:1200mg/kg 、亜鉛:3700mg/kg 等であり、いずれも大幅に減少していた。ダイオキシン含有量は0.0008ng−TEQ/gであり、これも大幅に減少していた。耐溶出性の試験において、溶出量は六価クロム:0.02mg/リットル(以下、L)未満、鉛:0.001mg/L未満、カドミウム:0.001mg/L未満、水銀:0.0005 mg/L未満、ヒ素:0.001mg/L未満、セレン:0.001mg/L未満であり、いずれも土壌環境基準を下回った。
【0061】
以上のことは、本発明の実施例1に係る焼却灰の処理方法によれば、焼却灰の粒子表面の付着灰を除去して焼却灰中の重金属等の有害物質の量を低減することができることを裏付けるものである。
【0062】
前記のような処理により得られた焼却灰(資源化された焼却灰)は、乾燥されており、重金属の溶出もごく微量であり、土木・建築用の資材として使用可能である。なお、処理前の湿灰によっては、資源化された焼却灰の中に鉄、アルミ、銅などの金属が含まれる場合もあるが、これらは磁選装置や非鉄金属選別装置などによって容易に分離することができる。このときも、灰が乾燥された状態であるので、灰粒子相互の付着がなく、分離の効率は高い。
【0063】
なお、上記実施例1の場合、流動媒体11としては珪砂を用いたが、これに代えて、自然砂やアルミナ粉末などを用いた場合も、上記実施例1の場合と同様の結果が得られた。上記実施例1の場合、流動化気体2としては空気を用いたが、これに代えて、燃焼排ガス、あるいは、空気と燃焼排ガスの混合気体を用いた場合も、上記実施例1の場合と同様の結果が得られた。
【0064】
また、上記実施例1の場合、流動床炉1の流動層に供給する焼却灰としては湿灰を用いたが、これに代えて、乾灰を用いた場合も、上記実施例1の場合と同様の結果が得られた。また、この乾灰を用いた場合、流動化気体2は昇温せずに(室温のままの状態で)ノズル13を介して炉内部に吹き込むことも行ったが、この場合も上記実施例1の場合と同様の結果が得られた。
【0065】
〔実施例2〕
本発明に係る焼却灰の処理方法を遂行するための装置について、前記装置とは別の具体例を図3に示す。この装置の構成および使用形態例を、以下説明する。流動床炉1の下部には、流動媒体11が充填されており、流動媒体中に散気管17が装入されている。また、流動床炉1には、排気口15、焼却灰投入口16が設けられており、更に、炉底から抜き出した流動媒体11を炉内に返送する流動媒体返送口18が設けられている。
【0066】
流動化気体2は、ブロワ21により昇圧され、熱交換器22を経て熱源23により昇温され、ヘッダ管24を経て散気管17により炉内部に吹き込まれ、流動媒体11を流動化した後に炉内部を上昇し、排気口15より炉外に排出される。その後、排ガス処理装置25を経て、系外に排出される。なお、前記流動化気体2としては、例えば空気、燃焼排ガス、あるいは、両者の混合気体などを用いることができる。
【0067】
焼却灰3は、焼却灰ホッパ31に一時貯留され、切出し装置32により適宜切出されて焼却灰投入口16より炉内に投入される。投入された焼却灰33は、流動層内の高温により乾燥され、また、流動媒体11により表面を研磨され付着灰が除去される。除去された付着灰は粒径が非常に小さなものが多く、流動化気体2とともに炉内を上昇し、炉外に排出される。
【0068】
更に、付着灰の除去後の焼却灰と流動媒体は、連続排出装置4により流動床炉1の炉底から抜き出される。この後、分離装置41により焼却灰42と、流動媒体43とに分離することができる。この分離装置41としては、例えば振動ふるい、トロンメルなどを用いることができる。分離された流動媒体11は、これをコンベヤ44により搬送し、流動媒体返却口18から流動床炉内に返送することができる。そうすると、流動媒体11の新たな補充をほとんど必要とせずに運転を続けることができる。
【0069】
流動床の温度維持のため、燃料5を、燃料ガン51によって吹き込むことができる。この燃料5としては、都市ガス、プロパン、ブタンなどの気体のほか、灯油、重油などの液体でもよい。この燃料5は、流動化気体中の酸素により燃焼され、その発熱により流動層の温度維持に寄与し、焼却灰の乾燥を行うことができる。
【0070】
流動床炉の断面積は、流動媒体部(流動床部)の断面積61よりも、その上部のいわゆるフリーボード部での断面積62のほうが小さくなるような形状となっている。これは、流動媒体部直上での流動化気体の流速よりも、フリーボード部での流動化気体の流速を大きくして、一旦気流中に補足した付着灰の粒子を確実に排気口15より炉外へ排出することに寄与する。
【0071】
可燃物7を流動床炉内に投入することができる。この可燃物としては、例えば廃プラスチック、木材チップなどが使用可能である。この可燃物は、図3に示す装置では、可燃物ホッパ71に一時貯留され、可燃物切出し装置72により適宜切出されて炉内に投入される構成となっているが、これに代えて、あらかじめ焼却灰と可燃物とを一定割合で混合しておき、焼却灰ホッパから投入するようにしてもよい。
【0072】
上記装置を用いて本発明の実施例2に係る焼却灰の処理を行った。このとき、流動媒体11としては珪砂を用い、流動化気体2としては空気を用いた。流動床炉1の流動層の温度は、550 ℃とした。流動化気体2の気流速度は毎秒0.5 mとした。分離装置41としては振動ふるいを用いた。
【0073】
流動床炉1の流動層に供給する焼却灰としては、湿灰を用いた。この湿灰は、ストーカ式焼却炉による都市ごみ及び産業廃棄物の炉下焼却灰であって水槽に落とされた後に掻きあげられて集められたものと、焼却炉後段の集塵装置で集められれた飛灰とを混合したいわゆる混合灰である。
【0074】
この焼却灰(湿灰)中の重金属含有量は、水銀:1.4mg/kg、鉛:2400mg/kg 、亜鉛:8400mg/kg 等であり、また、ダイオキシン類の含有量は、0.045ng−TEQ/g であった。
【0075】
上記焼却灰(湿灰)を流動床炉1の流動層に供給し、この流動層にて焼却灰を加熱して乾燥し、この焼却灰の粒子表面の付着灰を流動媒体で研磨することにより除去する処理を行った。この処理後の焼却灰を流動媒体と共に流動床炉1の炉底から抜き出した後、分離装置41により焼却灰42と流動媒体43とに分離した。そして、この焼却灰42のうち5〜25mmの粒径のものについて、重金属含有量およびダイオキシン含有量を測定し、また、資源化する上で重要である耐溶出性の試験を行った。
【0076】
この結果、上記処理後の焼却灰中の重金属含有量は、水銀:0.01mg/kg 未満、鉛:800mg/kg、亜鉛:4200mg/kg 等であり、いずれも大幅に減少していた。ダイオキシン含有量は0.0006ng−TEQ/gであり、これも大幅に減少していた。耐溶出性の試験において、溶出量は六価クロム:0.02mg/L未満、鉛:0.001mg/L未満、カドミウム:0.001mg/L未満、水銀:0.0005 mg/L未満、ヒ素:0.001mg/L未満、セレン:0.001mg/L未満であり、いずれも土壌環境基準を下回った。
【0077】
以上のことは、本発明の実施例2に係る焼却灰の処理方法によれば、焼却灰の粒子表面の付着灰を除去して焼却灰中の重金属等の有害物質の量を低減することができることを裏付けるものである。
【0078】
上記実施例2において、分離装置41により分離された流動媒体11は、これをコンベヤ44により搬送し、流動媒体返却口18から流動床炉内に返送した場合、流動媒体11の新たな補充をほとんど必要とせずに運転を続けることができた。
【0079】
燃料5を燃料ガン51によって吹き込んだ場合、燃料5の燃焼による発熱により、流動層の温度を所定温度(550 ℃)に維持しやすかった。
【0080】
可燃物7を流動床炉内に投入した場合、燃料ガン51から吹き込む燃料5の吹き込み量を節約することができた。
【0081】
【発明の効果】
本発明に係る焼却灰の処理方法によれば、少ない工程数で且つ発塵のない閉鎖された装置で焼却灰の粒子表面の付着灰を除去して焼却灰中の重金属等の有害物質の量を低減することができるようになる。
【図面の簡単な説明】
【図1】焼却灰の粒子の断面構造を模式的に示す図である。
【図2】本発明に係る焼却灰の処理方法を遂行するための装置の例を示す模式図である。
【図3】本発明に係る焼却灰の処理方法を遂行するための装置の例を示す模式図である。
【符号の説明】
1:流動床炉、11:流動媒体、12:分散板、13:ノズル、14:風箱、15:排気口、16:焼却灰投入口、2:流動化気体、21:ブロワ、22:熱交換器、23:熱源、24:ヘッダ、25:排ガス処理装置、3:焼却灰、31:焼却灰ホッパ、32:焼却灰切出し装置、33:炉内に投入された焼却灰、4:連続排出装置、41:分離装置、42:焼却灰、43:流動媒体、5:燃料、51:燃料ガン、61:流動層部の炉内断面積、62:フリーボード部の炉内断面積、7:可燃物、71:可燃物ホッパ、72:可燃物切出し装置。80:焼却灰の粒子、81:付着灰。
[0001]
TECHNICAL FIELD OF THE INVENTION
The present invention relates to a technical field related to a method of treating incinerated ash, and more particularly to a method of treating incinerated ash of municipal solid waste and / or industrial waste, and particularly to municipal solid waste and / or industrial waste using a stoker-type incinerator. So-called main ash discharged from the bottom of the incinerator after incineration of the material (incinerator ash under the furnace), or so-called dust obtained by mixing the dust and the ash collected by a dust collector at the latter stage of the incinerator with the main ash The present invention belongs to the technical field related to a method for treating mixed ash.
[0002]
[Prior art]
The main components of incineration ash (main ash or a mixture of main ash and dust ash) discharged from stoker-type incinerators are silicon oxide, calcium oxide and alumina, which are almost the same as natural rock and earth and sand. Similar components. In order to form a so-called resource recycling society, it is strongly desired to use these resources as materials for construction and civil engineering work.
[0003]
These incinerated ash contain metals such as iron, copper, and aluminum, which must be removed.
[0004]
Further, these incinerated ash contain a high content of harmful substances (such as heavy metals) contained in the original waste. Therefore, if these incinerated ash are reused as they are as construction materials, heavy metals and the like may elute into rainwater in the future, causing further environmental pollution. Therefore, there is a demand for a technique that removes a substance that may dissolve harmful heavy metals from the incinerated ash by a simple method and puts it in a state where it can be recycled.
[0005]
These incinerated ash are generally dropped from an incinerator into a water tank, which is then scraped and discharged. In this case, the incinerated ash changes from dry ash to wet ash (wet ash). Even when metal components are separated by magnetic separation or the like, such wet ash causes ash to adhere to each other, making it difficult to perform high-efficiency separation.
[0006]
In addition, although it is incinerated ash, it contains a certain amount of unburned matter, and there is a problem from the viewpoint of long-term stability. It is desired to remove these unburned substances (unburned organic substances) in order to make them into materials for civil engineering and construction.
[0007]
Furthermore, some incinerator facilities have a configuration in which main ash and fly ash are mixed and discharged when the ash is discharged.Because fly ash contains a relatively large amount of harmful substances, such Removal had to be performed.
[0008]
Further, if a belt conveyor or a sieve is frequently used, the generation of dust in the processing system cannot be ignored. Therefore, there has been a demand for a treatment using a closed system that does not generate dust.
[0009]
Various methods for recycling incinerated ash have been proposed so far, and typical ones are disclosed in Japanese Patent No. 2670417 and Japanese Patent Application Laid-Open No. 10-212484. ing.
[0010]
Among these methods, in the method described in Japanese Patent No. 2670417, after removing ingots such as metal pieces and clinker from incineration ash mechanically, the incineration ash is washed in a washing tank containing acid and chemicals. This is a method in which harmful substances such as heavy metals are removed, and after a dehydration / drying step, iron is removed, non-ferrous metals are removed, and then the particle size is adjusted.
[0011]
In this method, it is necessary to use washing water, and it is necessary to discharge a certain amount of washing water out of the system. However, wastewater treatment plants often do not allow off-site drainage, and improvement is desired. In addition, the processing system is complicated, and much maintenance and management is required.
[0012]
On the other hand, the method described in Japanese Patent Application Laid-Open No. Hei 10-212484 is a method of pulverizing incinerated ash using a fluidized-dry pulverizer after a first step of magnetically selecting and classifying the incinerated ash by vibrating sieve or the like. However, in this method, the wet ash is subjected to magnetic separation and classification as it is, and its separation efficiency is not high, and harmful substances such as heavy metals contained in the incinerated ash cannot be removed. There is a concern about harm when used.
[0013]
[Problems to be solved by the invention]
When the particles of the incinerated ash are observed closely, the structure is as shown in FIG. That is, the structure is such that the fine particles 81 adhere to the surface of the ash particles 80 containing a large amount of silicon oxide, aluminum oxide and the like. That is, the structure is such that the attached ash 81 is present on the surface of the incinerated ash particles 80. Such a structure is conspicuous in wet ash among incineration ash, and has a structure in which fine particles kneaded and hardened by moisture or the like are attached to the particle surface of the incineration ash. Further, among the wet ash, the mixed ash is more prominent, and fly ash is attached to the ash particles. That is, fly ash exists as ash on the ash particle surface.
[0014]
Among harmful substances such as heavy metals, those that cause elution are mainly contained in these attached ash. Therefore, by substantially removing the attached ash on the particle surface of the incinerated ash, only the portion suitable for recycling can be taken out.
[0015]
It is desired that such processing be performed in a closed apparatus with a small number of steps and no generation of dust.
[0016]
The present invention has been made in view of such circumstances, and has as its object to remove incinerated ash on the particle surface of incinerated ash by using a closed apparatus with a small number of steps and no generation of dust. An object of the present invention is to provide a method for treating incinerated ash that can reduce the amount of harmful substances such as heavy metals in ash.
[0017]
[Means for Solving the Problems]
In order to achieve the above object, a method for treating incinerated ash according to the present invention is a method for treating incinerated ash according to claims 1 to 7 (a method for treating incinerated ash according to first to seventh inventions). It has the following configuration.
[0018]
That is, the method for treating incinerated ash according to claim 1 supplies incinerated ash of municipal solid waste and / or industrial waste to a fluidized bed of a fluidized-bed furnace, and in this fluidized bed, removes attached ash on the particle surface of the incinerated ash. This is a method for treating incinerated ash, which is characterized by being removed by polishing with a fluid medium (first invention).
[0019]
In the method for treating incinerated ash according to claim 2, incinerated ash of municipal solid waste and / or industrial waste is supplied to a fluidized bed of a fluidized-bed furnace, and the incinerated ash is heated and dried in the fluidized bed, and the incineration is performed. This is a method for treating incinerated ash, wherein the attached ash on the surface of the ash particles is removed by polishing with a flowing medium (second invention).
[0020]
The method for treating incinerated ash according to claim 3 is the method for treating incinerated ash according to claim 2, wherein the fluidized gas is preheated and then supplied to the fluidized bed (third invention). The method for treating incinerated ash according to claim 4 is the method for treating incinerated ash according to claim 2 or 3, wherein fuel is supplied to the fluidized bed.
[0021]
In the method for treating incinerated ash according to claim 5, after separating a fluidized medium containing incinerated ash discharged from the fluidized bed into incinerated ash and a fluidized medium, the separated fluidized medium is supplied to the fluidized bed. A method for treating incinerated ash according to any one of claims 1 to 4 (fifth invention).
[0022]
In the method for treating incineration ash according to claim 6, the cross-sectional area of the fluidized-bed furnace differs between the fluidized-bed section and the freeboard section above the fluidized-bed section, and the cross-sectional area of the latter freeboard section is smaller. A method for treating incinerated ash according to any one of the fifth to fifth aspects (sixth invention).
[0023]
The method for treating incinerated ash according to claim 7 is the method for treating incinerated ash according to any one of claims 1 to 6, wherein combustibles are supplied to the fluidized bed (seventh invention).
[0024]
BEST MODE FOR CARRYING OUT THE INVENTION
The present invention is implemented, for example, as follows.
Supplying incinerated ash from municipal solid waste and / or industrial waste to a fluidized bed of a fluidized-bed furnace (hereinafter also referred to as a fluidized bed), and polishing the attached ash on the particle surface of the incinerated ash with a fluidized medium in the fluidized bed. To remove. Alternatively, the incineration ash is heated and dried in a fluidized bed. That is, incinerated ash of municipal solid waste and / or industrial waste is supplied to a fluidized bed of a fluidized-bed furnace, and the incinerated ash is heated and dried in the fluidized bed. And removed by polishing. The degree of removal of attached ash by the method of the present invention may be such that the amount of harmful substances such as heavy metals in incinerated ash can be significantly reduced.
[0025]
The attached ash removed by the polishing rises in the furnace together with the fluidized gas in the fluidized-bed furnace and is discharged out of the furnace from the upper part of the fluidized-bed furnace. On the other hand, the particles of the incinerated ash from which the attached ash has been removed by the polishing are extracted from the bottom (furnace bottom) of the fluidized bed furnace together with the fluidized medium. Thereafter, if necessary (for example, when the fluidized medium is reused in a fluidized-bed furnace), it is separated into incinerated ash particles and a fluidized medium.
[0026]
The present invention is implemented in such a form. Hereinafter, the operation and effect of the present invention will be mainly described.
[0027]
As described above, the method for treating incinerated ash according to the present invention supplies incinerated ash of municipal solid waste and / or industrial waste to a fluidized bed of a fluidized-bed furnace, and in this fluidized bed, adhering ash on particle surfaces of the incinerated ash. Is removed by polishing with a fluid medium (first invention).
[0028]
Since the adhered ash removed by this polishing has a small particle size, the ash rides with the fluidized gas flow in the fluidized bed furnace and rises inside the furnace together with the fluidized gas, and is discharged from the upper part of the fluidized bed furnace to the outside of the furnace. Can be. On the other hand, the particles of the incinerated ash from which the attached ash has been removed by this polishing can be extracted from the bottom (furnace bottom) of the fluidized bed furnace together with the fluidized medium.
[0029]
As described above, harmful substances such as heavy metals in incinerated ash are mainly contained in the attached ash on the ash particle surface. Therefore, the incinerated ash particles extracted from the furnace bottom together with the fluidized medium as described above have an extremely small amount of harmful substances such as heavy metals.
[0030]
Therefore, according to the method for treating incinerated ash according to the present invention, the amount of harmful substances such as heavy metals in the incinerated ash can be greatly reduced by removing the attached ash on the particle surface of the incinerated ash.
[0031]
The particles of the incinerated ash extracted from the furnace bottom as described above are mixed with the fluidized medium, and both are a mixture. As described later, the fluidized medium is, for example, natural sand or silica sand. Granular substances such as alumina powder can be used.Since these are granular substances that can be used as materials for civil engineering and construction, when such a granular substance is used as a fluid medium, the mixture is not separated. Can also be used without difficulty as a material for civil engineering or construction. The mixture may be separated into the particles of the incinerated ash and the fluidized medium as needed (for example, when the fluidized medium is reused in a fluidized-bed furnace), and there is no necessity for the separation.
[0032]
In the method for treating incineration ash according to the present invention, the steps are performed using a fluidized bed furnace. Outside of the furnace, only the incineration ash particles and the fluidized medium are separated as needed. Therefore, it can be performed in a closed apparatus with a small number of steps and no generation of dust.
[0033]
As described above, according to the method for treating incinerated ash according to the present invention, the number of steps is reduced and the attached ash on the particle surface of the incinerated ash is removed by a closed device that does not generate dust, and harmful substances such as heavy metals in the incinerated ash are removed. It can be said that the amount of the substance can be reduced.
[0034]
Further, as described above, the method for treating incinerated ash according to the present invention supplies incinerated ash of municipal solid waste and / or industrial waste to a fluidized bed of a fluidized-bed furnace, and heats the incinerated ash in the fluidized bed. After drying, the incinerated ash on the particle surface of the incinerated ash is removed by polishing with a fluid medium (second invention).
[0035]
In this method, the incinerated ash is also heated and dried in a fluidized bed of a fluidized bed furnace, as compared with the above-described method (the method for treating incinerated ash according to the first invention). This method is particularly effective when the incinerated ash supplied to the fluidized bed of the fluidized bed furnace is wet ash, and can easily remove the incinerated ash attached to the particle surface of the incinerated ash by polishing. That is, when the incinerated ash is wet ash, it tends to be more difficult to remove the attached ash on the particle surface of the incinerated ash by polishing than in the case of dry ash. Is heated and dried, and as in the case of dry ash, removal of the attached ash on the particle surface of the incinerated ash can be facilitated by polishing.
[0036]
The present invention has been made based on the knowledge obtained as a result of intensive studies to achieve the above-mentioned object of the present invention. That is, incinerated ash of municipal solid waste and / or industrial waste is supplied to a fluidized bed (fluidized bed) of a fluidized-bed furnace, and the adhered ash on the particle surface of the incinerated ash is polished with a fluidized medium in the fluidized bed. It has been found that the ash can be removed from the particles of the incineration ash, and therefore, the amount of harmful substances such as heavy metals in the incineration ash can be reduced. In addition, when incineration ash is heated and dried in the fluidized bed of the fluidized bed furnace, the same as in the case of dry ash, even when the incineration ash supplied to the fluidized bed of the fluidized bed furnace is wet ash. In addition, the present inventors have found that it is possible to easily remove the attached ash on the particle surface of the incinerated ash by polishing. The present invention has been completed based on such findings.
[0037]
In the present invention, when the incinerated ash is heated and dried in a fluidized bed of a fluidized bed furnace, the method is not particularly limited, but a fluidized gas for forming a fluidized bed is introduced (supplied) into the fluidized bed furnace. Preheating it, and then supplying the preheated fluidized gas to the fluidized-bed furnace, which heats the incinerated ash in the fluidized bed of the fluidized-bed furnace to dry it. Yes (third invention).
[0038]
When the fuel is supplied to the fluidized bed of the fluidized bed furnace, the fuel burns in the fluidized bed, and the heat generated by the fuel can heat and dry the incinerated ash (the fourth invention). When this fuel is supplied together with the supply of the preheated fluidized gas to the fluidized-bed furnace, the incineration ash can be heated and dried more easily.
[0039]
The particles of the incineration ash extracted from the furnace bottom together with the above-mentioned fluidized medium, that is, the fluidized medium containing the incinerated ash discharged from the fluidized bed of the fluidized-bed furnace, is separated into incinerated ash and the fluidized medium. When the fluidized medium supplied to the fluidized bed is supplied to the fluidized bed furnace, it can be reused in the fluidized bed furnace, and the operation (treatment of incinerated ash) can be performed with almost no need for replenishing the fluidized bed furnace with the fluidized medium. It can be continued (fifth invention).
[0040]
If the cross-sectional area of the fluidized-bed furnace is different between the fluidized-bed section and the freeboard section above the fluidized-bed furnace, and the cross-sectional area of the latter freeboard section is smaller, the fluidized-bed The flow velocity of the fluidizing gas in the freeboard section is larger than the flow velocity of the fluidizing gas just above the bed, and therefore, the particles of the attached ash once trapped in the gas flow of the fluidizing gas are more reliably exhausted. It can be further discharged outside the furnace (sixth invention).
[0041]
When the combustibles are supplied to the fluidized bed of the fluidized bed furnace, part or all of the heat required for drying the incinerated ash can be supplemented by the heat of combustion of the combustibles. According to this method, the advantage of saving fuel described in the fourth invention can be obtained (seventh invention).
[0042]
In the present invention, the fluid medium is not particularly limited as long as it can remove the attached ash on the particle surface of the incineration ash in the fluidized bed by the fluid medium. For example, natural sand, silica sand, alumina powder, or the like can be used. Since these exemplified fluid media are granular materials that can be used as materials for civil engineering and construction, when such granular materials are used as fluid media, fluid media extracted from the furnace bottom together with incinerated ash particles are Even if it is not separated, it can be used as a material for civil engineering or construction without any problems in the form of a mixture. From such a point, it is desirable to use a granular material that can be used as a material as the fluid medium.
[0043]
The type of fluidizing gas for the fluidized bed furnace is not particularly limited, and various types can be used. For example, air, combustion exhaust gas, or a mixed gas of both can be used. The oxygen concentration in the fluidized gas is desirably 5 to 21% in order to reliably burn unburned substances in the incineration ash supplied to the fluidized bed furnace.
[0044]
When heating and drying incinerated ash in a fluidized bed (fluidized bed) of a fluidized bed furnace, if the temperature of the fluidized bed is too low, drying of the incinerated ash will not be performed sufficiently. Causes clinker formation. In addition, in order to burn unburned matter in the ash, it is desired that the temperature be set to a temperature that is sufficient to burn the unburned matter. From these points, the temperature of the fluidized bed is desirably 250 to 700 ° C, and more desirably 500 to 700 ° C.
[0045]
As described above, the attached ash removed by polishing has a small particle size, so it rises in the furnace together with the fluidized gas along with the fluidized gas flow of the fluidized bed furnace, and moves out of the furnace from the upper part of the fluidized bed furnace. Can be discharged. If the air flow velocity (flow velocity of the fluidizing gas) at this time is too low, the stirring of the fluidized medium is not sufficient, and the discharge of the adhered ash to the outside of the furnace does not proceed. On the other hand, if the temperature is too high, not only the energy consumption of the blower is increased, but also the fluid medium is blown out of the furnace. From this point, the airflow velocity at this time is desirably 0.3 to 3 m / sec, and more desirably 0.5 to 2 m / sec.
[0046]
When separating the fluidized medium extracted from the furnace bottom together with the incinerated ash particles into the incinerated ash particles and the fluidized medium, the type of the device for the separation is not particularly limited, and various types are used. For example, a vibrating sieve, trommel, or the like can be used.
[0047]
When the fuel is supplied to the fluidized bed of the fluidized bed furnace, the kind of the fuel is not particularly limited, and various fuels can be used.For example, a gas such as city gas, propane, butane, or the like is used. Alternatively, a liquid such as kerosene or heavy oil may be used.
[0048]
When supplying combustibles to the fluidized bed of the fluidized bed furnace, the types of combustibles are not particularly limited, and various types can be used.For example, waste plastics, wood chips, and the like can be used. it can.
[0049]
The degree of removal of attached ash by the method of the present invention may be such that the amount of harmful substances such as heavy metals in incinerated ash can be significantly reduced. That is, it is sufficient that the attached ash can be substantially removed to the extent that the incinerated ash can be turned into a resource or a material.
[0050]
The incinerated ash from which the attached ash has been removed by the method for treating incinerated ash according to the present invention has very little heavy metal elution and can be used as a material for civil engineering and construction. The incineration ash may include metals such as iron, aluminum, and copper, which can be easily separated by a magnetic separator, a non-ferrous metal separator, or the like. In this case, if the ash is in a dried state, the ash particles do not adhere to each other, and the separation efficiency is high.
[0051]
【Example】
An embodiment of the present invention will be described below. Note that the present invention is not limited to this embodiment.
[0052]
[Example 1]
FIG. 2 shows a specific example of an apparatus for performing the incineration ash treatment method according to the present invention. A configuration and an example of usage of this device will be described below. The lower portion of the fluidized bed furnace 1 is filled with a fluidized medium 11 and supported by a dispersion plate 12. A number of nozzles 13 are attached to the dispersion plate 12 and are connected to a wind box 14. The fluidized-bed furnace 1 is provided with an exhaust port 15 and an incineration ash inlet 16. As the fluid medium 11, for example, natural sand, silica sand, alumina powder, or the like can be used.
[0053]
The fluidized gas 2 is pressurized by the blower 21, heated by the heat source 23 through the heat exchanger 22, blown into the furnace from the wind box 14 of the fluidized bed furnace through the nozzle 13, and fluidized the fluidized medium 11. Later, it rises inside the furnace and is discharged from the furnace through the exhaust port 15. After that, it is discharged outside the system via the exhaust gas treatment device 25. In addition, as the fluidizing gas 2, for example, air, combustion exhaust gas, or a mixed gas of both can be used. The oxygen concentration in the fluidized gas is preferably in the range of 5 to 21% in consideration of reliably burning unburned substances in the incineration ash.
[0054]
The incineration ash 3 is temporarily stored in an incineration ash hopper 31, is appropriately cut out by a cutting device 32, and is put into the furnace through the incineration ash input port 16. The added incineration ash 33 is dried by the high temperature in the fluidized bed, and the surface is polished by the fluidized medium 11 to remove the attached ash. Most of the removed adhered ash has a very small particle size, rises inside the furnace together with the fluidizing gas 2, and is discharged outside the furnace. In order to sufficiently dry the incinerated ash 33 and burn unburned substances in the incinerated ash 33, the temperature of the fluidized bed (fluidized bed) of the fluidized-bed furnace 1 is desirably 250 ° C. or more. Is preferably 500 ° C. or higher, while the temperature of the fluidized bed is preferably 700 ° C. or lower, and more preferably 500 ° C. or lower, in order to prevent clinker formation above the furnace. desirable. Further, in order to sufficiently stir the fluidized medium 11 and to proceed to discharge the adhered ash to the outside of the furnace and to prevent the adhered ash from being taken in the fluidized bed again, the gas flow velocity of the fluidized gas 2 is set to 0 / sec. 0.3 m or more, more preferably 0.5 m / s or more. On the other hand, in order to suppress the increase in energy consumption of the blower and to prevent the fluid medium from being blown out of the furnace. The flow velocity of the fluidized gas 2 is desirably 3 m or less per second, and more desirably 2 m or less per second.
[0055]
Further, the incinerated ash and the fluidized medium after removing the attached ash are extracted from the bottom of the fluidized bed furnace 1 by the continuous discharge device 4. After that, it can be separated into the incineration ash 42 and the flowing medium 43 by the separating device 41. As the separation device 41, for example, a vibration sieve, a trommel, or the like can be used.
[0056]
Using the above apparatus, incineration ash according to Example 1 of the present invention was treated. At this time, silica sand was used as the fluid medium 11 and air was used as the fluidizing gas 2. The temperature of the fluidized bed of the fluidized bed furnace 1 was 550 ° C. The gas flow velocity of the fluidizing gas 2 was 1 m per second. As the separation device 41, a vibration sieve was used.
[0057]
Wet ash was used as incineration ash supplied to the fluidized bed of the fluidized bed furnace 1. This wet ash is incinerated ash from municipal waste in a stoker-type incinerator, which is collected after being dropped into a water tank and collected by a dust collector at the latter stage of the incinerator. Is a so-called mixed ash.
[0058]
The heavy metal content in this incinerated ash (wet ash) is 1.4 mg / kg of mercury, 2400 mg / kg of lead, 8400 mg / kg of zinc, and the content of dioxins is 0.045 ng-. TEQ / g.
[0059]
The incinerated ash (wet ash) is supplied to the fluidized bed of the fluidized-bed furnace 1, the incinerated ash is heated and dried in the fluidized bed, and the attached ash on the particle surface of the incinerated ash is polished with a fluidized medium. Removal processing was performed. After the incinerated ash after this treatment was extracted from the bottom of the fluidized-bed furnace 1 together with the fluidized medium, the incinerated ash 42 and the fluidized medium 43 were separated by the separator 41. The incineration ash 42 having a particle size of 5 to 25 mm was measured for heavy metal content and dioxin content, and a test for elution resistance, which is important for resource recycling.
[0060]
As a result, the heavy metal content in the incinerated ash after the above treatment was as follows: mercury: less than 0.01 mg / kg, lead: 1200 mg / kg, zinc: 3700 mg / kg, etc., all of which were significantly reduced. The dioxin content was 0.0008 ng-TEQ / g, which was also significantly reduced. In the elution resistance test, the elution amounts were hexavalent chromium: less than 0.02 mg / liter (hereinafter, L), lead: less than 0.001 mg / L, cadmium: less than 0.001 mg / L, and mercury: 0.0005 mg. / L, arsenic: less than 0.001 mg / L, selenium: less than 0.001 mg / L, all of which were below the soil environmental standards.
[0061]
As described above, according to the incineration ash treatment method according to the first embodiment of the present invention, it is possible to reduce the amount of harmful substances such as heavy metals in the incineration ash by removing the attached ash on the particle surface of the incineration ash. It supports what you can do.
[0062]
The incinerated ash (recycled incinerated ash) obtained by the above-mentioned treatment is dried and has a very small amount of heavy metal dissolved therein, and can be used as a material for civil engineering and construction. In addition, depending on the wet ash before treatment, metals such as iron, aluminum, and copper may be contained in the incinerated ash that has been recycled, but these are easily separated by a magnetic separation device or a non-ferrous metal separation device. be able to. Also at this time, since the ash is in a dried state, the ash particles do not adhere to each other and the efficiency of separation is high.
[0063]
In the first embodiment, silica sand was used as the fluid medium 11, but the same result as in the first embodiment can be obtained when natural sand or alumina powder is used instead. Was. In the case of the first embodiment, air is used as the fluidizing gas 2. However, instead of this, the case of using a combustion exhaust gas or a mixed gas of air and combustion exhaust gas is the same as in the case of the first embodiment. Was obtained.
[0064]
Further, in the case of the first embodiment, wet ash was used as incineration ash to be supplied to the fluidized bed of the fluidized-bed furnace 1, but when dry ash was used instead, the case of the first embodiment was different from that of the first embodiment. Similar results were obtained. When this dry ash was used, the fluidized gas 2 was blown into the furnace through the nozzle 13 without raising the temperature (while still at room temperature). The same result as in the case of was obtained.
[0065]
[Example 2]
FIG. 3 shows another specific example of the apparatus for performing the incineration ash treatment method according to the present invention, which is different from the above-described apparatus. A configuration and an example of usage of this device will be described below. The lower part of the fluidized-bed furnace 1 is filled with a fluidized medium 11, and an air diffuser 17 is charged in the fluidized medium. Further, the fluidized bed furnace 1 is provided with an exhaust port 15 and an incineration ash input port 16, and further provided with a fluid medium return port 18 for returning the fluid medium 11 extracted from the furnace bottom into the furnace. .
[0066]
The fluidized gas 2 is pressurized by the blower 21, is heated by the heat source 23 through the heat exchanger 22, is blown into the furnace by the diffuser 17 through the header tube 24, and after fluidizing the fluid medium 11, And is discharged out of the furnace through the exhaust port 15. After that, it is discharged outside the system via the exhaust gas treatment device 25. In addition, as the fluidizing gas 2, for example, air, combustion exhaust gas, or a mixed gas of both can be used.
[0067]
The incineration ash 3 is temporarily stored in an incineration ash hopper 31, is appropriately cut out by a cutting device 32, and is put into the furnace through the incineration ash input port 16. The added incineration ash 33 is dried by the high temperature in the fluidized bed, and the surface is polished by the fluidized medium 11 to remove the attached ash. Most of the removed adhered ash has a very small particle size, rises inside the furnace together with the fluidizing gas 2, and is discharged outside the furnace.
[0068]
Further, the incinerated ash and the fluidized medium after removing the attached ash are extracted from the bottom of the fluidized bed furnace 1 by the continuous discharge device 4. After that, it can be separated into the incineration ash 42 and the flowing medium 43 by the separating device 41. As the separation device 41, for example, a vibration sieve, a trommel, or the like can be used. The separated fluid medium 11 can be transported by the conveyor 44 and returned to the fluidized bed furnace from the fluid medium return port 18. Then, the operation can be continued with almost no new replenishment of the fluid medium 11 required.
[0069]
The fuel 5 can be blown in by the fuel gun 51 to maintain the temperature of the fluidized bed. The fuel 5 may be a gas such as city gas, propane or butane, or a liquid such as kerosene or heavy oil. The fuel 5 is burned by oxygen in the fluidized gas, and its heat generation contributes to the maintenance of the temperature of the fluidized bed, thereby drying the incinerated ash.
[0070]
The cross-sectional area of the fluidized-bed furnace is such that the cross-sectional area 62 at a so-called freeboard portion above the fluidized-medium portion (fluidized-bed portion) is smaller than the cross-sectional area 61 at the upper portion thereof. This is because the flow velocity of the fluidizing gas in the free board part is made larger than the flow velocity of the fluidizing gas just above the fluid medium part, and the particles of the attached ash once trapped in the gas flow are reliably discharged from the exhaust port 15 to the furnace. Contributes to discharge to the outside.
[0071]
The combustibles 7 can be introduced into the fluidized bed furnace. As the combustibles, for example, waste plastics, wood chips and the like can be used. In the apparatus shown in FIG. 3, the combustibles are temporarily stored in a combustibles hopper 71, are appropriately cut out by a combustibles cutout device 72, and are charged into a furnace. The incineration ash and the combustibles may be mixed in advance at a fixed ratio, and may be charged from the incineration ash hopper.
[0072]
The incineration ash according to Example 2 of the present invention was treated using the above apparatus. At this time, silica sand was used as the fluid medium 11 and air was used as the fluidizing gas 2. The temperature of the fluidized bed of the fluidized bed furnace 1 was 550 ° C. The gas flow velocity of the fluidizing gas 2 was 0.5 m / sec. As the separation device 41, a vibration sieve was used.
[0073]
Wet ash was used as incineration ash supplied to the fluidized bed of the fluidized bed furnace 1. This wet ash is incinerator ash of municipal solid waste and industrial waste from a stoker-type incinerator, which is collected after being dropped into a water tank and collected by a dust collector at the latter stage of the incinerator. This is a so-called mixed ash obtained by mixing fly ash.
[0074]
The heavy metal content in this incinerated ash (wet ash) is 1.4 mg / kg of mercury, 2400 mg / kg of lead, 8400 mg / kg of zinc, and the content of dioxins is 0.045 ng-. TEQ / g.
[0075]
The incinerated ash (wet ash) is supplied to the fluidized bed of the fluidized-bed furnace 1, the incinerated ash is heated and dried in the fluidized bed, and the attached ash on the particle surface of the incinerated ash is polished with a fluidized medium. Removal processing was performed. After the incinerated ash after this treatment was extracted from the bottom of the fluidized-bed furnace 1 together with the fluidized medium, the incinerated ash 42 and the fluidized medium 43 were separated by the separator 41. The incineration ash 42 having a particle size of 5 to 25 mm was measured for heavy metal content and dioxin content, and a test for elution resistance, which is important for resource recycling.
[0076]
As a result, the heavy metal content in the incinerated ash after the above treatment was less than 0.01 mg / kg of mercury, 800 mg / kg of lead, 4200 mg / kg of zinc, etc., all of which were significantly reduced. The dioxin content was 0.0006 ng-TEQ / g, which was also significantly reduced. In the elution resistance test, the elution amount was hexavalent chromium: less than 0.02 mg / L, lead: less than 0.001 mg / L, cadmium: less than 0.001 mg / L, mercury: less than 0.0005 mg / L, arsenic : Less than 0.001 mg / L, selenium: less than 0.001 mg / L, all of which were below the soil environmental standard.
[0077]
As described above, according to the incineration ash processing method according to the second embodiment of the present invention, it is possible to reduce the amount of harmful substances such as heavy metals in the incineration ash by removing the attached ash on the particle surface of the incineration ash. It supports what you can do.
[0078]
In the second embodiment, when the fluidized medium 11 separated by the separation device 41 is transported by the conveyor 44 and returned into the fluidized-bed furnace from the fluidized medium return port 18, almost no new replenishment of the fluidized medium 11 is performed. I was able to continue driving without need.
[0079]
When the fuel 5 was blown by the fuel gun 51, the temperature of the fluidized bed was easily maintained at a predetermined temperature (550 ° C.) due to the heat generated by the combustion of the fuel 5.
[0080]
When the combustibles 7 were charged into the fluidized-bed furnace, the amount of the fuel 5 blown from the fuel gun 51 could be reduced.
[0081]
【The invention's effect】
According to the method for treating incinerated ash according to the present invention, the amount of harmful substances such as heavy metals in the incinerated ash is eliminated by removing the attached ash on the particle surface of the incinerated ash by using a closed apparatus with a small number of steps and no dust generation. Can be reduced.
[Brief description of the drawings]
FIG. 1 is a diagram schematically showing a cross-sectional structure of incinerated ash particles.
FIG. 2 is a schematic view showing an example of an apparatus for performing the method for treating incineration ash according to the present invention.
FIG. 3 is a schematic view showing an example of an apparatus for performing the method for treating incineration ash according to the present invention.
[Explanation of symbols]
1: fluidized bed furnace, 11: fluidized medium, 12: dispersion plate, 13: nozzle, 14: wind box, 15: exhaust port, 16: incineration ash inlet, 2: fluidized gas, 21: blower, 22: heat Exchanger, 23: heat source, 24: header, 25: exhaust gas treatment device, 3: incineration ash, 31: incineration ash hopper, 32: incineration ash cutting device, 33: incineration ash put into the furnace, 4: continuous discharge Apparatus, 41: Separator, 42: Incineration ash, 43: Fluid medium, 5: Fuel, 51: Fuel gun, 61: Cross-sectional area in the furnace of the fluidized bed, 62: Cross-sectional area in the furnace of the freeboard section, 7: Combustible material, 71: Combustible material hopper, 72: Combustible material cutting device. 80: particles of incinerated ash, 81: attached ash.

Claims (7)

都市ごみ及び/又は産業廃棄物の焼却灰を流動床炉の流動層に供給し、この流動層にて焼却灰の粒子表面の付着灰を流動媒体で研磨することにより除去することを特徴とする焼却灰の処理方法。The incineration ash of municipal solid waste and / or industrial waste is supplied to a fluidized bed of a fluidized-bed furnace, and in this fluidized bed, attached ash on the particle surface of the incinerated ash is removed by polishing with a fluidized medium. How to treat incinerated ash. 都市ごみ及び/又は産業廃棄物の焼却灰を流動床炉の流動層に供給し、この流動層にて焼却灰を加熱して乾燥し、この焼却灰の粒子表面の付着灰を流動媒体で研磨することにより除去することを特徴とする焼却灰の処理方法。The incinerated ash of municipal solid waste and / or industrial waste is supplied to a fluidized bed of a fluidized-bed furnace, the incinerated ash is heated and dried in the fluidized bed, and the ash attached to the particle surface of the incinerated ash is polished with a fluidized medium. A method for treating incinerated ash, characterized in that the incinerated ash is removed by carrying out. 流動化気体を予熱してから前記流動層に供給する請求項2記載の焼却灰の処理方法。The method for treating incinerated ash according to claim 2, wherein the fluidized gas is preheated and then supplied to the fluidized bed. 燃料を前記流動層に供給する請求項2または3記載の焼却灰の処理方法。The method according to claim 2 or 3, wherein a fuel is supplied to the fluidized bed. 前記流動層から排出された焼却灰を含む流動媒体を焼却灰と流動媒体とに分離した後、この分離された流動媒体を前記流動層に供給する請求項1〜4のいずれかに記載の焼却灰の処理方法。The incineration according to any one of claims 1 to 4, wherein the fluidized medium containing incinerated ash discharged from the fluidized bed is separated into incinerated ash and a fluidized medium, and then the separated fluidized medium is supplied to the fluidized bed. Ash treatment method. 前記流動床炉の断面積が流動床部とその上方のフリーボード部とで異なり、後者のフリーボード部の断面積の方が小さい請求項1〜5のいずれかに記載の焼却灰の処理方法。The method for treating incineration ash according to any one of claims 1 to 5, wherein a cross-sectional area of the fluidized-bed furnace is different between a fluidized-bed portion and a freeboard portion above the fluidized-bed portion, and a cross-sectional area of the latter freeboard portion is smaller. . 可燃物を前記流動層に供給する請求項1〜6のいずれかに記載の焼却灰の処理方法。The method for treating incinerated ash according to claim 1, wherein a combustible material is supplied to the fluidized bed.
JP2002189798A 2002-06-28 2002-06-28 Incineration ash treatment method Expired - Fee Related JP4167857B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2002189798A JP4167857B2 (en) 2002-06-28 2002-06-28 Incineration ash treatment method

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2002189798A JP4167857B2 (en) 2002-06-28 2002-06-28 Incineration ash treatment method

Publications (2)

Publication Number Publication Date
JP2004025152A true JP2004025152A (en) 2004-01-29
JP4167857B2 JP4167857B2 (en) 2008-10-22

Family

ID=31184115

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2002189798A Expired - Fee Related JP4167857B2 (en) 2002-06-28 2002-06-28 Incineration ash treatment method

Country Status (1)

Country Link
JP (1) JP4167857B2 (en)

Cited By (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN103090397A (en) * 2013-01-16 2013-05-08 河南科技大学 Sludge and coal fluidized bed co-firing reactor
JP2015188856A (en) * 2014-03-28 2015-11-02 住友大阪セメント株式会社 Exhaust gas treatment method and treatment apparatus
JP2015188855A (en) * 2014-03-28 2015-11-02 住友大阪セメント株式会社 Exhaust gas treatment method and treatment apparatus
CN110081434A (en) * 2019-05-31 2019-08-02 河南省德耀节能科技股份有限公司 A kind of furnace of calcium carbide purifies the processing method of ash treatment system, system for producing calcium carbide, furnace of calcium carbide purification ash
JP2020148437A (en) * 2019-03-15 2020-09-17 荏原環境プラント株式会社 Incineration ash discharge device and incineration ash discharge method
CN117065892A (en) * 2023-10-17 2023-11-17 四川云华川科技有限公司 Household garbage incineration particulate matter treatment and purification device
CN117772076A (en) * 2024-02-23 2024-03-29 山西天茂盛环保科技有限公司 Gangue recycling system

Cited By (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN103090397A (en) * 2013-01-16 2013-05-08 河南科技大学 Sludge and coal fluidized bed co-firing reactor
JP2015188856A (en) * 2014-03-28 2015-11-02 住友大阪セメント株式会社 Exhaust gas treatment method and treatment apparatus
JP2015188855A (en) * 2014-03-28 2015-11-02 住友大阪セメント株式会社 Exhaust gas treatment method and treatment apparatus
JP2020148437A (en) * 2019-03-15 2020-09-17 荏原環境プラント株式会社 Incineration ash discharge device and incineration ash discharge method
CN110081434A (en) * 2019-05-31 2019-08-02 河南省德耀节能科技股份有限公司 A kind of furnace of calcium carbide purifies the processing method of ash treatment system, system for producing calcium carbide, furnace of calcium carbide purification ash
CN117065892A (en) * 2023-10-17 2023-11-17 四川云华川科技有限公司 Household garbage incineration particulate matter treatment and purification device
CN117065892B (en) * 2023-10-17 2023-12-26 四川云华川科技有限公司 Household garbage incineration particulate matter treatment and purification device
CN117772076A (en) * 2024-02-23 2024-03-29 山西天茂盛环保科技有限公司 Gangue recycling system
CN117772076B (en) * 2024-02-23 2024-05-03 山西天茂盛环保科技有限公司 Gangue recycling system

Also Published As

Publication number Publication date
JP4167857B2 (en) 2008-10-22

Similar Documents

Publication Publication Date Title
JP4438329B2 (en) Method for treating waste containing organic matter
Onaka Sewage can make Portland cement: a new technology for ultimate reuse of sewage sludge
WO2017173850A1 (en) Domestic waste treatment apparatus
US20240101915A1 (en) Ponded ash beneficiation system and related methods
JP2004025152A (en) Treatment method of incineration ash
CN104180376B (en) A kind of incineration treatment of garbage technique
KR102061159B1 (en) Method and apparatus for mixed thermal treatment of organic sludge and contaminated soil
JP4660260B2 (en) Recycling equipment for construction residue
JPH03204508A (en) Purifying treating method for sludge
CN109500049A (en) A kind of daily-life garbage without environmental pollution recycling processing method utilized with effluent cycle
CN205979806U (en) Waste incineration power generation waste heat utilization and flue gas processing system
JP2005270874A (en) Treatment method of polluted soil and apparatus thereof
KR100240833B1 (en) Trash disposal system
JP2006281114A (en) Waste treatment method and treatment apparatus
JP6573558B2 (en) Method and apparatus for treating incineration ash
JP2000300953A (en) Method for treatment of combustion exhaust gas of waste
JP4737731B2 (en) Method of firing construction soil
JP2006297331A (en) Production method and apparatus of granulation particle
JP2005131615A (en) Calcining detoxication method of a plurality of mixed pollutants and apparatus therefor
CN1259637A (en) Garbage burning boiler instead of coal burning boiler to proceed electricity generation
JP2005155974A (en) Method and system of treating incinerated ash prior to melting
CN104629812A (en) Waste sorting and power generation tail gas recycling system
JP2003212618A (en) Method for treating organic contaminated soil
JP7228968B2 (en) Exhaust gas treatment method and its system
JP2004183912A (en) Waste incineration plant and waste incineration method

Legal Events

Date Code Title Description
A711 Notification of change in applicant

Free format text: JAPANESE INTERMEDIATE CODE: A712

Effective date: 20031212

RD02 Notification of acceptance of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7422

Effective date: 20040519

A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20050407

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20060630

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20080219

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20080417

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20080729

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20080804

R150 Certificate of patent or registration of utility model

Ref document number: 4167857

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110808

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110808

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110808

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110808

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120808

Year of fee payment: 4

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120808

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120808

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130808

Year of fee payment: 5

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130808

Year of fee payment: 5

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

LAPS Cancellation because of no payment of annual fees