JP3354909B2 - Method for supporting vacuum vessel of fusion device - Google Patents

Method for supporting vacuum vessel of fusion device

Info

Publication number
JP3354909B2
JP3354909B2 JP29085799A JP29085799A JP3354909B2 JP 3354909 B2 JP3354909 B2 JP 3354909B2 JP 29085799 A JP29085799 A JP 29085799A JP 29085799 A JP29085799 A JP 29085799A JP 3354909 B2 JP3354909 B2 JP 3354909B2
Authority
JP
Japan
Prior art keywords
vacuum vessel
support
fusion device
vacuum
supporting
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP29085799A
Other languages
Japanese (ja)
Other versions
JP2001108774A (en
Inventor
優 鈴木
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Mitsubishi Heavy Industries Ltd
Original Assignee
Mitsubishi Heavy Industries Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Mitsubishi Heavy Industries Ltd filed Critical Mitsubishi Heavy Industries Ltd
Priority to JP29085799A priority Critical patent/JP3354909B2/en
Publication of JP2001108774A publication Critical patent/JP2001108774A/en
Application granted granted Critical
Publication of JP3354909B2 publication Critical patent/JP3354909B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E30/00Energy generation of nuclear origin
    • Y02E30/10Nuclear fusion reactors

Landscapes

  • Vibration Prevention Devices (AREA)
  • Particle Accelerators (AREA)

Description

【発明の詳細な説明】DETAILED DESCRIPTION OF THE INVENTION

【0001】[0001]

【発明の属する技術分野】本発明は、核融合反応又はそ
の試験を行うための核融合装置に関し、特にその真空容
器を支持する方法に関する。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a nuclear fusion device for performing a nuclear fusion reaction or a test thereof, and more particularly to a method for supporting a vacuum vessel.

【0002】[0002]

【従来の技術】核融合反応を行うための試験装置が種々
提案され、開発されつつあるが、その代表的なものとし
て所謂トカマク型核融合装置がある。その代表的な構造
を図10及び図11に概念的に示す。その主要構成要素
を説明すると、高温のプラズマPを発生させて閉じ込め
る超真空空間を画成する中空ドーナツ状真空容器1は、
支持構造3を介して設置され、プラズマPを閉じ込める
ための磁場を形成するトロイダルコイル5やポロイダル
コイル7がその回りに配設されている。これらのトロイ
ダルコイル5やポロイダルコイル7はそれ自体、大重量
の構造物であり、それぞれ支持構造体9,11を介して
確りと床に支持されている。又、前述のように真空容器
1の内部を超真空に保持するための排気装置、反応用原
料の供給装置、プラズマを更に加熱する装置、各種計測
測定装置等が真空容器1の回りに配設され、これら各種
装置と真空容器1の内部とを連絡するため、真空容器1
にはポート13,15が設けられている。なお、装置の
水平配置はポートの形状によって実際は異なるが、基本
的には回転対称であるので、図11は水平断面の1象限
のみを示し、符号17は生体遮蔽を示している。
2. Description of the Related Art Various types of test devices for performing a nuclear fusion reaction have been proposed and are being developed. A typical example thereof is a so-called tokamak type fusion device. A typical structure is conceptually shown in FIGS. Explaining the main components, the hollow donut-shaped vacuum vessel 1 that defines an ultra-vacuum space for generating and confining a high-temperature plasma P is as follows.
A toroidal coil 5 and a poloidal coil 7 which are installed via the support structure 3 and form a magnetic field for confining the plasma P are disposed therearound. These toroidal coil 5 and poloidal coil 7 are heavy structures themselves, and are securely supported on the floor via support structures 9 and 11, respectively. Further, as described above, an exhaust device for maintaining the inside of the vacuum vessel 1 at an ultra-vacuum, a supply device for a reaction raw material, a device for further heating the plasma, various measurement and measurement devices, etc. are provided around the vacuum container 1. In order to communicate these various devices with the inside of the vacuum vessel 1, the vacuum vessel 1
Are provided with ports 13 and 15. Note that the horizontal arrangement of the device actually differs depending on the shape of the port, but is basically rotationally symmetric, so that FIG. 11 shows only one quadrant of the horizontal cross section, and reference numeral 17 shows a living body shield.

【0003】前述のような真空容器1は、それ自体大き
な構造物であるから相応の重量を有し、更にはベーキン
グや運転中の入熱により大きな熱膨張を示す。従って、
真空容器1の支持構造3には、熱膨張を拘束せずに過大
な熱応力の発生を抑制しつつ鉛直荷重を支持する機能が
要求されている。このような機能要求を満たすものとし
て、図12(a)、(b)に示すような下部支持方式の
支持構造が採用されている。例えば、図12(a)に示
すものでは、上下をピン支持された支持脚3aを有し、
矢印で示す主熱膨張はピン部の枢動で逃がし、鉛直荷重
はピン部の剪断支持で受ける。図12(b)に示すもの
では、主熱膨張方向では曲げ剛性の小さい支持脚3bを
使用し、熱膨張を曲げ変位で逃がす乃至吸収する構造と
なっている。
[0003] The vacuum vessel 1 as described above is a large structure by itself and therefore has a corresponding weight, and further exhibits a large thermal expansion due to heat input during baking or operation. Therefore,
The support structure 3 of the vacuum vessel 1 is required to have a function of supporting a vertical load while restraining generation of excessive thermal stress without restricting thermal expansion. In order to satisfy such functional requirements, a support structure of a lower support method as shown in FIGS. 12A and 12B is employed. For example, the one shown in FIG. 12 (a) has support legs 3a which are pin-supported at the top and bottom,
The main thermal expansion indicated by the arrow is released by pivoting of the pin portion, and the vertical load is received by the shearing support of the pin portion. In the structure shown in FIG. 12B, a support leg 3b having a small bending rigidity in the main thermal expansion direction is used, and the thermal expansion is released or absorbed by bending displacement.

【0004】又、図13に示すような側部支持方式の支
持構造も提案されている。これは、前述のようにポート
13などが設けられる真空容器1の側部の胴部に支持ブ
ロック1aを一体的に突出形成し((a)図)、これに
支持座19を滑り自在に嵌合し、鉛直荷重は上下側滑り
面で支持する。支持ブロック1aは主熱膨張方向に延び
ていて、熱膨張による変位は滑りで逃がす乃至吸収し、
拘束しない。
[0004] A supporting structure of a side support system as shown in FIG. 13 has also been proposed. In this case, a support block 1a is integrally formed on the side body of the vacuum vessel 1 provided with the port 13 and the like as described above (FIG. 7A), and a support seat 19 is slidably fitted thereto. The vertical load is supported by the upper and lower sliding surfaces. The support block 1a extends in the main thermal expansion direction, and displacement caused by thermal expansion is released or absorbed by sliding,
Do not restrain.

【0005】[0005]

【発明が解決しようとする課題】而して、前述のような
従来方式の支持構造では、次のような問題がある。即
ち、ディスラプションや地震発生時には、真空容器1の
自重等による鉛直方向荷重に加え、大きい水平方向荷重
が支持構造に作用する。このような場合、図12に示す
ような下部支持方式のものでは、一般に真空容器1本体
の剛性が相対的に高く、支持構造の剛性が低いため、固
有振動数が低い低剛性を特徴とした振動特性を有する。
これを改善するには、支持構造の支持脚の剛性を上げる
必要があるが、全体的な配置における周辺機器との関係
上、占有空間の大きさに対する制約のため限界があり、
望ましい振動特性を達成するには至っていない。又、図
13に示す側部支持方式のものでは、支持ブロックと支
持座との嵌合構造により、鉛直方向の荷重と水平方向の
荷重を同時に支持しなければならず、更に通常時の熱膨
張も逃さなければならないから、構造全体が複雑化する
という問題がある。更には、前述のように周辺機器との
関係から受ける空間的制約は前者にも増して大きく、支
持構造の大きさ即ち支持部の剛性の増大化は満足できる
ものに至っていない。従って、同様な振動特性上の問題
が残っている。
However, the above-mentioned conventional support structure has the following problems. That is, when a disruption or an earthquake occurs, a large horizontal load acts on the support structure in addition to the vertical load due to the weight of the vacuum vessel 1 and the like. In such a case, the lower support type as shown in FIG. 12 is characterized in that the rigidity of the main body of the vacuum vessel 1 is generally relatively high and the rigidity of the support structure is low, so that the natural frequency is low and the rigidity is low. Has vibration characteristics.
To improve this, it is necessary to increase the rigidity of the support legs of the support structure, but there is a limit due to restrictions on the size of the occupied space due to peripheral devices in the overall arrangement,
The desired vibration characteristics have not yet been achieved. In the side support type shown in FIG. 13, the vertical load and the horizontal load must be simultaneously supported by the fitting structure of the support block and the support seat. Has to be missed, so that there is a problem that the entire structure becomes complicated. Furthermore, as described above, the spatial restrictions imposed by the relationship with peripheral devices are greater than the former, and the size of the support structure, that is, the increase in the rigidity of the support portion, has not been satisfactory. Therefore, a similar problem on vibration characteristics remains.

【0006】機器の固有振動数が小さい場合、次のよう
な問題が発生する。即ち、真空容器とトロイダルコイル
等周辺機器の変位が大きくなり、これら機器の相互干渉
を避けるための大きい空間の確保が必要となる。更に
は、核融合反応によるトリチウム等の放射性生成物の発
生が予測されるものにおいては、安全等を考慮した当局
の規制により剛構造設計が必要となる可能性がある。
尚、ディスラプション等の早い振動モードの変形を抑制
するため、図14に示すように真空容器1と周囲の架台
21との間にピストン/シリンダ構造のオイルダンパ2
3を設けることも提案されている。しかしながら、この
方式では、振動特性の改善は認められるものの、中性子
照射の問題がある。即ち、作業員のアクセスが制限され
て、オイルダンパ23の保守点検に制約が生ずるほか、
中性子照射によるオイルの特性劣化等による機能喪失の
恐れがあり、具体的な問題解決がなお困難な状況にあ
る。従って、本発明は、装置本体の振動特性として、剛
構造設計に対応した剛支持方法を採用し、特別な保守点
検整備を必要としない所謂メインテナンスフリーの核融
合装置の支持方法を提供することを課題とする。
When the natural frequency of the device is small, the following problem occurs. That is, the displacement between the vacuum vessel and peripheral devices such as the toroidal coil becomes large, and it is necessary to secure a large space for avoiding mutual interference between these devices. Further, in the case where a radioactive product such as tritium is expected to be generated by a nuclear fusion reaction, there is a possibility that a rigid structure design may be required due to the regulation of the authority in consideration of safety and the like.
As shown in FIG. 14, an oil damper 2 having a piston / cylinder structure is provided between the vacuum vessel 1 and the surrounding pedestal 21 in order to suppress deformation in a rapid vibration mode such as disruption.
It has also been proposed to provide three. However, in this method, although the vibration characteristics are improved, there is a problem of neutron irradiation. That is, the access of the worker is restricted, and the maintenance and inspection of the oil damper 23 is restricted.
There is a risk of loss of function due to deterioration of oil properties due to neutron irradiation, and it is still difficult to solve specific problems. Therefore, the present invention provides a method of supporting a so-called maintenance-free fusion device which adopts a rigid support method corresponding to a rigid structure design as a vibration characteristic of the device main body and does not require special maintenance and inspection. Make it an issue.

【0007】[0007]

【課題を解決するための手段】如上の課題を解決するた
め、本発明によれば、中空ドーナツ状真空容器、トロイ
ダルコイル、ポロイダルコイル等の構造物を有する核融
合装置において、該真空容器に作用する鉛直方向荷重
は、該真空容器の下方に設置した熱膨張吸収型支持構造
体により支持し、該真空容器の側部の被支持面との間に
熱膨張変位隙間を置いて対向する支持ビームにより水平
方向荷重を支持する。支持ビームの他端は、真空容器が
設置される架台又はこれに一体的に設けられる生体遮蔽
に直接又は張り出し部を介して支持される。これらの支
持ビーム及び張り出し部は、所定の振動特性が得られる
ように剛性が付与されている。真空容器の被支持面と支
持ビームとの間隙は、熱膨張を拘束しないように、厚さ
が容易に設定できる調整部材を介装して、隙間を好適な
量に保つ。
According to the present invention, there is provided a nuclear fusion device having a structure such as a hollow donut-shaped vacuum vessel, a toroidal coil, and a poloidal coil. The vertical load is supported by a thermal expansion-absorbing support structure installed below the vacuum vessel, and a support beam opposed to the vacuum vessel with a thermal expansion displacement gap between the vacuum vessel and a supported surface on the side of the vacuum vessel. Support horizontal load. The other end of the support beam is supported directly or via an overhang on a mount on which the vacuum vessel is installed or a living body shield provided integrally therewith. These support beams and overhangs are given rigidity so as to obtain predetermined vibration characteristics. The gap between the supported surface of the vacuum vessel and the support beam is maintained at a suitable amount by interposing an adjusting member whose thickness can be easily set so as not to restrict thermal expansion.

【0008】[0008]

【発明の実施の形態】以下、図面を参照して本発明の実
施形態を説明する。先ず図1を参照するに、核融合装置
30の真空容器31は、支持構造33を介して床35上
に据え付けられている。本発明の理解を進めるため、真
空容器31の周囲に設置されるトロイダルコイルなどの
周辺機器は図示されていないが、従来のものと同様に必
要な機器は必要な位置に設置されているものと理解され
たい。そして、真空容器31は床35に立設された生体
遮蔽37に囲まれている。支持構造33は、従来の技術
の項で説明した構造を有し、水平方向の熱膨張変位を拘
束せずに逃し、且つ鉛直方向の荷重を支持できるもので
ある。従って、両端をピン結合された支持脚又は主熱膨
張方向の曲げ剛性を相対的に小さくしたものを有してい
る。そして、真空容器31の胴部の側面に支持部39が
形成され、生体遮蔽37の壁部から延出した支持ビーム
41の先端が支持部39に対向している。
Embodiments of the present invention will be described below with reference to the drawings. First, referring to FIG. 1, the vacuum vessel 31 of the fusion device 30 is mounted on a floor 35 via a support structure 33. To facilitate understanding of the present invention, peripheral devices such as a toroidal coil installed around the vacuum vessel 31 are not shown, but necessary devices are installed at required positions as in the conventional device. I want to be understood. The vacuum container 31 is surrounded by a living body shield 37 erected on the floor 35. The support structure 33 has the structure described in the section of the related art, and can release the thermal expansion displacement in the horizontal direction without restraining it and can support the load in the vertical direction. Therefore, it has a support leg with both ends pin-coupled or one with a relatively small bending rigidity in the main thermal expansion direction. A support portion 39 is formed on the side surface of the body of the vacuum vessel 31, and the tip of the support beam 41 extending from the wall of the living body shield 37 faces the support portion 39.

【0009】図2に支持ビーム41と支持部39との関
係が拡大して示されている。支持ビーム41と支持部3
9との間の隙間は、通常運転時に略零になるようにする
と、運転中に地震等による水平荷重が作用しても好適に
支持できるから、シム等の調整部材43が支持ビーム4
1の先端面に取り付けられ、据え付け時又は運転休止時
に隙間が適切な値になるように調整される。図3に支持
部39の真空容器31への取り付け状態が示されてい
る。ここで、必要な部分の剛性乃至強度が得られない場
合には、図4に示すように比較的大きい面積の支持フレ
ーム45を設けても良い。又、図5に示すように、生体
遮蔽47が相対的に大きく、設置する支持ビームの長さ
が大きくなり、水平支持の剛性低下や周辺機器との取り
合いの関係が生ずるときには、図5に示すように、生体
遮蔽47の取り付け部に張り出し部53を突設し、これ
に支持ビーム51を支持させると、振動特性の低下を招
かずに真空容器31を好適に支持できる。
FIG. 2 shows the relationship between the support beam 41 and the support 39 in an enlarged manner. Support beam 41 and support 3
9 is set to be substantially zero during normal operation, even if a horizontal load due to an earthquake or the like acts during operation, the adjustment member 43 such as a shim can support the support beam 4.
1 and is adjusted so that the gap becomes an appropriate value at the time of installation or at the time of suspension of operation. FIG. 3 shows a state where the support portion 39 is attached to the vacuum vessel 31. If the required rigidity or strength cannot be obtained, a support frame 45 having a relatively large area may be provided as shown in FIG. Also, as shown in FIG. 5, when the living body shield 47 is relatively large and the length of the support beam to be installed becomes large, and the rigidity of the horizontal support is reduced and the relationship with peripheral devices occurs, the configuration shown in FIG. As described above, when the projecting portion 53 is protruded from the attachment portion of the living body shield 47 and the supporting beam 51 is supported on the projecting portion 53, the vacuum vessel 31 can be suitably supported without lowering the vibration characteristics.

【0010】以上のような構成の支持構造で得られる振
動特性について説明する。その対比のために、先ず従来
の支持方式の振動特性について概説すると、図6は前述
の図12の支持構造を振動系として示す模擬図である。
支持構造3は梁61として表され、真空容器1は剛体6
3として表せる。この模擬振動系から容易に理解される
ように、梁61即ち支持構造3の剛性により振動特性が
決まる。又、従来の側部支持方式(図13)の支持構造
は図7に示すような振動系に模擬できる。図7(a)は
模擬系を側方から見た図、図7(b)はこれを上方から
見た図である。このような図7(a)、(b)から分か
るように、真空容器1を示す剛体63から、支持ブロッ
クを示す部材65が張り出し、支持座に対応する部材6
7で水平方向の荷重及び鉛直方向の荷重を支持してい
る。従って、機器本体の振動特性は、支持ブロックと支
持座の剛性で決まり、支持部が小さいと十分な剛性が得
られない。更に又、オイルダンパを用いる支持構造(図
14)は、図8に示す系に模擬できる。この系では、水
平方向及び鉛直方向の荷重の支持を、部材61、69即
ち支持構造3及びダンパ23によって行われ、剛支持と
なるが、ダンパ23の機能が喪失されると、図6と同じ
ような系となり、同様な問題がある。
A description will be given of the vibration characteristics obtained by the support structure having the above configuration. For comparison, first, the vibration characteristics of the conventional support method will be outlined. FIG. 6 is a schematic diagram showing the above-described support structure of FIG. 12 as a vibration system.
The support structure 3 is represented as a beam 61 and the vacuum vessel 1 is a rigid body 6
It can be expressed as 3. As can be easily understood from this simulated vibration system, the vibration characteristics are determined by the rigidity of the beam 61, that is, the support structure 3. Further, the support structure of the conventional side support method (FIG. 13) can be simulated as a vibration system as shown in FIG. FIG. 7A is a diagram of the simulation system viewed from the side, and FIG. 7B is a diagram of the simulation system viewed from above. As can be seen from FIGS. 7A and 7B, a member 65 representing a support block projects from a rigid body 63 representing a vacuum vessel 1 and a member 6 corresponding to a support seat.
7 supports a horizontal load and a vertical load. Therefore, the vibration characteristics of the device main body are determined by the rigidity of the support block and the support seat. If the support portion is small, sufficient rigidity cannot be obtained. Furthermore, the support structure using an oil damper (FIG. 14) can be simulated to the system shown in FIG. In this system, horizontal and vertical loads are supported by the members 61 and 69, that is, the support structure 3 and the damper 23, and become rigidly supported. However, when the function of the damper 23 is lost, the same as FIG. It becomes a system like this, and there is a similar problem.

【0011】このような従来式のものに対し、前述の図
1乃至図5に示す本実施形態の支持構造は、図9に示す
ような振動系に模擬される。即ち、真空容器31は剛体
63に模擬され、床35に支持された支持構造33は梁
61に模擬され、支持ビーム41は柱71で模擬され
る。従って、この模擬系から容易に理解されるように、
剛支持構造への振動特性の改善が図られ、これは中性子
の照射を受けても影響を受けず、その全寿命期間におい
て良好な特性が得られる。尚、前述の実施形態におい
て、支持ビームは生体遮蔽に支持させたが、これを別の
架台に取り付け、支持させても良いことは勿論であり、
同様の作用効果が得られる。
In contrast to such a conventional type, the support structure of the present embodiment shown in FIGS. 1 to 5 is simulated as a vibration system as shown in FIG. That is, the vacuum vessel 31 is simulated by a rigid body 63, the support structure 33 supported by the floor 35 is simulated by a beam 61, and the support beam 41 is simulated by a column 71. Therefore, as easily understood from this simulation system,
Improvements in the vibration characteristics of the rigid support structure are achieved, which are not affected by neutron irradiation, and good characteristics can be obtained over the entire lifetime. In the above-described embodiment, the support beam is supported by the living body shield. However, it is needless to say that the support beam may be mounted on another stand and supported.
Similar effects can be obtained.

【0012】[0012]

【発明の効果】以上説明したように、本発明によれば、
真空容器の支持部材として、単なる機械的構造部材であ
る支持構造と支持ビームとを使用するので、剛支持構造
への振動特性の改善が図られる。更に、これらの支持構
造体は中性子照射を受けても機能の低下が無く、且つ保
守作業乃至メインテナンスも必要とせずに、長期にわた
り良好な支持効果が得られる。更に又、支持ビームが水
平方向荷重を支持するので、下部の支持構造が従来負担
していた水平方向荷重が減るので、強度低減によるコス
トダウン、構造簡単化による製作コストの削減ができ
る。
As described above, according to the present invention,
Since the supporting structure and the supporting beam, which are merely mechanical structural members, are used as the supporting member of the vacuum vessel, the vibration characteristics of the rigid supporting structure can be improved. Furthermore, these support structures have a long-term good support effect without any deterioration in their function even when irradiated with neutrons, and without requiring any maintenance work or maintenance. Further, since the support beam supports the horizontal load, the horizontal load conventionally applied by the lower support structure is reduced, so that the cost can be reduced by reducing the strength and the manufacturing cost can be reduced by simplifying the structure.

【図面の簡単な説明】[Brief description of the drawings]

【図1】本発明の実施形態に係る核融合装置の要部概念
図である。
FIG. 1 is a conceptual diagram of a main part of a nuclear fusion device according to an embodiment of the present invention.

【図2】図1の要部を示す部分側面図である。FIG. 2 is a partial side view showing a main part of FIG.

【図3】図2の一部を拡大して示す部分斜視図である。FIG. 3 is a partial perspective view showing a part of FIG. 2 in an enlarged manner.

【図4】図3に示す構造の部分改変例を示す部分斜視図
である。
FIG. 4 is a partial perspective view showing a partially modified example of the structure shown in FIG. 3;

【図5】前記実施形態の一部を改変した改変実施形態の
要部概念図である。
FIG. 5 is a conceptual diagram of a main part of a modified embodiment in which a part of the embodiment is modified.

【図6】従来技術の一つを模擬した振動系を示す説明図
である。
FIG. 6 is an explanatory diagram showing a vibration system simulating one of the conventional techniques.

【図7】別の従来技術を模擬した振動系を示す説明図で
ある。
FIG. 7 is an explanatory diagram showing a vibration system simulating another conventional technique.

【図8】更に別の従来技術を模擬した振動系を示す説明
図である。
FIG. 8 is an explanatory view showing a vibration system simulating still another conventional technique.

【図9】本発明の作用を説明するための模擬振動系を示
す説明図である。
FIG. 9 is an explanatory diagram showing a simulated vibration system for explaining the operation of the present invention.

【図10】従来の核融合装置の主要部の配置を示す立断
面図である。
FIG. 10 is an elevational sectional view showing an arrangement of a main part of a conventional fusion device.

【図11】図10のXI−XI線に沿う部分平断面図であ
る。
FIG. 11 is a partial plan sectional view taken along line XI-XI in FIG. 10;

【図12】図10の一部を拡大して示す部分拡大立面図
である。
12 is a partially enlarged elevation view showing a part of FIG. 10 in an enlarged manner.

【図13】別の従来技術の要部を示す部分斜視図であ
る。
FIG. 13 is a partial perspective view showing a main part of another related art.

【図14】更に別の従来技術の要部を示す概念図であ
る。
FIG. 14 is a conceptual diagram showing a main part of still another conventional technique.

【符号の説明】 30 核融合装置 31 真空容器 33 支持構造 35 床 37 生体遮蔽 39 支持部 41 支持ビーム 43 調整部材 51 支持ビーム 53 張り出し部[Description of Signs] 30 Fusion device 31 Vacuum container 33 Support structure 35 Floor 37 Biological shielding 39 Support portion 41 Support beam 43 Adjusting member 51 Support beam 53 Overhang portion

Claims (5)

(57)【特許請求の範囲】(57) [Claims] 【請求項1】 中空ドーナツ状真空容器、トロイダルコ
イル、ポロイダルコイル等の構造物を有する核融合装置
において、該真空容器に作用する荷重を水平方向と鉛直
方向でそれぞれ支持し、水平方向荷重を該真空容器と生
体遮蔽又は架台との間に設けられ、前記真空容器の側部
の被支持面との間に熱膨張変位隙間を置いて対向する剛
支持柱である支持ビームで支持することを特徴とする核
融合装置の真空容器の支持方法。
1. A fusion device having a structure such as a hollow donut-shaped vacuum vessel, a toroidal coil, and a poloidal coil, wherein a load acting on the vacuum vessel is supported in a horizontal direction and a vertical direction, respectively, and the horizontal load is reduced by the vacuum. A side portion of the vacuum container, which is provided between the container and the living body shield or the gantry.
With a thermal expansion displacement gap between it and the supported surface
A method for supporting a vacuum vessel of a fusion device, wherein the method is supported by a support beam as a support column .
【請求項2】 前記生体遮蔽又は前記架台に張り出し部
を設け、該張り出し部から前記支持ビームを延ばしてい
ることを特徴とする請求項1に記載の核融合装置の真空
容器の支持方法。
2. The method for supporting a vacuum vessel of a nuclear fusion device according to claim 1, wherein an overhang portion is provided on the living body shield or the gantry, and the support beam extends from the overhang portion.
【請求項3】 前記真空容器の側部の前記被支持面に形
成された支持部に支持板又は支持フレームを設けている
ことを特徴とする請求項1に記載の核融合装置の真空容
器の支持方法。
3. A shape is formed on the supported surface on the side of the vacuum vessel.
The method for supporting a vacuum vessel of a nuclear fusion device according to claim 1, wherein a support plate or a support frame is provided on the formed support portion.
【請求項4】 前記真空容器の前記支持部と前記支持ビ
ームとの間の隙間に調整部材を介装し、該調整部材は該
真空容器の熱膨張を拘束しないように構成されているこ
とを特徴とする請求項1に記載の核融合装置の真空容器
の支持方法。
4. An adjusting member is interposed in a gap between the support portion and the support beam of the vacuum container, and the adjusting member is configured not to restrain thermal expansion of the vacuum container. The method for supporting a vacuum vessel of a nuclear fusion device according to claim 1, wherein:
【請求項5】 前記真空容器の鉛直方向荷重を、該真空
容器の下方に設置した支持脚で支持し、該真空容器の熱
膨張を拘束しないことを特徴とする請求項1に記載の核
融合装置の真空容器の支持方法。
5. The nuclear fusion device according to claim 1, wherein the vertical load of the vacuum vessel is supported by support legs provided below the vacuum vessel, and thermal expansion of the vacuum vessel is not restrained. The method of supporting the vacuum vessel of the device.
JP29085799A 1999-10-13 1999-10-13 Method for supporting vacuum vessel of fusion device Expired - Fee Related JP3354909B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP29085799A JP3354909B2 (en) 1999-10-13 1999-10-13 Method for supporting vacuum vessel of fusion device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP29085799A JP3354909B2 (en) 1999-10-13 1999-10-13 Method for supporting vacuum vessel of fusion device

Publications (2)

Publication Number Publication Date
JP2001108774A JP2001108774A (en) 2001-04-20
JP3354909B2 true JP3354909B2 (en) 2002-12-09

Family

ID=17761401

Family Applications (1)

Application Number Title Priority Date Filing Date
JP29085799A Expired - Fee Related JP3354909B2 (en) 1999-10-13 1999-10-13 Method for supporting vacuum vessel of fusion device

Country Status (1)

Country Link
JP (1) JP3354909B2 (en)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN108962406B (en) * 2018-08-01 2024-05-10 中广核研究院有限公司 Unidirectional sliding support device for reactor vessel

Also Published As

Publication number Publication date
JP2001108774A (en) 2001-04-20

Similar Documents

Publication Publication Date Title
JP2018508770A (en) Reactor module support structure
JP3354909B2 (en) Method for supporting vacuum vessel of fusion device
Aiello et al. The ITER EC H&CD upper launcher: seismic analysis
US7577229B2 (en) Method for limiting the maintenance loads applied to a fuel assembly of a nuclear reactor and fuel assembly
Tamura et al. Design of structural components for the helical reactor FFHR-d1A
JP3884837B2 (en) Isolation floor device
CN110454544A (en) A kind of non-linear rigidity vibration-isolating platform for optoelectronic device
CN219642556U (en) Compact type integrated supporting device for arranging main loop of reactor
JPS6242397Y2 (en)
JPH06249981A (en) Thermal insulating support
JPS6015040B2 (en) It's fuel storage.
JP2633876B2 (en) Nuclear fusion device
Viktor et al. Damping Optimization Of Base Isolated Components
CN217875803U (en) Steam generator adjusting device
JPH067255Y2 (en) Equipment support equipment
JPS607388A (en) Supporter for nuclear reactor containing vessel
CN213399014U (en) Novel optical platform
Tado et al. Dynamic analysis of the tokamak support system in ITER
CN115264479A (en) Steam generator adjusting device
Tsunematsu et al. Effect of seismic isolation on the Tokamak in ITER
JPH0821126A (en) Frame device for mounting base isolation device
EP0305171A1 (en) Seismic stop support
JPH07134188A (en) Highly aseismatic fuel assembly
JPH05240989A (en) Reactor pressure vessel stabilizer
JPH048396Y2 (en)

Legal Events

Date Code Title Description
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20020820

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20080927

Year of fee payment: 6

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20080927

Year of fee payment: 6

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090927

Year of fee payment: 7

LAPS Cancellation because of no payment of annual fees