JP3347534B2 - Magnetoresistance effect multilayer film - Google Patents

Magnetoresistance effect multilayer film

Info

Publication number
JP3347534B2
JP3347534B2 JP17259095A JP17259095A JP3347534B2 JP 3347534 B2 JP3347534 B2 JP 3347534B2 JP 17259095 A JP17259095 A JP 17259095A JP 17259095 A JP17259095 A JP 17259095A JP 3347534 B2 JP3347534 B2 JP 3347534B2
Authority
JP
Japan
Prior art keywords
layer
magnetic
multilayer film
nonmagnetic
ferromagnetic
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP17259095A
Other languages
Japanese (ja)
Other versions
JPH0923031A (en
Inventor
直也 長谷川
彰宏 牧野
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Alps Alpine Co Ltd
Original Assignee
Alps Electric Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Alps Electric Co Ltd filed Critical Alps Electric Co Ltd
Priority to JP17259095A priority Critical patent/JP3347534B2/en
Publication of JPH0923031A publication Critical patent/JPH0923031A/en
Application granted granted Critical
Publication of JP3347534B2 publication Critical patent/JP3347534B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B82NANOTECHNOLOGY
    • B82YSPECIFIC USES OR APPLICATIONS OF NANOSTRUCTURES; MEASUREMENT OR ANALYSIS OF NANOSTRUCTURES; MANUFACTURE OR TREATMENT OF NANOSTRUCTURES
    • B82Y25/00Nanomagnetism, e.g. magnetoimpedance, anisotropic magnetoresistance, giant magnetoresistance or tunneling magnetoresistance
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01FMAGNETS; INDUCTANCES; TRANSFORMERS; SELECTION OF MATERIALS FOR THEIR MAGNETIC PROPERTIES
    • H01F41/00Apparatus or processes specially adapted for manufacturing or assembling magnets, inductances or transformers; Apparatus or processes specially adapted for manufacturing materials characterised by their magnetic properties
    • H01F41/14Apparatus or processes specially adapted for manufacturing or assembling magnets, inductances or transformers; Apparatus or processes specially adapted for manufacturing materials characterised by their magnetic properties for applying magnetic films to substrates
    • H01F41/30Apparatus or processes specially adapted for manufacturing or assembling magnets, inductances or transformers; Apparatus or processes specially adapted for manufacturing materials characterised by their magnetic properties for applying magnetic films to substrates for applying nanostructures, e.g. by molecular beam epitaxy [MBE]
    • H01F41/302Apparatus or processes specially adapted for manufacturing or assembling magnets, inductances or transformers; Apparatus or processes specially adapted for manufacturing materials characterised by their magnetic properties for applying magnetic films to substrates for applying nanostructures, e.g. by molecular beam epitaxy [MBE] for applying spin-exchange-coupled multilayers, e.g. nanostructured superlattices

Landscapes

  • Engineering & Computer Science (AREA)
  • Chemical & Material Sciences (AREA)
  • Nanotechnology (AREA)
  • Crystallography & Structural Chemistry (AREA)
  • Power Engineering (AREA)
  • Manufacturing & Machinery (AREA)
  • Spectroscopy & Molecular Physics (AREA)
  • Physics & Mathematics (AREA)
  • Magnetic Heads (AREA)
  • Thin Magnetic Films (AREA)
  • Hall/Mr Elements (AREA)
  • Measurement Of Length, Angles, Or The Like Using Electric Or Magnetic Means (AREA)
  • Transmission And Conversion Of Sensor Element Output (AREA)
  • Measuring Magnetic Variables (AREA)
  • Physical Vapour Deposition (AREA)

Description

【発明の詳細な説明】DETAILED DESCRIPTION OF THE INVENTION

【0001】[0001]

【発明の属する技術分野】本発明は、磁気ヘッド、位置
センサ、回転センサ等に用いられる磁気抵抗効果素子用
の磁気抵抗効果多層膜に関する。
The present invention relates to a magnetoresistive multilayer film for a magnetoresistive element used for a magnetic head, a position sensor, a rotation sensor and the like.

【0002】[0002]

【従来の技術】従来、この種の用途に用いられている磁
気抵抗(MR)効果材料として、Ni-Fe合金薄膜
(パーマロイ薄膜)が知られているが、パーマロイ薄膜
の抵抗変化率は2〜3%が一般的である。従って、今
後、磁気記録における線記録密度およびトラック密度の
向上あるいは磁気センサにおける高分解能化に対応する
ためには、より抵抗変化率(MR比)の大きい磁気抵抗
効果材料が望まれている。
2. Description of the Related Art Conventionally, a Ni—Fe alloy thin film (permalloy thin film) is known as a magnetoresistive (MR) effect material used for this kind of application. 3% is common. Therefore, a magnetoresistive material having a higher resistance change rate (MR ratio) is desired in the future to improve the linear recording density and track density in magnetic recording or to increase the resolution in a magnetic sensor.

【0003】ところで近年、巨大磁気抵抗効果と呼ばれ
る現象が、Fe/Cr交互積層膜あるいはCo/Cu交
互積層膜などの多層薄膜で発見されている。これらの多
層薄膜においては、FeやCoなどからなる各強磁性金
属層の磁化がCrやCuなどからなる非磁性金属層を介
して磁気的な相互作用を起こし、積層された上下の強磁
性金属層の磁化が、外部磁場のないときは反平行状態を
保つように結合している。即ち、これらの構造において
は、非磁性金属層を介して交互に積層された強磁性金属
層が、一層毎に磁化の向きを反対方向に向けて積層され
ている。そして、これらの構造においては、適当な外部
磁界が印加されると、各強磁性金属層の磁化の向きが同
じ方向に揃うように変化する。
In recent years, a phenomenon called a giant magnetoresistance effect has been discovered in multilayer thin films such as an Fe / Cr alternating laminated film or a Co / Cu alternating laminated film. In these multilayer thin films, the magnetization of each ferromagnetic metal layer made of Fe or Co causes a magnetic interaction via a non-magnetic metal layer made of Cr, Cu, or the like, and the upper and lower ferromagnetic metal layers are stacked. The layers are coupled so that their magnetizations remain antiparallel in the absence of an external magnetic field. That is, in these structures, the ferromagnetic metal layers alternately stacked via the non-magnetic metal layer are stacked with the direction of magnetization directed in the opposite direction for each layer. In these structures, when an appropriate external magnetic field is applied, the direction of magnetization of each ferromagnetic metal layer changes so as to be aligned in the same direction.

【0004】前記の構造において、各強磁性金属層の磁
化が反平行状態の場合と平行状態の場合では、Fe強磁
性金属層とCr非磁性金属層の界面、あるいは、Co強
磁性金属層とCu非磁性金属層の界面における伝導電子
の散乱のされ方が、伝導電子のスピンに依存して異なる
といわれている。従ってこの機構に基づくと、各強磁性
金属層の磁化の向きが反平行状態の時は電気抵抗が高
く、平行状態の時は電気抵抗が低くなり、抵抗変化率と
して従来のパーマロイ薄膜を上回る、いわゆる、巨大磁
気抵抗効果を発生する。このようにこれらの多層薄膜
は、従来のNi-Feの単層薄膜とは根本的に異なるM
R発生機構を有している。
In the above structure, when the magnetization of each ferromagnetic metal layer is in the antiparallel state and in the parallel state, the interface between the Fe ferromagnetic metal layer and the Cr nonmagnetic metal layer or the Co ferromagnetic metal layer It is said that the way in which conduction electrons are scattered at the interface of the Cu non-magnetic metal layer differs depending on the spin of conduction electrons. Therefore, based on this mechanism, when the direction of magnetization of each ferromagnetic metal layer is in an anti-parallel state, the electric resistance is high, and when it is in a parallel state, the electric resistance is low, and the resistance change rate exceeds the conventional permalloy thin film, A so-called giant magnetoresistance effect occurs. Thus, these multilayer thin films are fundamentally different from the conventional single-layer thin film of Ni—Fe.
It has an R generation mechanism.

【0005】しかしながら、これらの多層膜において
は、各強磁性金属層の磁化の向きを反平行とするように
作用する強磁性金属層間の磁気的相互作用が強すぎるた
めに、各強磁性金属層の磁化の向きを平行に揃えるため
には、非常に大きな外部磁界を作用させなくてはならな
い問題がある。従って、強い磁界をかけないと大きな抵
抗変化が起こらないことになり、磁気ヘッドなどのよう
に磁気記録媒体からの微小な磁界を検出する装置に適用
した場合に満足な高い感度が得られないという問題があ
った。
However, in these multilayer films, since the magnetic interaction between the ferromagnetic metal layers that acts to make the magnetization directions of the ferromagnetic metal layers antiparallel is too strong, There is a problem that an extremely large external magnetic field must be applied to make the magnetization directions parallel to each other. Therefore, a large change in resistance does not occur unless a strong magnetic field is applied, and satisfactory high sensitivity cannot be obtained when applied to an apparatus for detecting a minute magnetic field from a magnetic recording medium such as a magnetic head. There was a problem.

【0006】この問題を解決するためには、強磁性金属
層間に働く磁気的な相互作用を過度に強くしないよう
に、CrやCuなどからなる非磁性金属層の厚さを調整
し、各強磁性金属層の磁化の向きの相対的な方向を磁気
的相互作用とは別の方法により制御することが有効と思
われる。従来、このような磁化の相対的な方向制御技術
として、FeMnなどの反強磁性層を設けることによ
り、一方の強磁性金属層の磁化の向きを固定し、この強
磁性金属層の磁化の向きが外部磁界に対して動き難いよ
うに構成し、他方の強磁性金属層の磁化の向きを自由に
動けるように構成することにより、微小な磁界による動
作を可能にした技術が提案されている。
In order to solve this problem, the thickness of the nonmagnetic metal layer made of Cr, Cu, or the like is adjusted so that the magnetic interaction acting between the ferromagnetic metal layers is not excessively increased. It seems effective to control the relative direction of the magnetization of the magnetic metal layer by a method different from the magnetic interaction. Conventionally, an antiferromagnetic layer such as FeMn is provided as such a relative magnetization direction control technique to fix the magnetization direction of one ferromagnetic metal layer and to set the magnetization direction of this ferromagnetic metal layer. There has been proposed a technology in which the device is configured to be hard to move with respect to an external magnetic field, and configured to be able to freely move the direction of magnetization of the other ferromagnetic metal layer, thereby enabling operation with a minute magnetic field.

【0007】図9は、特開平6ー60336号公報に開
示されているこの種の技術を応用した構造の磁気抵抗セ
ンサの一例を示すものである。図9に示す磁気抵抗セン
サAは、非磁性の基板1に、第1の磁性層2と非磁性ス
ペーサ3と第2の磁性層4と反強磁性層5を積層して構
成されるものであり、第2の磁性層4の磁化の向きBが
反強磁性層5による磁気的交換結合により固定されると
ともに、第1の磁性層2の磁化の向きCが、印加磁界が
ない時に第2の磁性層4の磁化の向きBに対して直角に
向けられている。ただし、この第1の磁性層2の磁化の
向きCは固定されないので外部磁界により回転できるよ
うになっている。図9に示す構造に対して印加磁界hを
付加すると、印加磁界hの方向に応じて第1の磁性層2
の磁化の向きCが点線矢印の如く回転するので、第1の
磁性層2と第2の磁性層4との間で磁化に角度差が生じ
ることになるために、抵抗変化が起こり、これにより磁
場検出ができるようになる。
FIG. 9 shows an example of a magnetoresistive sensor having a structure to which this kind of technique disclosed in Japanese Patent Application Laid-Open No. 6-60336 is applied. The magnetoresistive sensor A shown in FIG. 9 is configured by laminating a first magnetic layer 2, a nonmagnetic spacer 3, a second magnetic layer 4, and an antiferromagnetic layer 5 on a nonmagnetic substrate 1. The direction B of magnetization of the second magnetic layer 4 is fixed by magnetic exchange coupling by the antiferromagnetic layer 5, and the direction C of magnetization of the first magnetic layer 2 is set to the second direction when there is no applied magnetic field. Are oriented at right angles to the direction B of magnetization of the magnetic layer 4. However, since the direction C of magnetization of the first magnetic layer 2 is not fixed, the first magnetic layer 2 can be rotated by an external magnetic field. When an applied magnetic field h is added to the structure shown in FIG. 9, the first magnetic layer 2 is changed in accordance with the direction of the applied magnetic field h.
Is rotated as shown by the dotted arrow, and an angle difference occurs in the magnetization between the first magnetic layer 2 and the second magnetic layer 4, so that a resistance change occurs. The magnetic field can be detected.

【0008】次に、一方の磁性層の磁化の向きを固定
し、他方の磁性層の磁化の向きを自由とした構成の磁気
抵抗センサの他の例として、図10に示すように、基板
6上にNiOの反強磁性層7と、Ni-Feの磁性層8
と、Cuの非磁性金属層9と、Ni-Feの磁性層10
と、Cuの非磁性金属層11と、Ni-Feの磁性層1
2と、FeMnの反強磁性層13を順次積層した構造の
磁気抵抗センサBが知られている。
Next, as another example of a magnetoresistive sensor having a configuration in which the magnetization direction of one magnetic layer is fixed and the magnetization direction of the other magnetic layer is free, as shown in FIG. NiO antiferromagnetic layer 7 and Ni—Fe magnetic layer 8
And a nonmagnetic metal layer 9 of Cu and a magnetic layer 10 of Ni—Fe
, A nonmagnetic metal layer 11 of Cu, and a magnetic layer 1 of Ni—Fe
2 and a magnetoresistive sensor B having a structure in which an antiferromagnetic layer 13 of FeMn is sequentially laminated.

【0009】この例の構造においては、反強磁性層7、
13によりそれらに隣接する強磁性金属層8、12の磁
化がそれぞれ固定され、強磁性金属層8、12の間に非
磁性金属層9、11を介して挟まれた強磁性金属層10
の磁化が外部磁界に応じて回転可能に構成されている。
図9あるいは図10に示す構造の磁気抵抗センサである
と、微小な印加磁界の変化に対して磁気抵抗センサAと
磁気抵抗センサBの電気抵抗が直線的に感度良く変化す
る。また、第1の磁性層2としてNi-Feなどの軟磁
性材料を用いると、その軟磁気特性を利用でき、ヒステ
リシスが少ないなどの利点を有する。
In the structure of this example, the antiferromagnetic layer 7,
The magnetization of the ferromagnetic metal layers 8 and 12 adjacent to them is fixed by 13, and the ferromagnetic metal layers 10 and 12 sandwiched between the ferromagnetic metal layers 8 and 12 via the nonmagnetic metal layers 9 and 11.
Is configured to be rotatable according to an external magnetic field.
In the case of the magnetoresistive sensor having the structure shown in FIG. 9 or FIG. 10, the electric resistance of the magnetoresistive sensor A and the magnetoresistive sensor B changes linearly with high sensitivity to a small change in the applied magnetic field. When a soft magnetic material such as Ni—Fe is used for the first magnetic layer 2, the soft magnetic characteristics can be used, and there are advantages such as a small hysteresis.

【0010】[0010]

【発明が解決しようとする課題】しかしながら、図9あ
るいは図10に示す構造の磁気抵抗センサはFeMnの
反強磁性層5で隣接する第2の磁性層4の磁化を固定す
るか、上下のFeMnとNiOの反強磁性層7、13で
それらの間の強磁性金属層8、12の磁化を固定し、そ
れらの間の磁性層10の磁化を自由にする構造であるの
で、巨大磁気抵抗効果に寄与するNi-Fe(磁性層)
/Cu(非磁性金属層)の界面の数を多くできない制約
があり、MR比の大きさに制約を生じる問題があった。
また、反強磁性層5、7の構成材料として用いられるF
eMnは、耐食性および耐環境性の面から見て不利な問
題がある。
However, in the magnetoresistive sensor having the structure shown in FIG. 9 or FIG. 10, the magnetization of the adjacent second magnetic layer 4 is fixed by the antiferromagnetic layer 5 of FeMn, or the upper and lower FeMn layers are fixed. And the antiferromagnetic layers 7 and 13 of NiO fix the magnetization of the ferromagnetic metal layers 8 and 12 therebetween and free the magnetization of the magnetic layer 10 between them. Ni-Fe (magnetic layer) that contributes to the temperature
There is a limitation that the number of interfaces of / Cu (nonmagnetic metal layer) cannot be increased, and there is a problem that the magnitude of the MR ratio is limited.
Further, F used as a constituent material of the antiferromagnetic layers 5 and 7
eMn has a disadvantageous problem in terms of corrosion resistance and environmental resistance.

【0011】次に、図9と図10に示す構造の磁気抵抗
センサの変形的な構造例として、図11に示すように、
ガラス基板15上に、Cuの非磁性層16とCoの硬質
磁性材料層17とCuの非磁性層18とNi-Feの軟
質磁性材料膜19を複数回繰り返し積層した構造が知ら
れている。図11に示す構造の磁気抵抗センサは、硬質
磁性材料膜17と軟質磁性材料膜19の保磁力差を利用
し、非磁性層18の厚さを所定の厚さに調整すること
で、両磁性層17、19の磁化の向きを平行にあるいは
反平行にすることができ、これにより巨大磁気抵抗効果
を得ることができる。そしてこの構造の磁気抵抗センサ
は、積層数を自由に変更できるので、図9と図10に示
す構造の磁気抵抗センサよりも大きなMR比を得ること
ができる特徴がある。
Next, as a modified example of the magnetoresistive sensor having the structure shown in FIGS. 9 and 10, as shown in FIG.
A structure is known in which a nonmagnetic layer 16 of Cu, a hard magnetic material layer 17 of Co, a nonmagnetic layer 18 of Cu, and a soft magnetic material film 19 of Ni—Fe are repeatedly laminated on a glass substrate 15 a plurality of times. The magnetoresistive sensor having the structure shown in FIG. 11 utilizes the difference in coercive force between the hard magnetic material film 17 and the soft magnetic material film 19 to adjust the thickness of the non-magnetic layer 18 to a predetermined thickness. The magnetization directions of the layers 17 and 19 can be made parallel or antiparallel, and thereby a giant magnetoresistance effect can be obtained. The magnetoresistive sensor having this structure is characterized in that the number of layers can be freely changed, so that a larger MR ratio can be obtained than the magnetoresistive sensors having the structures shown in FIGS.

【0012】一方、他の構造の磁気抵抗センサとして、
図12に示すように、基板20の上に、Cuの非磁性層
層21とCoの強磁性層22を交互に繰り返し積層した
構造のものも知られている。この場合、感度を満足させ
るために、Cuの非磁性層厚を調整することによって強
磁性層間に働く磁気的相互作用を適度に弱める工夫がな
されている。この例の構造においても積層数を自由に変
更できるので図9と図10に示す構造の磁気センサより
も大きなMR比を得ることができる特徴がある。なお、
図12に示す構造において、強磁性層22を構成する元
素として、Coの代わりに、Co-Fe合金あるいはC
o-Fe-Ni合金を用いる構造も知られている。
On the other hand, as a magnetoresistive sensor having another structure,
As shown in FIG. 12, a structure in which a Cu nonmagnetic layer 21 and a Co ferromagnetic layer 22 are alternately and repeatedly laminated on a substrate 20 is also known. In this case, in order to satisfy the sensitivity, an attempt has been made to appropriately reduce the magnetic interaction acting between the ferromagnetic layers by adjusting the thickness of the nonmagnetic layer of Cu. Even in the structure of this example, the number of laminations can be freely changed, so that there is a feature that a larger MR ratio can be obtained than the magnetic sensor having the structure shown in FIGS. In addition,
In the structure shown in FIG. 12, instead of Co, a Co—Fe alloy or C
A structure using an o-Fe-Ni alloy is also known.

【0013】ところが、図12に示す構造の磁気抵抗セ
ンサは、耐熱性に劣る欠点があり、350℃以上の温度
を履歴した場合には使用できない問題がある。このた
め、磁気抵抗センサとして用いた場合に、センサやヘッ
ドを製造する際に必要な加熱処理(例えば樹脂の硬化処
理など)を経た場合に特性が劣化したり、電流等の負荷
により発熱を生じ、その発熱が長時間にわたった場合に
特性が劣化するおそれがあった。これは、強磁性層22
を構成するCoやFeが、Cuと相分離傾向にあるため
に、高温に加熱されても混ざらないが、加熱により各層
を構成する結晶粒が部分的に粗大化し、層構造が変化す
ることによるものと推定される。例えば、図13に示す
ようにCuの非磁性層21とCoの強磁性層22が順次
積層され、各層が結晶粒の集合した層構造をなしていて
も、加熱されて各結晶粒が無秩序に粗大化すると、図1
4に示すような非磁性層21’と強磁性層22’の積層
構造となり、部分的に非磁性層21の結晶粒の間に粗大
化した強磁性層22’の一部が割り込んだ構造となるこ
とがあると考えられ、このようなことが原因となって積
層構造が崩れ、磁気抵抗効果が劣化するものと思われ
る。
However, the magnetoresistive sensor having the structure shown in FIG. 12 has a drawback that heat resistance is inferior and cannot be used when a temperature of 350 ° C. or more is recorded. For this reason, when used as a magnetoresistive sensor, the characteristics deteriorate when subjected to a heating process (for example, a hardening process of a resin) required for manufacturing the sensor or the head, and heat is generated by a load such as an electric current. If the heat is generated for a long time, the characteristics may be deteriorated. This is because the ferromagnetic layer 22
Is not mixed even when heated to a high temperature because of the tendency of phase separation with Cu, but the crystal grains constituting each layer are partially coarsened by heating, and the layer structure changes. It is presumed that. For example, as shown in FIG. 13, even when a nonmagnetic layer 21 of Cu and a ferromagnetic layer 22 of Co are sequentially stacked and each layer has a layered structure in which crystal grains are aggregated, each crystal grain is disordered by heating. Fig. 1
4 has a laminated structure of a nonmagnetic layer 21 ′ and a ferromagnetic layer 22 ′, in which a part of the coarsened ferromagnetic layer 22 ′ is interposed between crystal grains of the nonmagnetic layer 21. It is considered that the stacked structure collapses and the magnetoresistance effect is deteriorated due to such factors.

【0014】次に、図11に示す構造の磁気抵抗センサ
は、低磁界でも作動し、高感度な利点を有するが、Ni
とCuは固溶し易い(混ざり合いやすい)系に属するた
めに、耐熱性は図12の構造のものよりも更に悪い欠点
がある。また、磁性層として、CoとNi-Feという
全く異種の物質を用いているために、伝導電子の受ける
ポテンシャルがそれぞれの層界面で異なり、それによる
伝導電子の散乱、即ち、巨大磁気抵抗効果に寄与するス
ピン依存散乱以外の散乱が増加するので、MR比は図1
2に示す構造の磁気抵抗センサよりも小さくなる傾向に
ある。
Next, the magnetoresistive sensor having the structure shown in FIG. 11 operates even in a low magnetic field and has an advantage of high sensitivity.
Since Cu and Cu belong to a system in which solid solution is easy to form a solid solution (easy to mix), heat resistance has a disadvantage that it is worse than that of the structure of FIG. In addition, since completely different materials such as Co and Ni-Fe are used for the magnetic layer, potentials at which conduction electrons are received are different at each layer interface, which causes scattering of conduction electrons, that is, a giant magnetoresistance effect. Since the scattering other than the contributing spin-dependent scattering increases, the MR ratio is
2 tends to be smaller than the magnetoresistive sensor having the structure shown in FIG.

【0015】本発明は前記事情に鑑みてなされたもので
あり、図9あるいは図10に示す従来構造ではできなか
った磁性層の多層膜構造を実現できる積層構造にするこ
とにより、高いMR比を得ることができると同時に、結
晶粒の粗大化が起こり難い層構造とすることにより耐熱
性に優れさせた磁気抵抗効果多層膜を提供することを目
的とする。
The present invention has been made in view of the above circumstances, and has a high MR ratio by forming a multilayer structure capable of realizing a multilayer structure of magnetic layers which cannot be achieved by the conventional structure shown in FIG. 9 or FIG. It is an object of the present invention to provide a magnetoresistive multilayer film having excellent heat resistance by having a layer structure in which crystal grains are not likely to be coarsened while being obtained.

【0016】[0016]

【課題を解決するための手段】請求項1記載の発明は前
記課題を解決するために、強磁性層と非磁性層とが交互
に積層された多層膜からなる磁気抵抗効果多層膜であっ
て、前記強磁性層が、X-M-Zなる組成を有する軟磁性
膜であり、この軟磁性膜が、平均結晶粒径20nm以下
の元素Xの結晶粒と、前記元素Xの結晶粒の粒界に析出
された元素Mの炭化物または窒化物とに分離され、前記
強磁性層において該強磁性層と隣接する非磁性層との界
面に前記非磁性層に隣接させて前記元素Mの炭化物また
は窒化物が存在されてなるものである。ただし前記元素
Xは、Fe、Co、Niのうち、1種または2種以上を
示し、元素Mは、Ti、Zr、Hf、V、Nb、Ta、
Mo、Wのうち、1種または2種以上を示し、元素Z
は、C、Nのうち、1種または2種を示す。請求項2記
載の発明は前記課題を解決するために、非磁性層を挟ん
で低保磁力磁性層と高保磁力磁性層が設けられた磁気ユ
ニット層が複数積層されてなり、前記低保磁力磁性層
が、X-M-Zなる組成を有し、平均結晶粒径20nm以
下の元素Xの結晶粒と前記元素Xの結晶粒の粒界に析出
された元素Mの炭化物または窒化物とに分離され、前記
強磁性層において該強磁性層と隣接する非磁性層との界
面に前記非磁性層に隣接させて前記元素Mの炭化物また
は窒化物が存在されてなり、前記高保磁力磁性層が、元
素Xからなるものである。ただし前記元素Xは、Fe、
Co、Niのうち、1種または2種以上を示し、元素M
は、Ti、Zr、Hf、V、Nb、Ta、Mo、Wのう
ち、1種または2種以上を示し、元素Zは、C、Nのう
ち、1種または2種を示す。
According to a first aspect of the present invention, there is provided a magnetoresistance effect multilayer film comprising a multilayer film in which ferromagnetic layers and nonmagnetic layers are alternately stacked. The ferromagnetic layer is a soft magnetic film having a composition of XMZ, and the soft magnetic film is formed of a crystal grain of the element X having an average crystal grain size of 20 nm or less and a crystal grain of the element X. Precipitated in the world
Separated into a carbide or nitride of elemental M, wherein
In the ferromagnetic layer, the boundary between the ferromagnetic layer and the adjacent nonmagnetic layer
A surface of the element M adjacent to the nonmagnetic layer,
Is the one in which a nitride is present . Here, the element X represents one or more of Fe, Co, and Ni, and the element M represents Ti, Zr, Hf, V, Nb, Ta,
One or more of Mo and W;
Represents one or two of C and N. According to a second aspect of the present invention, in order to solve the above-mentioned problem, a plurality of magnetic unit layers provided with a low coercive force magnetic layer and a high coercive force magnetic layer sandwiching a nonmagnetic layer are laminated. The layer has a composition of XMZ, and precipitates at a crystal grain of the element X having an average crystal grain size of 20 nm or less and a grain boundary of the crystal grain of the element X.
Separated into a carbide or nitride of elemental M, wherein
In the ferromagnetic layer, the boundary between the ferromagnetic layer and the adjacent nonmagnetic layer
A surface of the element M adjacent to the nonmagnetic layer,
Is a nitride in which the high coercivity magnetic layer is made of the element X. However, the element X is Fe,
One or more of Co and Ni, and the element M
Represents one or more of Ti, Zr, Hf, V, Nb, Ta, Mo, and W, and the element Z represents one or two of C and N.

【0017】請求項3記載の発明は前記課題を解決する
ために、少なくとも磁化の向きがピン止めされた強磁性
層と、磁化の向きが自由にされた強磁性層とが、非磁性
層を挟んで積層されてなる磁気抵抗効果多層膜であっ
て、前記磁化の向きが自由にされた強磁性層が、X-M-
Zなる組成からなる低保磁力磁性膜であり、この低保磁
力磁性膜が、平均結晶粒径20nm以下の元素Xの結晶
粒と、前記元素Xの結晶粒の粒界に析出された元素Mの
炭化物または窒化物とに分離され、前記強磁性層におい
前記磁化の向きが自由にされた強磁性層と隣接する非
磁性層との界面に前記非磁性層に隣接させて前記元素M
の炭化物または窒化物が存在されてなるものである。た
だし前記元素Xは、Fe、Co、Niのうち、1種また
は2種以上を示し、元素Mは、Ti、Zr、Hf、V、
Nb、Ta、Mo、Wのうち、1種または2種以上を示
し、元素Zは、C、Nのうち、1種または2種を示す。
According to a third aspect of the present invention, in order to solve the above problem, at least a ferromagnetic layer whose magnetization direction is pinned and a ferromagnetic layer whose magnetization direction is made free include a nonmagnetic layer. A magnetoresistive effect multilayer film sandwiched therebetween, wherein the ferromagnetic layer in which the direction of magnetization is made free is XM-
Z is a low coercive force magnetic film having a composition of Z. The low coercive force magnetic film is composed of a crystal grain of an element X having an average crystal grain size of 20 nm or less and an element M precipitated at a grain boundary of the crystal grain of the element X. At the interface between the ferromagnetic layer in which the magnetization direction is made free in the ferromagnetic layer and the adjacent nonmagnetic layer, and the element M
Of carbides or nitrides. Here, the element X represents one or more of Fe, Co, and Ni, and the element M represents Ti, Zr, Hf, V,
One or more of Nb, Ta, Mo and W are shown, and the element Z shows one or two of C and N.

【0018】請求項記載の発明は、請求項2に記載の
元素Xの結晶粒の粒界に、非磁性層の構成元素の一部が
偏析されてなるものである。請求項記載の発明は、
求項1又は3に記載の軟磁性膜あるいは請求項2に記載
の低保磁力磁性層が、下記の組成を有するものである。 X100-a-bab ここで組成比a,bは原子%で、0.5≦a≦8、0.5≦b
≦10なる関係を満足するものとする。請求項記載の
発明は、請求項記載の組成比a,bが原子%で1≦a≦
6、0.5≦b≦7なる関係を満足するものである。
According to a fourth aspect of the present invention, the constituent elements of the nonmagnetic layer are partially segregated at the grain boundaries of the crystal grains of the element X according to the second aspect. The invention according to claim 5 is a contract
According to the soft magnetic film or Claim 2 according to Motomeko 1 or 3
The low coercivity magnetic layer has the following composition. X 100-ab M a Z b where the composition ratios a and b are atomic%, and 0.5 ≦ a ≦ 8, 0.5 ≦ b
It is assumed that the relationship of ≦ 10 is satisfied. According to a sixth aspect of the present invention, the composition ratio a, b of the fifth aspect is 1 ≦ a ≦
6. The relationship of 0.5 ≦ b ≦ 7 is satisfied.

【0019】[0019]

【発明の実施の形態】BEST MODE FOR CARRYING OUT THE INVENTION

「作用」強磁性層と非磁性層とが交互に積層された多層
膜からなり、強磁性層が、X-M-Z、即ち、Co(C
o,Fe,Ni)-M-(C,N)の組成を有する軟磁性膜
であり、この軟磁性膜が、平均結晶粒径20nm以下の
(Co,Fe,Ni)の結晶粒と、元素Mの炭化物または
窒化物とに分離されてなる構造であると、無磁場状態に
おいて層毎の強磁性層が異なる磁化の向きを有するに対
し、磁場を印加した状態において隣接する強磁性層の磁
化の向きが揃うようになり、磁気抵抗変化を生じる。ま
た、X-M-Z、即ち、(Co,Fe,Ni)-M-(C,
N)なる組成の強磁性層であれば、元素Mの炭化物また
は窒化物が(Co,Fe,Ni)の結晶粒の粒界に析出
し、この結晶粒の粗大化を抑制するので、熱処理後も強
磁性層の軟磁気特性が失われず、高感度な特性を示すと
ともに、粒の粗大化による層界面の乱れも生じないので
優れた磁気抵抗効果が得られ、耐熱性も高くなる。
"Operation" The ferromagnetic layer is composed of a multilayer film in which ferromagnetic layers and non-magnetic layers are alternately stacked, and the ferromagnetic layer is formed of XMZ, that is, Co (C
a soft magnetic film having a composition of o, Fe, Ni) -M- (C, N), wherein the soft magnetic film is composed of (Co, Fe, Ni) crystal grains having an average crystal grain size of 20 nm or less; When the structure is separated from the carbide or nitride of M, the ferromagnetic layers of the respective layers have different magnetization directions in the absence of a magnetic field, whereas the magnetization of the adjacent ferromagnetic layers in the state of applying a magnetic field is different. Are aligned, and a change in magnetoresistance occurs. Also, XMZ, that is, (Co, Fe, Ni) -M- (C,
In the case of a ferromagnetic layer having a composition of N), carbides or nitrides of the element M precipitate at the grain boundaries of the (Co, Fe, Ni) crystal grains and suppress the coarsening of the crystal grains. In addition, the soft magnetic characteristics of the ferromagnetic layer are not lost, and high sensitivity characteristics are exhibited. In addition, since the layer interface is not disturbed by coarsening of the grains, an excellent magnetoresistance effect is obtained, and the heat resistance is also increased.

【0020】非磁性層を挟んで低保磁力磁性層と高保磁
力磁性層が設けられ、低保磁力磁性層が、(Co,Fe,
Ni)-M-(C,N)なる組成を有し、平均結晶粒径2
0nm以下の(Co,Fe,Ni)の結晶粒と元素Mの炭
化物または窒化物とに分離されてなり、前記高保磁力磁
性層が、(Co,Fe,Ni)からなると、非磁性層を挟
んで設けられる低保磁力磁性層と高保磁力磁性層が(C
o,Fe,Ni)-M-(C,N)なる組成の層か、(Co,
Fe,Ni)の層のどちらかであり、どちらにおいても
Coを主成分とする層である場合には、非磁性層を挟ん
で低保磁力磁性層と高保磁力磁性層が設けられる構造で
異種材料が設けられていた図11に示す従来構造よりも
高いMR比が得られる。また、元素Mの炭化物または窒
化物は、(Co,Fe,Ni)の結晶粒の粗大化を抑制し
て低保磁力磁性層自体の結晶粒の粗大化を抑制するのに
加え隣接する他の層の結晶粒の粗大化をも抑制するの
で、低保磁力磁性層と、それに隣接する非磁性層の結晶
粒の粗大化を抑制し、更に、非磁性層の結晶粒の粗大化
を抑制するので、非磁性層に隣接する高保磁力磁性層の
結晶粒の粗大化も抑制する。
A low coercive force magnetic layer and a high coercive force magnetic layer are provided with the nonmagnetic layer interposed therebetween, and the low coercive force magnetic layer is made of (Co, Fe,
Ni) -M- (C, N) with an average crystal grain size of 2
When the high coercivity magnetic layer is separated into (Co, Fe, Ni) crystal grains of 0 nm or less and carbides or nitrides of the element M, and the high coercivity magnetic layer is made of (Co, Fe, Ni), the nonmagnetic layer is sandwiched. The low coercive force magnetic layer and the high coercive force magnetic layer
o, Fe, Ni) -M- (C, N) or (Co,
Fe, Ni), and in each case a layer containing Co as a main component, a structure in which a low coercive force magnetic layer and a high coercive force magnetic layer are provided with a nonmagnetic layer interposed therebetween. An MR ratio higher than that of the conventional structure shown in FIG. 11 in which the material is provided can be obtained. In addition, the carbide or nitride of the element M suppresses the coarsening of the crystal grains of (Co, Fe, Ni) to suppress the coarsening of the crystal grains of the low coercive force magnetic layer itself. Since the coarsening of the crystal grains of the layer is also suppressed, the coarsening of the crystal grains of the low-coercivity magnetic layer and the nonmagnetic layer adjacent thereto is suppressed, and further, the coarsening of the crystal grains of the nonmagnetic layer is suppressed. Therefore, coarsening of crystal grains of the high coercivity magnetic layer adjacent to the nonmagnetic layer is also suppressed.

【0021】次に、少なくとも磁化の向きがピン止めさ
れた強磁性層と、磁化の向きが自由にされた強磁性層と
が、非磁性層を挟んで積層されてなる磁気抵抗効果多層
膜であって前記磁化の向きが自由にされた強磁性層が、
(Co,Fe,Ni)-M-(C,N)なる組成の軟磁性膜
であり、この軟磁性膜が、平均結晶粒径20nm以下の
(Co,Fe,Ni)の結晶粒と、元素Mの炭化物または
窒化物とに分離している構造であれば、磁化の向きが自
由にされた強磁性層の磁化の向きが外部磁場で感度良く
変化するので、磁気抵抗効果を得ることができる。
Next, at least a ferromagnetic layer in which the direction of magnetization is pinned and a ferromagnetic layer in which the direction of magnetization is made free are laminated with a magnetoresistance effect multilayer film sandwiching a nonmagnetic layer. The ferromagnetic layer in which the direction of the magnetization is set free is
A soft magnetic film having a composition of (Co, Fe, Ni) -M- (C, N), wherein the soft magnetic film comprises (Co, Fe, Ni) crystal grains having an average crystal grain size of 20 nm or less, If the structure is separated from the carbide or nitride of M, the magnetization direction of the ferromagnetic layer whose magnetization direction is set free changes with an external magnetic field with high sensitivity, so that the magnetoresistance effect can be obtained. .

【0022】前記(Co,Fe,Ni)の結晶粒の粒界
に、この結晶粒の粗大化を抑止する元素Mの炭化物また
は窒化物が析出されてなることで、隣接する他の層の結
晶粒の粗大化も抑制される。更に、(Co,Fe,Ni)
の結晶粒の粒界に、非磁性層の構成元素の一部が偏析さ
れてなる構成であると、非磁性層の構成元素が前記結晶
粒の粒界に析出して保磁力が高まる。ただし、低保磁力
層と高保磁力層を構成する強磁性層の結晶粒は、本質的
に同じ組成の結晶相なので、両層で伝導電子の受けるポ
テンシャルが同一であり、巨大磁気抵抗効果に寄与する
スピン依存散乱以外の散乱が少なく、MR比を高められ
る。
At the grain boundaries of the (Co, Fe, Ni) crystal grains, carbides or nitrides of the element M which suppress the coarsening of the crystal grains are precipitated, so that the crystal of another adjacent layer is formed. Grain coarsening is also suppressed. Further, (Co, Fe, Ni)
In a configuration in which some of the constituent elements of the nonmagnetic layer are segregated at the grain boundaries of the crystal grains, the constituent elements of the nonmagnetic layer precipitate at the grain boundaries of the crystal grains, and the coercive force increases. However, since the crystal grains of the ferromagnetic layers constituting the low coercive force layer and the high coercive force layer are essentially crystal phases of the same composition, the potentials at which conduction electrons receive in both layers are the same, contributing to the giant magnetoresistance effect. Scattering other than the spin-dependent scattering, and the MR ratio can be increased.

【0023】次に、X-M-Zなる組成の層の中でも、X
100-a-babなる組成であることが好ましく、その場
合に、組成比a,bは原子%で、0.5≦a≦8、0.5≦b
≦10なる関係を満足するものが好ましく、その場合に
特に優れた磁気特性が得られる。また、前記組成比a,b
が原子%で、1≦a≦6、0.5≦b≦7なる関係を満足
する場合が特に好ましい。
Next, among the layers having the composition X—M—Z, X
Preferably, the composition is 100-ab M a Z b , in which case the composition ratios a and b are atomic%, and 0.5 ≦ a ≦ 8 and 0.5 ≦ b.
Those satisfying the relationship of ≦ 10 are preferred, and in this case, particularly excellent magnetic properties are obtained. Further, the composition ratio a, b
Is atomic%, and it is particularly preferable that the relationship of 1 ≦ a ≦ 6 and 0.5 ≦ b ≦ 7 is satisfied.

【0024】以下、図面を参照して本発明について更に
詳細に説明する。図1は本発明に係る磁気抵抗効果多層
膜の第1形態例を示すもので、この例の磁気抵抗効果多
層膜Eは、非磁性体の基板30上に、非磁性体層31と
強磁性層32とを繰り返し必要数積層して構成されてい
る。
Hereinafter, the present invention will be described in more detail with reference to the drawings. FIG. 1 shows a first embodiment of a magnetoresistive multilayer film according to the present invention. In this example, a magnetoresistive multilayer film E comprises a nonmagnetic substrate 31 and a nonmagnetic layer 31 on a nonmagnetic substrate 30. A required number of layers 32 are repeatedly laminated.

【0025】前記基板30は、ガラス、Si、Al
23、TiC、SiC、Al23とTiCとの燒結体、
Znフェライトなどに代表される非磁性材料から形成さ
れる。なお、基板30の上面には、基板上面の凹凸やう
ねりを除去する目的であるいはその上に積層される層の
結晶整合性を良好にするなどの目的で被覆層やバッファ
層を適宜設けても良い。なお、図1に示す例では基板3
0と接する第1層は非磁性層31となっているが、強磁
性層32を第1層としても良い。前記非磁性層31は、
Cu、Au、Ag、Ruなどに代表される非磁性体から
なり、10〜50Åの厚さに形成されている。ここで非
磁性膜31の厚さが10Åより薄いと、非磁性層31の
ピンホール等を通して強磁性層どうしが磁気的に直接つ
ながってしまうために好ましくなく、50Åより厚い
と、非磁性層31を分流する伝導電子が多くなりすぎ、
スピン依存散乱をせずに非磁性層31中を通過する割合
が増えてMR比が低下するので好ましくない。
The substrate 30 is made of glass, Si, Al
2 O 3 , TiC, SiC, sintered body of Al 2 O 3 and TiC,
It is formed from a non-magnetic material typified by Zn ferrite and the like. Note that a coating layer or a buffer layer may be appropriately provided on the upper surface of the substrate 30 for the purpose of removing irregularities or undulations on the upper surface of the substrate or for the purpose of improving the crystal coherence of a layer laminated thereon. good. In the example shown in FIG.
Although the first layer in contact with 0 is the nonmagnetic layer 31, the ferromagnetic layer 32 may be the first layer. The non-magnetic layer 31 includes:
It is made of a nonmagnetic material typified by Cu, Au, Ag, Ru or the like, and is formed to a thickness of 10 to 50 °. Here, if the thickness of the nonmagnetic film 31 is less than 10 °, the ferromagnetic layers are directly connected magnetically through pinholes or the like of the nonmagnetic layer 31. Too many conduction electrons shunt
It is not preferable because the ratio of passing through the nonmagnetic layer 31 without spin-dependent scattering increases and the MR ratio decreases.

【0026】前記強磁性層32は、X-M-Z系合金から
なる軟磁性膜からなり、好ましくは、X100-a-bab
なる組成のものが好ましい。ここで前記元素Xは、F
e、Co、Niのうち、1種または2種以上を示し、元
素Mは、Ti、Zr、Hf、V、Nb、Ta、Mo、W
のうち、1種または2種以上を示し、元素Zは、C、N
のうち、1種または2種を示し、組成比a,bは、原子%
で、0.5≦a≦8、0.5≦b≦10なる関係を満足する
ものとすることが好ましい。また更に、前記の組成比a,
bが原子%で、1≦a≦6、0.5≦b≦7なる関係を満足
するものが特に好ましい。前記組成比a,bは、炭化物あ
るいは窒化物粒子の濃度を決めるものであり、適当な炭
化物濃度あるいは窒化物濃度より前記のa,bの範囲が決
まる。即ち、炭化物濃度または窒化物濃度が高すぎる
と、炭化物あるいは窒化物は、導電性ではあるが、伝導
電子の散乱源(巨大磁気抵抗効果に寄与しないスピン依
存散乱以外の散乱)となるためMR比が減少してしま
い、また、炭化物濃度または窒化物濃度が低すぎると前
述した結晶粒成長の抑制効果が充分発揮されないので好
ましくない。従ってこれらを考慮するとa,bは前記範囲
が好ましい。
The ferromagnetic layer 32 is made of a soft magnetic film made of an XMZ based alloy, and is preferably X 100-ab M a Z b
A composition having the following composition is preferable. Here, the element X is F
e, Co, or Ni, one or more of them, and the element M is Ti, Zr, Hf, V, Nb, Ta, Mo, W
Among them, one or two or more, and the element Z is C, N
One or two of them, and the composition ratios a and b are atomic%
It is preferable to satisfy the relationship of 0.5 ≦ a ≦ 8 and 0.5 ≦ b ≦ 10. Still further, the composition ratio a,
Those in which b is atomic% and satisfies the relationship of 1 ≦ a ≦ 6 and 0.5 ≦ b ≦ 7 are particularly preferable. The composition ratios a and b determine the concentration of carbide or nitride particles, and the range of a and b is determined by an appropriate carbide concentration or nitride concentration. That is, if the carbide concentration or the nitride concentration is too high, the carbide or nitride is conductive, but becomes a scattering source of conduction electrons (scattering other than spin-dependent scattering which does not contribute to the giant magnetoresistance effect), so that the MR ratio is high. If the carbide concentration or the nitride concentration is too low, the above-described effect of suppressing the growth of crystal grains is not sufficiently exhibited, which is not preferable. Therefore, considering these, a and b are preferably within the above ranges.

【0027】前記の強磁性層32は、図1に示すよう
に、(Co,Fe,Ni)系の結晶粒32aとこの結晶粒
32aの粒界に析出された元素Mの炭化物あるいは窒化
物からなる析出物32bからなる構造を有しており、前
記結晶粒32aは粒径20nm程度以下の微細なもので
ある。この強磁性層32にあっては、上記特有の組成を
有すること、特に、元素M(Ti、Zr、Hf、V、N
b、Ta、Mo、W)を含むこと、更には、元素Mの炭
化物が存在していることによってCo、Fe、Ni系の
結晶粒32aを微細化することができる。なお、実際の
材料における炭化物の存在は透過型電子顕微鏡(TE
M)で容易に確認することができる。
As shown in FIG. 1, the ferromagnetic layer 32 is made of (Co, Fe, Ni) -based crystal grains 32a and carbides or nitrides of the element M precipitated at the grain boundaries of the crystal grains 32a. The crystal grains 32a have a fine particle size of about 20 nm or less. The ferromagnetic layer 32 has the specific composition described above, particularly, the element M (Ti, Zr, Hf, V, N
b, Ta, Mo, W), and the presence of the carbide of the element M can make the Co, Fe, and Ni-based crystal grains 32a finer. Note that the presence of carbides in actual materials is determined by a transmission electron microscope (TE
M) can be easily confirmed.

【0028】また、元素MとCを共に添加させると、元
素MとCは化学結合して元素Mの炭化物となり、これら
の炭化物は導電性が良好であるため、巨大磁気抵抗効果
に寄与する伝導電子を妨げることが比較的少ない。
Also, when the elements M and C are added together, the elements M and C are chemically bonded to form carbides of the element M. These carbides have good conductivity, so that the carbides which contribute to the giant magnetoresistance effect can be obtained. Relatively little to hinder electrons.

【0029】図1に示す構造の磁気抵抗効果多層膜Eを
得るには、図2に示すように基板30上に、非磁性体か
らなる非磁性層31’とX-M-Z系の非晶質層32’を
順次必要数だけ積層して積層体E’を形成する。なお、
M、C、N濃度が低い場合は非晶質層32’は結晶質と
非晶質の混合層あるいは結晶質層となる。前記の各層を
基板30上に形成するには、汎用の技術、例えば、スパ
ッタや蒸着等の薄膜形成装置を用いて合金薄膜などに調
製して形成することができる。例えば、成膜装置とし
て、高周波2極スパッタ装置、DCスパッタ、マグネト
ロンスパッタ、3極スパッタ、イオンビームスパッタ、
対向ターゲット式スパッタ等を利用することができる。
またスパッタ−ゲットとしてCoあるいはNi-Fe-C
o合金ターゲット上にZr、Hf、Ta、C等のチップ
を配置した複合ターゲット等を使用できる。
In order to obtain the magnetoresistive multilayer film E having the structure shown in FIG. 1, a nonmagnetic layer 31 'made of a nonmagnetic material and an XMZ nonmagnetic layer 31 are formed on a substrate 30 as shown in FIG. A required number of crystalline layers 32 'are sequentially laminated to form a laminate E'. In addition,
When the concentrations of M, C, and N are low, the amorphous layer 32 'becomes a mixed layer of crystalline and amorphous or a crystalline layer. In order to form each of the above-mentioned layers on the substrate 30, a general-purpose technique, for example, a thin film forming apparatus such as sputtering or vapor deposition can be used to prepare and form an alloy thin film. For example, as a film forming apparatus, a high frequency bipolar sputtering apparatus, DC sputtering, magnetron sputtering, tripolar sputtering, ion beam sputtering,
Opposing target type sputtering or the like can be used.
Co or Ni-Fe-C is used as a sputtering target.
A composite target or the like in which chips of Zr, Hf, Ta, C, etc. are arranged on an o-alloy target can be used.

【0030】また、Cを膜中に添加する方法としては、
ターゲット板上にグラファイトのペレットを配置して複
合ターゲットとし、これをスパッタする方法、あるいは
Cを含まないターゲットを用い、Ar等の不活性ガス中
にメタン等の炭化水素ガスを混合したガス雰囲気でスパ
ッタする反応性スパッタ法等を用いることができ、この
反応性スパッタ法では膜中のC濃度の制御が容易である
ので所望のC濃度の優れた膜を得ることができる。前記
のように成膜法で形成したX-M-Z系の層は成膜のまま
では非晶質相を含む場合が多いから、この層を加熱して
結晶化し、微細結晶粒を析出させる熱処理を行う。この
熱処理は、300〜500℃に加熱することで行うこと
ができ、これにより、図2に示す積層体中の非晶質層3
2’を結晶化して強磁性層32を形成し、図1に示す磁
気抵抗効果多層膜Eを得ることができる。
As a method of adding C to the film,
A method in which graphite pellets are arranged on a target plate to form a composite target and then sputtered, or in a gas atmosphere in which a hydrocarbon gas such as methane is mixed with an inert gas such as Ar using a target containing no C. A reactive sputtering method for sputtering or the like can be used. In this reactive sputtering method, the control of the C concentration in the film is easy, so that a film excellent in a desired C concentration can be obtained. Since the XMZ layer formed by the film forming method as described above often contains an amorphous phase as it is formed, the layer is heated to be crystallized to precipitate fine crystal grains. Heat treatment is performed. This heat treatment can be performed by heating to 300 to 500 ° C., whereby the amorphous layer 3 in the laminate shown in FIG.
By crystallizing 2 ′ to form the ferromagnetic layer 32, the magnetoresistive multilayer film E shown in FIG. 1 can be obtained.

【0031】前記の熱処理時において非晶質層32’に
あっては、(Co,Fe,Ni)系の微細な結晶粒32a
が晶出し、その粒界に元素Mの炭化物または窒化物が析
出し強磁性層32が形成され、前記の炭化物または窒化
物の析出により結晶粒32aの粗大化が抑制されると同
時に、強磁性層32に隣接する非磁性層31の結晶粒の
粗大化も抑制される。また、非磁性層32の粒成長も抑
制できるために、図13と図14を基に先に説明したよ
うな非磁性層21’と強磁性層22’の粒成長を抑制す
ることができ、これにより、非磁性層21’と強磁性層
22’の界面部分に大きな凹凸が形成されて積層構造が
崩れることを防止できる。
At the time of the above heat treatment, the (Co, Fe, Ni) based fine crystal grains 32a are present in the amorphous layer 32 '.
Are crystallized, and carbides or nitrides of the element M precipitate at the grain boundaries to form the ferromagnetic layer 32. The precipitation of the carbides or nitrides suppresses the coarsening of the crystal grains 32a. The coarsening of the crystal grains of the nonmagnetic layer 31 adjacent to the layer 32 is also suppressed. Further, since the grain growth of the nonmagnetic layer 32 can be suppressed, the grain growth of the nonmagnetic layer 21 ′ and the ferromagnetic layer 22 ′ as described above with reference to FIGS. Thereby, it is possible to prevent the formation of large irregularities at the interface between the non-magnetic layer 21 'and the ferromagnetic layer 22', thereby preventing the stacked structure from being collapsed.

【0032】図1に示す構造の磁気抵抗効果多層膜Eに
あっては、外部磁場が0の状態では図3に示すように非
磁性層31を挟んで上下に隣接する強磁性層32、32
のそれぞれの磁化の向きが磁気的に結合して反対方向を
向くが、この磁気抵抗効果多層膜Eに図4に示すように
所定の外部磁場Hが作用すると、前記の磁気的結合が崩
れて上下の強磁性層32、32の磁化の向きが平行に揃
うようになる。この際に外部磁場のありなしに影響を受
けて抵抗が変化するので、この抵抗変化を検出すること
で、逆に磁場が作用したか否かを検出することができ
る。
In the magnetoresistive multilayer film E having the structure shown in FIG. 1, when the external magnetic field is zero, the ferromagnetic layers 32 vertically adjacent to each other with the nonmagnetic layer 31 interposed therebetween as shown in FIG.
Are magnetically coupled to each other in the opposite direction. When a predetermined external magnetic field H acts on the magnetoresistive multilayer film E as shown in FIG. 4, the magnetic coupling is broken. The magnetization directions of the upper and lower ferromagnetic layers 32 are aligned in parallel. At this time, the resistance changes due to the influence of the presence or absence of the external magnetic field. Therefore, by detecting the change in the resistance, it is possible to detect whether the magnetic field has acted.

【0033】そして、前記構成の磁気抵抗効果多層膜E
の強磁性層32は、図12に示す従来構造で用いたCo
の強磁性層22よりも微細なnmオーダーの結晶粒を有
する結晶構造になるので、同じCoを主成分とする層で
あっても、単なるCoの強磁性層よりも軟磁性化するこ
とが容易である。従って低い外部磁場にも敏感に感応す
るように感度を向上させることができる。また、前述の
ように熱処理して製造するので、耐熱性に優れ、高温で
も高いMR比が得られる。更に、非磁性層31を挟んで
その上下に設けられる強磁性層32は、同じCoを主成
分とする強磁性膜であるがために、強磁性層32と非磁
性層31の界面で巨大磁気抵抗効果に寄与するとされる
伝導電子のポテンシャルが等しくなるために、伝導電子
のスピン依存散乱以外の要因が少なくなり、高いMR比
を得ることができる。
Then, the magnetoresistive effect multilayer film E having the above-described structure is formed.
The ferromagnetic layer 32 of Co is the same as that of the conventional structure shown in FIG.
The ferromagnetic layer 22 has a crystal structure having crystal grains in the order of nanometers smaller than the ferromagnetic layer 22. Therefore, even if the same layer is mainly composed of Co, it is easier to make the layer softer than a mere Co ferromagnetic layer. It is. Therefore, the sensitivity can be improved so as to be sensitive to a low external magnetic field. In addition, since the heat treatment is performed as described above, the heat resistance is excellent, and a high MR ratio can be obtained even at a high temperature. Further, since the ferromagnetic layers 32 provided above and below the nonmagnetic layer 31 are ferromagnetic films containing Co as a main component, a giant magnetic layer is formed at the interface between the ferromagnetic layer 32 and the nonmagnetic layer 31. Since the potentials of the conduction electrons, which are considered to contribute to the resistance effect, become equal, factors other than the spin-dependent scattering of the conduction electrons are reduced, and a high MR ratio can be obtained.

【0034】図5は本発明に係る磁気抵抗効果多層膜の
第2形態例を示すもので、この例の磁気抵抗効果多層膜
Fは、非磁性体の基板40上に、高保磁力磁性層41と
非磁性層42と低保磁力磁性層43とからなる積層ユニ
ット44が、非磁性層45を介して複数積層されて構成
されている。
FIG. 5 shows a second embodiment of the magnetoresistive multilayer film according to the present invention. The magnetoresistive multilayer film F of this embodiment comprises a high coercivity magnetic layer 41 on a nonmagnetic substrate 40. A plurality of laminated units 44 each including a nonmagnetic layer 42 and a low coercive force magnetic layer 43 are laminated via a nonmagnetic layer 45.

【0035】前記基板40は、先に説明した第1形態例
の基板30と同等の材料から構成されている。前記非磁
性層42および45は、Cu、Au、Ag、Ruなどに
代表される非磁性体からなり、10〜50Åの厚さに形
成されている。ここで非磁性層42および45の厚さが
10Åより薄いと、非磁性層42および45のピンホー
ル等を通して強磁性層どうしが磁気的に直接つながって
しまうために好ましくなく、50Åより厚いと、非磁性
層42および45を分流する伝導電子が多くなりすぎ、
スピン依存散乱をせずに非磁性層42および45中を通
過する割合が増えてMR比が低下するので好ましくな
い。
The substrate 40 is made of the same material as the substrate 30 of the first embodiment described above. The nonmagnetic layers 42 and 45 are made of a nonmagnetic material typified by Cu, Au, Ag, Ru or the like, and are formed to a thickness of 10 to 50 °. If the thickness of the nonmagnetic layers 42 and 45 is less than 10 °, the ferromagnetic layers are magnetically directly connected to each other through pinholes or the like of the nonmagnetic layers 42 and 45. The conduction electrons shunting the nonmagnetic layers 42 and 45 become too large,
Since the ratio of passing through the nonmagnetic layers 42 and 45 without spin-dependent scattering increases and the MR ratio decreases, it is not preferable.

【0036】前記高保磁力磁性層41は、先の第1形態
例で用いた強磁性層32の構成元素から、元素MとCあ
るいはNを除いた系の強磁性体からなる。即ち、(C
o,Fe,Ni)系の結晶粒41aからなる。この結晶粒
41aは、先の第1形態例の強磁性層32の結晶粒32
aとは異なり、膜面内における平均結晶粒径が20nm
以上となり微結晶化されていないので、高保磁力磁性層
41は硬質磁性層となる。
The high coercivity magnetic layer 41 is made of a ferromagnetic material obtained by removing the elements M, C and N from the constituent elements of the ferromagnetic layer 32 used in the first embodiment. That is, (C
(o, Fe, Ni) -based crystal grains 41a. The crystal grains 41a are the same as the crystal grains 32 of the ferromagnetic layer 32 of the first embodiment.
different from a, the average crystal grain size in the film plane is 20 nm
As described above, since the micro-crystal is not microcrystallized, the high coercive force magnetic layer 41 becomes a hard magnetic layer.

【0037】前記低保磁力磁性層43は、先の第1形態
例で用いた強磁性層32と同等の材料から構成されてい
る。即ち、低保磁力磁性層43は、X-M-Z系の軟磁性
膜からなり、その組成として、X100-a-babなる組
成のものが好ましい。ここで前記元素Xは、Fe、C
o、Niのうち、1種または2種以上を示し、元素M
は、Ti、Zr、Hf、V、Nb、Ta、Mo、Wのう
ち、1種または2種以上を示し、元素Zは、C、Nのう
ち、1種または2種を示し、組成比a,bは、原子%で、
0.5≦a≦8、0.5≦b≦10なる関係を満足するもの
とすることが好ましい。また、更に、前記の組成比a,b
が原子%で、1≦a≦6、0.5≦b≦7なる関係を満足
するものが特に好ましい。前記低保磁力磁性層43は、
図5に示すように、X系、即ちCo(Fe,Ni)系の
結晶粒43aとこの結晶粒43aの粒界に析出された元
素Mの炭化物あるいは窒化物の析出物43bからなる構
造を有し、前記結晶粒43aは粒径20nm程度以下の
微細なものである。なお、Co(Fe,Ni)系のう
ち、Coを主成分とする結晶は本来軟磁性を有しない
が、nmオーダーに微細結晶化することの効果から、磁
場に対する感度を発揮するようになる。
The low coercivity magnetic layer 43 is made of the same material as the ferromagnetic layer 32 used in the first embodiment. That is, the low coercive force magnetic layer 43 is made of an XMZ soft magnetic film, and preferably has a composition of X 100-ab M a Z b . Here, the element X is Fe, C
o, one or more of Ni, and the element M
Represents one or two or more of Ti, Zr, Hf, V, Nb, Ta, Mo, and W; the element Z represents one or two of C and N; , b is atomic%,
It is preferable to satisfy the relation of 0.5 ≦ a ≦ 8 and 0.5 ≦ b ≦ 10. Further, the above composition ratios a and b
Is atomic%, and particularly preferably satisfies the relationship of 1 ≦ a ≦ 6 and 0.5 ≦ b ≦ 7. The low coercivity magnetic layer 43 includes:
As shown in FIG. 5, there is provided a structure comprising X-based, ie, Co (Fe, Ni) -based, crystal grains 43a and precipitates 43b of carbides or nitrides of the element M precipitated at the grain boundaries of the crystal grains 43a. The crystal grains 43a are fine with a grain size of about 20 nm or less. In the Co (Fe, Ni) -based crystal, a crystal containing Co as a main component does not originally have soft magnetism, but exhibits a sensitivity to a magnetic field due to the effect of fine crystallization in the order of nm.

【0038】以上説明のように図5に示す構造は、高保
磁力磁性層41と非磁性層42と低保磁力磁性層43と
が積層されているので、高保磁力磁性層41の磁化の向
きは検出するべき外部磁場によっては容易に変動せず、
一方低保磁力磁性層43の磁化の向きは外部磁場に応じ
て変化する。よって、外部磁場の強さに応じて磁化が平
行、あるいは、反平行の状態が変化し、抵抗変化を生じ
る。従ってこの抵抗変化から外部磁場を検出することが
できる。また、非磁性層42を挟んで設けられる高保磁
力磁性層41と低保磁力磁性層43にあっては、高保磁
力磁性層41が(Co,Fe,Ni)系合金から、低保磁
力磁性層43がX-M-Z系合金、即ち、(Co,Fe,N
i)-M-(C,N)系合金から形成され、非磁性層42
を挟んで両側に位置する層の結晶粒はいずれも同じ組成
の(Co,Fe,Ni)結晶粒なので、非磁性層の両側に
異種物質の磁性層を配置する図11に示す従来構造に比
べてMR比を大きくすることができる。更にこの形態例
の構成では、Niを主成分とする層を有しないようにす
ることができるために、高温でNiが非磁性層側に混じ
り合うという現象を生じない。また、層界面に析出した
元素Mの炭化物は非磁性層42、45の片面側のみに存
在していても非磁性層42、45の粒成長を抑制する効
果が充分にあるために、図12を基に先に説明した従来
構造よりも耐熱性に優れる。
As described above, in the structure shown in FIG. 5, since the high coercivity magnetic layer 41, the nonmagnetic layer 42 and the low coercivity magnetic layer 43 are laminated, the magnetization direction of the high coercivity magnetic layer 41 is It does not fluctuate easily depending on the external magnetic field to be detected,
On the other hand, the direction of magnetization of the low coercivity magnetic layer 43 changes according to the external magnetic field. Therefore, the state of parallel or antiparallel magnetization changes according to the strength of the external magnetic field, and a resistance change occurs. Therefore, an external magnetic field can be detected from this resistance change. In the high coercive force magnetic layer 41 and the low coercive force magnetic layer 43 provided with the nonmagnetic layer 42 interposed therebetween, the high coercive force magnetic layer 41 is made of a (Co, Fe, Ni) -based alloy, 43 is an XMZ based alloy, that is, (Co, Fe, N
i) Non-magnetic layer 42 made of -M- (C, N) alloy
The crystal grains of the layers located on both sides of the non-magnetic layer are (Co, Fe, Ni) crystal grains having the same composition, and therefore, compared to the conventional structure shown in FIG. Thus, the MR ratio can be increased. Further, in the configuration of this embodiment, since a layer containing Ni as a main component can be eliminated, the phenomenon that Ni mixes with the non-magnetic layer at a high temperature does not occur. Further, even if the carbide of the element M precipitated at the layer interface exists only on one side of the nonmagnetic layers 42 and 45, the effect of suppressing the grain growth of the nonmagnetic layers 42 and 45 is sufficient. And is more excellent in heat resistance than the conventional structure described above.

【0039】図5または図7に示す構造の磁気抵抗効果
多層膜Fを得るには、図6に示すように基板40上に、
(Co,Fe,Ni)または(Co,Fe,Ni)-(Cu,
Au,Ag,Ru)からなる層41’と、Cu,Au,A
g,Ruのいずれかからなる非磁性層42と、(Co,F
e,Ni)-M-(C,N)層43’とからなる積層ユニッ
ト44’を非磁性層45を介して複数積層する。前記の
ような成膜法で形成した(Co,Fe,Ni)-M-(C,
N)層43’は成膜のままでは非晶質相を含む場合が多
いから、この層を300〜500℃で加熱して結晶化
し、微細結晶粒を析出させる熱処理を行う。このような
熱処理により、(Co,Fe,Ni)-M-(C,N)層を
先の例の場合と同様に結晶化し、図5に示す磁気抵抗効
果多層膜Fを得ることができる。
In order to obtain the magnetoresistive multilayer film F having the structure shown in FIG. 5 or FIG. 7, on the substrate 40 as shown in FIG.
(Co, Fe, Ni) or (Co, Fe, Ni)-(Cu,
Au, Ag, Ru) and Cu, Au, A
g, Ru, and a nonmagnetic layer 42 made of any one of (Co, F
A plurality of laminated units 44 ′ composed of an e, Ni) -M- (C, N) layer 43 ′ are laminated via a non-magnetic layer 45. (Co, Fe, Ni) -M- (C,
Since the N) layer 43 ′ often contains an amorphous phase as it is formed, this layer is heated at 300 to 500 ° C. to be crystallized and subjected to a heat treatment for precipitating fine crystal grains. By such heat treatment, the (Co, Fe, Ni) -M- (C, N) layer is crystallized in the same manner as in the previous example, and the magnetoresistive multilayer film F shown in FIG. 5 can be obtained.

【0040】図7は、本発明に係る磁気抵抗効果多層膜
の第3形態例を示すもので、この例の磁気抵抗効果多層
膜Gは、非磁性体の基板40上に、高保磁力磁性層4
1”と非磁性層42と低保磁力磁性層43とからなる積
層ユニット44が、非磁性層45を介して複数積層され
て構成されている。
FIG. 7 shows a third embodiment of the magnetoresistive multilayer film according to the present invention. The magnetoresistive multilayer film G of this embodiment has a high coercivity magnetic layer on a nonmagnetic substrate 40. 4
A plurality of laminated units 44 each including 1 ″, a nonmagnetic layer 42 and a low coercive magnetic layer 43 are laminated via a nonmagnetic layer 45.

【0041】この例の構造は先に説明した第2形態例の
構造と類似した構造であるが、異なっているのは、高保
磁力磁性層41”の構造である。この例の高保磁力磁性
層41”は、(Co,Fe,Ni)-(Cu,Au,Ag,R
u)からなり、具体的には、(Co,Fe,Ni)系合金
の結晶粒41a…と、これら結晶粒41aの粒界に形成
されたCu,Au、Ag、Ruのいずれかからなる非磁
性相41cとから構成されている。その他の構造は先の
第2形態例と同等であるので、同一部分には同一符号を
付してそれらの部分の説明を省略する。この例の構造に
あっては、Cu、Ag、Au、Ru等の非磁性元素が、
Co、Feに対して非固溶なので、成膜後の熱処理時に
粒界に偏析し、保磁力を高める作用を奏する。第2の例
のような構造であると(Co,Fe,Ni)の結晶粒も小
さいので保磁力(Hc)はあまり大きくならず、(C
o,Fe,Ni)-M-(C,N)なる組成の層との保磁力
差はあまり大きくならないが、前記非磁性元素の偏析に
よりこの層の保磁力差を大きく設定することができ、M
R比を向上できる。また、粒界に非磁性金属が偏析する
ことにより、高保磁力磁性層42”の粒成長速度も遅く
なり、結晶粒の粗大化が抑制されるので耐熱性が向上す
る。
The structure of this example is similar to the structure of the second embodiment described above, except that the structure of the high coercivity magnetic layer 41 "is different. 41 "is (Co, Fe, Ni)-(Cu, Au, Ag, R
u), specifically, a crystal grain 41a of a (Co, Fe, Ni) -based alloy and a non-crystal of any of Cu, Au, Ag, and Ru formed at the grain boundaries of these crystal grains 41a. And a magnetic phase 41c. Since other structures are the same as those of the second embodiment, the same portions are denoted by the same reference numerals and description of those portions will be omitted. In the structure of this example, non-magnetic elements such as Cu, Ag, Au, and Ru
Since it is insoluble in Co and Fe, it segregates at grain boundaries during heat treatment after film formation, and has an effect of increasing coercive force. In the structure as in the second example, since the crystal grains of (Co, Fe, Ni) are also small, the coercive force (Hc) does not increase so much, and (C
Although the coercive force difference between the layer having the composition of o, Fe, Ni) -M- (C, N) is not so large, the coercive force difference of this layer can be set large by segregation of the nonmagnetic element. M
The R ratio can be improved. In addition, the segregation of the non-magnetic metal at the grain boundaries also slows down the grain growth rate of the high coercivity magnetic layer 42 "and suppresses the coarsening of crystal grains, thereby improving heat resistance.

【0042】図8は、本発明に係る磁気抵抗効果多層膜
の第4形態例を示すもので、この例の磁気抵抗効果多層
膜Jは、非磁性体の基板50上に、NiOなどからなる
反強磁性層51と低保磁力磁性層52と非磁性層53と
低保磁力磁性層54と非磁性層55と低保磁力磁性層5
6とFeMnなどからなる反強磁性層57とを順次積層
して構成されている。この例の構造は図10を基に先に
説明した従来構造を発展させた構造であり、反強磁性層
57により低保磁力磁性層56の磁化がピン止めされ、
反強磁性層51により低保磁力磁性層52の磁化がピン
止めされ、磁化をピン止めされた低保磁力磁性層52、
56の間に非磁性層53、55を介して設けられた低保
磁力磁性層54の磁化の向きが自由にされている。
FIG. 8 shows a fourth embodiment of the magnetoresistive multilayer film according to the present invention. The magnetoresistive multilayer film J of this embodiment is made of NiO or the like on a nonmagnetic substrate 50. Antiferromagnetic layer 51, low coercivity magnetic layer 52, nonmagnetic layer 53, low coercivity magnetic layer 54, nonmagnetic layer 55, and low coercivity magnetic layer 5.
6 and an antiferromagnetic layer 57 made of FeMn or the like are sequentially laminated. The structure of this example is a structure obtained by developing the conventional structure described above with reference to FIG. 10, and the magnetization of the low coercivity magnetic layer 56 is pinned by the antiferromagnetic layer 57.
The magnetization of the low coercivity magnetic layer 52 is pinned by the antiferromagnetic layer 51, and the magnetization of the low coercivity magnetic layer 52 is pinned.
The direction of magnetization of the low coercivity magnetic layer 54 provided between the magnetic layers 56 via the nonmagnetic layers 53 and 55 is made free.

【0043】この例の構造においては、低保磁力磁性層
52、54、56がいずれも(Co,Fe,Ni)-M-
(C,N)なる組成の磁性膜からなるので、反強磁性層
51の磁気的交換結合力により低保磁力磁性層52の磁
化の向きがピン止めされ、反強磁性層57の磁気的交換
結合力により低保磁力磁性層56の磁化の向きがピン止
めされ、それらの間に挟まれた低保磁力磁性層54の磁
化の向きが自由にされるので、外部磁場の影響により抵
抗変化を生じ、これにより磁場検出ができるようにな
る。即ち、この例の構造によれば、外部磁場の印加によ
り低保磁力磁性層54の磁化の向きが回転するので、こ
れにより磁気抵抗変化を生じ、優れたMR比が得られ
る。
In the structure of this example, all of the low coercive force magnetic layers 52, 54, 56 are (Co, Fe, Ni) -M-
Since the magnetic layer has a composition of (C, N), the magnetization direction of the low coercivity magnetic layer 52 is pinned by the magnetic exchange coupling force of the antiferromagnetic layer 51, and the magnetic exchange of the antiferromagnetic layer 57 is performed. The direction of magnetization of the low coercivity magnetic layer 56 is pinned by the coupling force, and the direction of magnetization of the low coercivity magnetic layer 54 sandwiched between them is made free. A magnetic field can be detected. That is, according to the structure of this example, the direction of the magnetization of the low coercive force magnetic layer 54 is rotated by the application of the external magnetic field, thereby causing a change in the magnetoresistance and obtaining an excellent MR ratio.

【0044】なお、この例においても低保磁力磁性層5
2、54、56は(Co,Fe,Ni)-M-(C,N)系
の軟磁性膜からなり、その組成として、X100-a-b
a(C,N)bなる組成のものが好ましい。ここで前記元
素Mは、Ti、Zr、Hf、V、Nb、Ta、Mo、W
の内から選ばれる1種または2種以上の元素を示し、組
成比a,bは、原子%で、0.5≦a≦8、0.5≦b≦10
なる関係を満足するものとすることが好ましい。また、
更に、前記の組成比a,bが原子%で、1≦a≦6、0.5
≦b≦7なる関係を満足するものが特に好ましい。
Note that, also in this example, the low coercive force magnetic layer 5
2, 54 and 56 are made of a (Co, Fe, Ni) -M- (C, N) soft magnetic film, and have a composition of X 100-ab M
a (C, N) b is preferred. Here, the element M is Ti, Zr, Hf, V, Nb, Ta, Mo, W
Represents one or more elements selected from the group consisting of: a, b in atomic%, 0.5 ≦ a ≦ 8, 0.5 ≦ b ≦ 10
It is preferable that the following relationship be satisfied. Also,
Further, the composition ratios a and b are atomic%, and 1 ≦ a ≦ 6, 0.5
Those satisfying the relationship of ≦ b ≦ 7 are particularly preferable.

【0045】[0045]

【発明の効果】以上説明したように請求項1記載の発明
は、強磁性層と非磁性層とが交互に積層された多層膜か
らなり、強磁性層が、(Co,Fe,Ni)-M-(C,
N)の組成を有する軟磁性膜であり、この軟磁性膜が、
平均結晶粒径20nm以下の元素(Co,Fe,Ni)の
結晶粒と、前記元素Xの結晶粒の粒界に析出された元素
Mの炭化物または窒化物とに分離され、前記強磁性層に
おいて該強磁性層と隣接する非磁性層との界面に前記非
磁性層に隣接させて前記元素Mの炭化物または窒化物が
存在されてなる構造であると、無磁場状態において層毎
の強磁性層が異なる磁化の向きを有するに対し、磁場を
印加した状態において隣接する強磁性層の磁化の向きが
揃うようになり、その際に磁気抵抗変化を生じる。従っ
てこの磁気抵抗変化を検出することにより磁場検出がで
きる。また、(Co,Fe,Ni)-M-(C,N)なる組
成の強磁性層であれば、成膜後に熱処理して結晶化する
ので、耐熱性も従来のものより高くなる。
As described above, the first aspect of the present invention comprises a multilayer film in which ferromagnetic layers and non-magnetic layers are alternately stacked, and the ferromagnetic layer is composed of (Co, Fe, Ni)-. M- (C,
N) is a soft magnetic film having a composition of
The average grain size 20nm following elements (Co, Fe, Ni) and grain, is separated into a carbide or nitride of the element X of the crystal grains of the grain boundaries is precipitated the elements M, the ferromagnetic layer
At the interface between the ferromagnetic layer and the adjacent nonmagnetic layer.
The carbide or nitride of the element M is adjacent to the magnetic layer.
With the structure that exists, the ferromagnetic layers of each layer have different magnetization directions in the absence of a magnetic field, whereas the magnetization directions of the adjacent ferromagnetic layers are aligned in the state where a magnetic field is applied, At that time, a magnetoresistance change occurs. Therefore, the magnetic field can be detected by detecting the change in the magnetic resistance. Further, if the ferromagnetic layer has a composition of (Co, Fe, Ni) -M- (C, N), the film is heat-treated and crystallized, so that the heat resistance is higher than that of the conventional one.

【0046】更に、(Co,Fe,Ni)-M-(C,N)
なる組成の強磁性層であれば、元素Mの炭化物または窒
化物が(Co,Fe,Ni)の結晶粒の粒界に析出し、そ
の結晶粒の粗大化を抑制するので、同じCo系の磁性体
の場合であっても単体のCoよりも軟磁性化し易いの
で、Co/Cu積層型の従来構造の磁気抵抗効果膜より
も低い磁場で感度良く抵抗が変化するようになり、感度
の良い磁気抵抗効果多層膜を提供できる。また、元素M
の炭化物または窒化物は、(Co,Fe,Ni)の結晶粒
の粗大化を抑制するのに加え隣接する非磁性層の結晶粒
の粗大化をも抑制するので、隣接する非磁性層の結晶粒
の粗大化を抑制できる。
Further, (Co, Fe, Ni) -M- (C, N)
In the case of a ferromagnetic layer having the following composition, carbide or nitride of the element M precipitates at the grain boundaries of the (Co, Fe, Ni) crystal grains and suppresses the coarsening of the crystal grains. Even in the case of a magnetic material, the resistance is easily changed in a magnetic field lower than that of a conventional magnetoresistive film of a Co / Cu laminated type because the magnetic property is more easily changed than that of Co alone. A magnetoresistive multilayer film can be provided. The element M
Carbides or nitrides are (Co, Fe, Ni) crystal grains
Grain size of adjacent non-magnetic layer
Also suppresses the coarsening of the crystal grains of the adjacent non-magnetic layer.
Coarsening can be suppressed.

【0047】次に、請求項2に記載した発明は、非磁性
層を挟んで低保磁力磁性層と高保磁力磁性層が設けら
れ、低保磁力磁性層が、(Co,Fe,Ni)-M-(C,
N)なる組成を有し、平均結晶粒径20nm以下の(C
o,Fe,Ni)の結晶粒と元素Mの炭化物または窒化物
とに分離されてなり、前記高保磁力磁性層が(Co,F
e,Ni)からなると、非磁性層を挟んで設けられる磁
性層を構成する強磁性結晶がが、いずれも、(Co,F
e,Ni)なる組成であり、どちらもCoを主成分とし
た合金の場合には、非磁性層を挟んで異種材料が設けら
れていた図11に示す従来構造よりも高いMR比が得ら
れる。また、(Co,Fe,Ni)-M-(C,N)なる組
成の低保磁力磁性層であれば、元素Mの炭化物または窒
化物の析出物が(Co,Fe,Ni)なる組成の結晶粒の
粒界に析出し、その結晶粒の粗大化を抑制するととも
に、粒界に析出した析出物が低保磁力磁性層と非磁性層
と高保磁力磁性層の結晶粒の粗大化をも抑制する。その
結果、耐熱性が高く感度の良い磁気抵抗効果多層膜を得
ることができる。
Next, according to a second aspect of the present invention, a low coercive force magnetic layer and a high coercive force magnetic layer are provided with a nonmagnetic layer interposed therebetween, and the low coercive force magnetic layer is formed of (Co, Fe, Ni)- M- (C,
(C) having an average crystal grain size of 20 nm or less.
o, Fe, Ni) crystal grains and carbides or nitrides of the element M, and the high coercivity magnetic layer is made of (Co, F).
e, Ni), the ferromagnetic crystals constituting the magnetic layer provided with the nonmagnetic layer interposed therebetween are all (Co, F)
e, Ni). In the case where both are alloys containing Co as a main component, a higher MR ratio can be obtained than in the conventional structure shown in FIG. 11 in which different materials are provided with a nonmagnetic layer interposed therebetween. . Further, in the case of a low coercive force magnetic layer having a composition of (Co, Fe, Ni) -M- (C, N), a precipitate of carbide or nitride of the element M has a composition of (Co, Fe, Ni). Precipitates at the grain boundaries of the crystal grains and suppresses the coarsening of the crystal grains, and the precipitates precipitated at the grain boundaries reduce the coarsening of the crystal grains of the low-coercivity magnetic layer, the non-magnetic layer and the high-coercivity magnetic layer. Suppress. As a result, a magnetoresistive multilayer film having high heat resistance and good sensitivity can be obtained.

【0048】次に、少なくとも磁化の向きがピン止めさ
れた強磁性層と、磁化の向きが自由にされた強磁性層
と、非磁性層とが積層されてなる磁気抵抗効果多層膜で
あって前記磁化の向きが自由にされた強磁性層が、(C
o,Fe,Ni)-M-(C,N)なる組成の軟磁性膜であ
り、この軟磁性膜が、平均結晶粒径20nm以下の(C
o,Fe,Ni)なる組成の結晶粒と、元素Mの炭化物ま
たは窒化物とに分離している構造であれば、磁化の向き
が自由にされた強磁性層の磁化の向きが外部磁場で感度
良く変化するので、良好な磁気抵抗効果を得ることがで
きる。また、(Co,Fe,Ni)-M-(C,N)なる組
成の強磁性層であれば、元素Mの炭化物または窒化物が
(Co,Fe,Ni)なる組成の結晶粒の粒界に析出し、
その結晶粒の粗大化を抑制するので、同じCo系の磁性
体であっても単体のCoよりも軟磁性化し易いので、低
い磁場で感度良く抵抗が変化するようになり、感度の良
い磁気抵抗効果多層膜を提供できる。
Next, there is provided a magnetoresistive multilayer film comprising at least a ferromagnetic layer having a pinned magnetization direction, a ferromagnetic layer having a free magnetization direction, and a nonmagnetic layer. The ferromagnetic layer whose magnetization direction is set free is (C
o, Fe, Ni) -M- (C, N). This soft magnetic film has an average crystal grain size of 20 nm or less (C
If the structure is separated into crystal grains having the composition of (o, Fe, Ni) and carbides or nitrides of the element M, the direction of magnetization of the ferromagnetic layer whose magnetization direction is made free is controlled by an external magnetic field. Since it changes with high sensitivity, a good magnetoresistance effect can be obtained. In addition, if the ferromagnetic layer has a composition of (Co, Fe, Ni) -M- (C, N), a carbide or nitride of the element M has a grain boundary of crystal grains having a composition of (Co, Fe, Ni). Deposited on
Since the coarsening of the crystal grains is suppressed, even the same Co-based magnetic material is easily softened more than single Co, so that the resistance changes with high sensitivity in a low magnetic field, and the magnetoresistance with high sensitivity is obtained. An effect multilayer film can be provided.

【0049】次に、前記(Co,Fe,Ni)なる組成の
結晶粒の粒界に、この結晶粒の粗大化を抑止する元素M
の炭化物または窒化物が析出されてなることで、隣接す
る他の層の結晶粒粗大化が抑制される。更に、(Co,
Fe,Ni)なる組成の結晶粒の粒界に、非磁性層の構
成元素の一部が偏析されてなる構成であると、非磁性層
の構成元素が前記結晶粒の粒界に析出して保磁力が高ま
り、低保磁力を示す(Co,Fe,Ni)-M-(C,N)
なる組成の層との保磁力差が生じ、保磁力差に起因して
優れた効果を奏する請求項2に記載した磁気抵抗効果多
層膜が確実に得られる。
Next, at the grain boundaries of the crystal grains having the composition (Co, Fe, Ni), an element M for suppressing the coarsening of the crystal grains is provided.
By precipitation of carbides or nitrides, the coarsening of the crystal grains of another adjacent layer is suppressed. Further, (Co,
If the constituent elements of the nonmagnetic layer are segregated at the grain boundaries of the crystal grains having the composition of Fe, Ni), the constituent elements of the nonmagnetic layer precipitate at the grain boundaries of the crystal grains. Increased coercive force and low coercive force (Co, Fe, Ni) -M- (C, N)
A coercive force difference with a layer having the following composition occurs, and the magnetoresistive effect multilayer film according to claim 2 which exhibits an excellent effect due to the coercive force difference is reliably obtained.

【0050】次に、(Co,Fe,Ni)-M-(C,N)
なる組成の層の中でも、X100-a-babなる組成であ
ることが好ましく、その場合に、組成比a,bは原子%
で、0.5≦a≦8、0.5≦b≦10なる関係を満足す
るものが好ましく、その場合に特に優れた低保磁力の軟
磁気特性が得られる。また、前記組成比a,bが原子%
で、1≦a≦6、0.5≦b≦7なる関係を満足する場合
が特に好ましい。
Next, (Co, Fe, Ni) -M- (C, N)
Among the layers having the following composition, it is preferable that the composition be X 100-ab M a C b , in which case the composition ratios a and b are atomic%.
It is preferable to satisfy the relationship of 0.5 ≦ a ≦ 8 and 0.5 ≦ b ≦ 10. In this case, particularly excellent soft magnetic characteristics with a low coercive force can be obtained. The composition ratios a and b are atomic%.
It is particularly preferable that the relationship of 1 ≦ a ≦ 6 and 0.5 ≦ b ≦ 7 is satisfied.

【図面の簡単な説明】[Brief description of the drawings]

【図1】本発明に係る磁気抵抗効果多層膜の第1形態例
の断面図である。
FIG. 1 is a sectional view of a first embodiment of a magnetoresistive multilayer film according to the present invention.

【図2】図1に示す多層膜の熱処理前の状態を示す断面
図である。
FIG. 2 is a sectional view showing a state before heat treatment of the multilayer film shown in FIG.

【図3】図1に示す多層膜に磁場が印加されていない状
態の各層の磁化の向きを示す図である。
FIG. 3 is a diagram showing a magnetization direction of each layer in a state where no magnetic field is applied to the multilayer film shown in FIG. 1;

【図4】図1に示す多層膜に磁場が印加されている状態
の各層の磁化の向きを示す図である。
FIG. 4 is a diagram showing the direction of magnetization of each layer when a magnetic field is applied to the multilayer film shown in FIG. 1;

【図5】本発明に係る磁気抵抗効果多層膜の第2形態例
の断面図である。
FIG. 5 is a sectional view of a second embodiment of the magnetoresistive multilayer film according to the present invention.

【図6】図5に示す多層膜の熱処理前の状態を示す断面
図である。
6 is a cross-sectional view showing a state before heat treatment of the multilayer film shown in FIG.

【図7】本発明に係る磁気抵抗効果多層膜の第3形態例
の断面図である。
FIG. 7 is a sectional view of a third embodiment of the magnetoresistive multilayer film according to the present invention.

【図8】本発明に係る磁気抵抗効果多層膜の第4形態例
の断面図である。
FIG. 8 is a sectional view of a fourth embodiment of the magnetoresistive multilayer film according to the present invention.

【図9】従来の磁気抵抗効果素子用多層膜の第1の例を
示す分解図である。
FIG. 9 is an exploded view showing a first example of a conventional multilayer film for a magnetoresistive element.

【図10】従来の磁気抵抗効果素子用多層膜の第2の例
を示す断面図である。
FIG. 10 is a sectional view showing a second example of a conventional multilayer film for a magnetoresistive element.

【図11】従来の磁気抵抗効果素子用多層膜の第3の例
を示す断面図である。
FIG. 11 is a sectional view showing a third example of a conventional multilayer film for a magnetoresistive element.

【図12】従来の磁気抵抗効果素子用多層膜の第4の例
を示す断面図である。
FIG. 12 is a cross-sectional view showing a fourth example of a conventional multilayer film for a magnetoresistive element.

【図13】図12に示す多層膜の結晶粒を示す断面図で
ある。
13 is a cross-sectional view showing crystal grains of the multilayer film shown in FIG.

【図14】図12に示す多層膜を熱処理した後の結晶粒
を示す断面図である。
FIG. 14 is a cross-sectional view showing crystal grains after heat treatment of the multilayer film shown in FIG.

【符号の説明】[Explanation of symbols]

E、F、G、J 磁気抵抗効果多層膜、 30、40、50 基板、 31 非磁性層、 32 強磁性層、 32a、43a 微細結晶粒子、 32b、43b 析出物、 41、41” 高保磁力磁性層、 42、45 非磁性層、 43 低保磁力磁性層、 44 積層ユニット、 51、57 反強磁性層、 52、54、56 低保磁力磁性層、 52a、54a、56a 微細結晶粒子、 52b、54b、56b 析出物、 53、55 非磁性層。 E, F, G, J Magnetoresistance multilayer film, 30, 40, 50 substrate, 31 non-magnetic layer, 32 ferromagnetic layer, 32a, 43a fine crystal grain, 32b, 43b precipitate, 41, 41 "high coercive force magnetism Layers, 42, 45 non-magnetic layer, 43 low coercivity magnetic layer, 44 laminated unit, 51, 57 antiferromagnetic layer, 52, 54, 56 low coercivity magnetic layer, 52a, 54a, 56a fine crystal grains, 52b, 54b, 56b precipitates, 53, 55 nonmagnetic layer.

フロントページの続き (56)参考文献 特開 平6−101000(JP,A) 特開 平7−6915(JP,A) 特開 平6−111252(JP,A) 特開 平8−161711(JP,A) 特開 平8−225871(JP,A) 特開 平9−8380(JP,A) 特開 平3−248507(JP,A) 特開 平3−219407(JP,A) 特開 平3−267338(JP,A) 特開 平3−20444(JP,A) (58)調査した分野(Int.Cl.7,DB名) H01L 43/08 G01R 33/09 G11B 5/39 H01F 10/08 JICSTファイル(JOIS)Continuation of the front page (56) References JP-A-6-101000 (JP, A) JP-A-7-6915 (JP, A) JP-A-6-111252 (JP, A) JP-A-8-161711 (JP) JP-A-8-225871 (JP, A) JP-A-9-8380 (JP, A) JP-A-3-248507 (JP, A) JP-A-3-219407 (JP, A) 3-267338 (JP, A) JP-A-3-20444 (JP, A) (58) Fields investigated (Int. Cl. 7 , DB name) H01L 43/08 G01R 33/09 G11B 5/39 H01F 10 / 08 JICST file (JOIS)

Claims (6)

(57)【特許請求の範囲】(57) [Claims] 【請求項1】 強磁性層と非磁性層とが交互に積層され
た多層膜からなる磁気抵抗効果多層膜であって、前記強
磁性層が、X-M-Zの組成を有する軟磁性膜であり、こ
の軟磁性膜が、平均結晶粒径20nm以下の元素Xの結
晶粒と、前記元素Xの結晶粒の粒界に析出された元素M
の炭化物または窒化物とに分離され、前記強磁性層にお
いて該強磁性層と隣接する非磁性層との界面に前記非磁
性層に隣接させて前記元素Mの炭化物または窒化物が存
在されてなることを特徴とする磁気抵抗効果多層膜。た
だし前記元素Xは、Fe、Co、Niのうち、1種また
は2種以上を示し、元素Mは、Ti、Zr、Hf、V、
Nb、Ta、Mo、Wのうち、1種または2種以上を示
し、元素Zは、C、Nのうち、1種または2種を示す。
1. A magnetoresistive effect multilayer film comprising a multilayer film in which ferromagnetic layers and nonmagnetic layers are alternately stacked, wherein the ferromagnetic layer has a composition of XMZ. The soft magnetic film is composed of a crystal grain of the element X having an average crystal grain size of 20 nm or less and an element M precipitated at the grain boundary of the crystal grain of the element X.
And the carbide or nitride of the element M is present at the interface between the ferromagnetic layer and the adjacent nonmagnetic layer in the ferromagnetic layer, adjacent to the nonmagnetic layer. A magneto-resistance effect multilayer film characterized by the above-mentioned. Here, the element X represents one or more of Fe, Co, and Ni, and the element M represents Ti, Zr, Hf, V,
One or more of Nb, Ta, Mo and W are shown, and the element Z shows one or two of C and N.
【請求項2】 非磁性層を挟んで低保磁力磁性層と高保
磁力磁性層が設けられた磁気ユニット層が複数積層され
てなり、 前記低保磁力磁性層が、X-M-Zなる組成を有し、平均
結晶粒径20nm以下の元素Xの結晶粒と前記元素Xの
結晶粒の粒界に析出された元素Mの炭化物または窒化物
とに分離され、前記低保磁力磁性層において該低保磁力
磁性層と隣接する非磁性層との界面に前記非磁性層に隣
接させて前記元素Mの炭化物または窒化物が存在されて
なり、前記高保磁力磁性層が、元素Xからなることを特
徴とする磁気抵抗効果多層膜。ただし前記元素Xは、F
e、Co、Niのうち、1種または2種以上を示し、元
素Mは、Ti、Zr、Hf、V、Nb、Ta、Mo、W
のうち、1種または2種以上を示し、元素Zは、C、N
のうち、1種または2種を示す。
2. A magnetic unit layer comprising a low coercive force magnetic layer and a high coercive force magnetic layer provided with a nonmagnetic layer interposed therebetween, wherein the low coercive force magnetic layer has a composition of XMZ. Having a mean crystal grain size of 20 nm or less, and separated into carbides or nitrides of the element M precipitated at the grain boundaries of the crystal grains of the element X, in the low coercive force magnetic layer. wherein the interface between the non-magnetic layer adjacent to the low-coercivity magnetic layer adjacent to the nonmagnetic layer will be present carbides or nitrides of the element M in the high coercivity magnetic layer, in that it consists of element X Characteristic magnetoresistive multilayer film. However, the element X is F
e, Co, or Ni, one or more of them, and the element M is Ti, Zr, Hf, V, Nb, Ta, Mo, W
Among them, one or two or more, and the element Z is C, N
Among them, one or two types are shown.
【請求項3】 少なくとも磁化の向きがピン止めされた
強磁性層と、磁化の向きが自由にされた強磁性層とが、
非磁性層を挟んで積層されてなる磁気抵抗効果多層膜で
あって、前記磁化の向きが自由にされた強磁性層が、X
-M-Zなる組成の軟磁性膜であり、この軟磁性膜が、平
均結晶粒径20nm以下の元素Xの結晶粒と、前記元素
Xの結晶粒の粒界に析出された元素Mの炭化物または窒
化物とに分離され、前記強磁性層において前記磁化の向
きが自由にされた強磁性層と隣接する非磁性層との界面
に前記非磁性層に隣接させて前記元素Mの炭化物または
窒化物が存在されたことを特徴とする磁気抵抗効果多層
膜。ただし前記元素Xは、Fe、Co、Niのうち、1
種または2種以上を示し、元素Mは、Ti、Zr、H
f、V、Nb、Ta、Mo、Wのうち、1種または2種
以上を示し、元素Zは、C、Nのうち、1種または2種
を示す。
3. A ferromagnetic layer having at least a pinned magnetization direction and a ferromagnetic layer having a magnetization direction set free.
A magneto-resistance effect multilayer film laminated with a non-magnetic layer interposed therebetween, wherein the ferromagnetic layer whose magnetization direction is made free is X
A soft magnetic film having a composition of -MZ, wherein the soft magnetic film is composed of a crystal grain of the element X having an average crystal grain size of 20 nm or less, and a carbide of the element M precipitated at a grain boundary of the crystal grain of the element X. Or, it is separated into nitride and the magnetization direction in the ferromagnetic layer.
A magnetoresistive multilayer film, wherein a carbide or a nitride of the element M is present adjacent to the nonmagnetic layer at the interface between the ferromagnetic layer whose magnetization has been released and the adjacent nonmagnetic layer. However, the element X is one of Fe, Co, and Ni.
Represents a species or two or more species, and the element M is Ti, Zr, H
One or more of f, V, Nb, Ta, Mo, and W are shown, and the element Z represents one or two of C and N.
【請求項4】 元素Xの結晶粒の粒界に、非磁性層の構
成元素の一部が偏析されてなることを特徴とする請求項
2記載の磁気抵抗効果多層膜。
4. The magnetoresistive multilayer film according to claim 2, wherein a part of the constituent elements of the nonmagnetic layer is segregated at the grain boundaries of the crystal grains of the element X.
【請求項5】 請求項1又は3に記載の軟磁性膜あるい
は請求項2に記載の低保磁力磁性層が、下記の組成を有
することを特徴とする請求項1及至3のいずれかに記載
の磁気抵抗効果材多層膜。 X100−a−b ここで組成比a,bは原子%で、0.5≦a≦8、0.5≦b
≦10なる関係を満足するものとする。
5. The soft magnetic film according to claim 1, or the low coercive force magnetic layer according to claim 2 has the following composition: Magnetoresistive effect multilayer film. X 100-a-b M a Z b where composition ratios a, b in atomic%, 0.5 ≦ a ≦ 8,0.5 ≦ b
It is assumed that the relationship of ≦ 10 is satisfied.
【請求項6】 組成比a,bが原子%で、1≦a≦6、0.
5≦b≦7なる関係を満足することを特徴とする請求項
5記載の磁気抵抗効果多層膜。
6. The composition ratio a, b is atomic% and 1 ≦ a ≦ 6, 0.
6. The magnetoresistive multilayer film according to claim 5, wherein a relationship of 5 ≦ b ≦ 7 is satisfied.
JP17259095A 1995-07-07 1995-07-07 Magnetoresistance effect multilayer film Expired - Fee Related JP3347534B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP17259095A JP3347534B2 (en) 1995-07-07 1995-07-07 Magnetoresistance effect multilayer film

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP17259095A JP3347534B2 (en) 1995-07-07 1995-07-07 Magnetoresistance effect multilayer film

Publications (2)

Publication Number Publication Date
JPH0923031A JPH0923031A (en) 1997-01-21
JP3347534B2 true JP3347534B2 (en) 2002-11-20

Family

ID=15944675

Family Applications (1)

Application Number Title Priority Date Filing Date
JP17259095A Expired - Fee Related JP3347534B2 (en) 1995-07-07 1995-07-07 Magnetoresistance effect multilayer film

Country Status (1)

Country Link
JP (1) JP3347534B2 (en)

Families Citing this family (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
TW550842B (en) * 2001-06-26 2003-09-01 Matsushita Electric Ind Co Ltd Magnetic resistance element and its manufacturing method
JP4615797B2 (en) * 2001-11-30 2011-01-19 ソニー株式会社 Magnetoresistive element, manufacturing apparatus thereof, and magnetic memory device
JP4423658B2 (en) 2002-09-27 2010-03-03 日本電気株式会社 Magnetoresistive element and manufacturing method thereof
WO2006006420A1 (en) 2004-07-12 2006-01-19 Nec Corporation Magnetoresistance effect device, magnetic random access memory, magnetic head and magnetic memory unit
US11377749B1 (en) 2017-10-17 2022-07-05 Seagate Technology Llc Electrodeposition of high damping magnetic alloys
US11152020B1 (en) * 2018-05-14 2021-10-19 Seagate Technology Llc Electrodeposition of thermally stable alloys

Also Published As

Publication number Publication date
JPH0923031A (en) 1997-01-21

Similar Documents

Publication Publication Date Title
KR100192192B1 (en) Magnetoresistance effect film, a method of manufacturing the same, and magnetoresistance effect device
JP2962415B2 (en) Exchange coupling membrane
JP3207477B2 (en) Magnetoresistance effect element
JP4245318B2 (en) Magnetic detection element
GB1600098A (en) Magnetic thin film structure
JP3694440B2 (en) Method for manufacturing exchange coupling film, method for manufacturing magnetoresistive effect element using exchange coupling film, and method for manufacturing thin film magnetic head using magnetoresistance effect element
JPH08204253A (en) Magnetoresistive effect film
JP4237991B2 (en) Magnetic detection element
JP2003101102A (en) Exchange coupling film and magnetic detection element using the same
JP3670928B2 (en) Exchange coupling film, magnetoresistive element using the exchange coupling film, and thin film magnetic head using the magnetoresistive element
JP2002094141A (en) Exchange coupling film, magneto-resistance effect element using the film and thin film magnetic head using the element
JP3198265B2 (en) Magnetoresistance effect element
JP2006005185A (en) Magnetic detecting element
JP3756757B2 (en) Exchange coupling film, magnetoresistive element using the exchange coupling film, and thin film magnetic head using the magnetoresistive element
JP3347534B2 (en) Magnetoresistance effect multilayer film
JP3247535B2 (en) Magnetoresistance effect element
JP3323098B2 (en) Magnetoresistance effect multilayer film
JP3321615B2 (en) Magnetoresistive element and magnetic transducer
JP3153739B2 (en) Magnetoresistive element and magnetic transducer
JP3262697B2 (en) Magnetoresistance effect multilayer film
JP3694441B2 (en) Exchange coupling film, magnetoresistive element using the exchange coupling film, and thin film magnetic head using the magnetoresistive element
JP3488652B2 (en) Magnetoresistive film, method of manufacturing the same, and magnetic head using the same
JP3242280B2 (en) Multilayer film for magnetoresistive element and manufacturing method thereof
JP3255901B2 (en) Method for producing exchange coupling membrane
JP3274440B2 (en) Magneto-resistance effect element and thin-film magnetic head using the magneto-resistance effect element

Legal Events

Date Code Title Description
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20020820

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20070906

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20080906

Year of fee payment: 6

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090906

Year of fee payment: 7

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090906

Year of fee payment: 7

S111 Request for change of ownership or part of ownership

Free format text: JAPANESE INTERMEDIATE CODE: R313113

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090906

Year of fee payment: 7

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

LAPS Cancellation because of no payment of annual fees