JP3345723B2 - Fluidized bed or tumbling fluidized bed granulator - Google Patents

Fluidized bed or tumbling fluidized bed granulator

Info

Publication number
JP3345723B2
JP3345723B2 JP30447992A JP30447992A JP3345723B2 JP 3345723 B2 JP3345723 B2 JP 3345723B2 JP 30447992 A JP30447992 A JP 30447992A JP 30447992 A JP30447992 A JP 30447992A JP 3345723 B2 JP3345723 B2 JP 3345723B2
Authority
JP
Japan
Prior art keywords
height
fluidized bed
powder layer
bed
layer
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
JP30447992A
Other languages
Japanese (ja)
Other versions
JPH06126149A (en
Inventor
啓 宮南
哲 綿野
Original Assignee
不二パウダル株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 不二パウダル株式会社 filed Critical 不二パウダル株式会社
Priority to JP30447992A priority Critical patent/JP3345723B2/en
Publication of JPH06126149A publication Critical patent/JPH06126149A/en
Application granted granted Critical
Publication of JP3345723B2 publication Critical patent/JP3345723B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Landscapes

  • Glanulating (AREA)

Description

【発明の詳細な説明】DETAILED DESCRIPTION OF THE INVENTION

【0001】[0001]

【産業上の利用分野】本発明は、転動流動層造粒等にお
ける粉体層高の計測とその制御が可能な流動層又は転動
流動層造粒装置に関するものである。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a fluidized bed or a tumbling fluidized bed granulator capable of measuring and controlling the height of a powder bed in tumbling fluidized bed granulation or the like.

【0002】[0002]

【従来の技術】図11は一般の流動層造粒装置又は転動
流動層造粒装置の基本構造を示す断面図である。この造
粒装置は、造粒槽1内に金網又は回転板2を配置し、そ
の下部にはブローアー3より、ヒーター4を通してのエ
アー供給用のパイプ5が接続されている。更に造粒槽1
の上部には、水又はバインダー供給用のスプレー6が設
置されている。又図示するように金網又は多孔回転板2
の上部に撹拌羽根7を設置して粉粒体の撹拌を行なうこ
ともある。
2. Description of the Related Art FIG. 11 is a sectional view showing a basic structure of a general fluidized bed granulator or a tumbling fluidized bed granulator. In this granulating apparatus, a wire mesh or a rotating plate 2 is disposed in a granulating tank 1, and a pipe 5 for supplying air from a blower 3 through a heater 4 is connected to a lower portion thereof. Granulation tank 1
A spray 6 for supplying water or a binder is provided at the upper part of the. As shown in the figure, a wire mesh or a perforated rotating plate 2 is used.
In some cases, a stirring blade 7 may be provided on the upper portion to stir the granular material.

【0003】このような造粒装置を用いての造粒は、周
知のように、金網2の上に粉体原料を投入し、下方より
のエアーの供給を上方のスプレー6により一定の湿り気
を与えて、原料を流動化させて行なう。又金網の代わり
に回転板を用いれば、回転板周辺よりの空気流による流
動化と共に転動を伴う転動流動による造粒が行なわれ
る。尚回転板を多孔回転板とすれば、回転板に形成され
た小孔からの空気流による作用が加わっる。
In the granulation using such a granulating apparatus, as is well known, a powder raw material is put on a wire mesh 2 and air is supplied from below by a spray 6 above to provide a constant humidity. Feed and fluidize the raw material. If a rotating plate is used in place of the wire mesh, the fluidization by the air flow from around the rotating plate and the granulation by the rolling flow accompanied by the rolling are performed. If the rotary plate is a perforated rotary plate, the effect of the air flow from the small holes formed in the rotary plate is added.

【0004】このような転動流動層造粒において、従
来、粉体層の高さの測定に関してはあまり注目されてい
なかった。実際には装置運転の初期に流動化の状態を目
で観察して、良好な流動化状態にあるかどうかを確認す
ると共にその後の状態は観察し得ないために全くの勘に
よって操作を行なっていた。
[0004] In such tumbling fluidized bed granulation, conventionally, much attention has been paid to the measurement of the height of the powder bed. Actually, the state of fluidization is visually observed at the beginning of the operation of the equipment to check whether it is in a good state of fluidization, and since the subsequent state cannot be observed, the operation is carried out with complete intuition. Was.

【0005】しかし造粒が進み粒子が圧密されると共に
粒子間の付着力が増加し粒体の水分量が多くなると送風
する流量によっては、流動が停止しブッロキンング等の
問題を生じ転動、流動による造粒操作を続けることが出
来なくなることが生じる。
However, as the granulation proceeds and the particles are compacted, the adhesion force between the particles increases and the amount of moisture in the particles increases, and depending on the flow rate of the blown air, the flow stops and causes problems such as blockkining and the like. Granulation operation cannot be continued.

【0006】[0006]

【発明が解決しようとする課題】本発明の目的は、ブロ
ッキング等の問題が生ずることがなく又常に良好な流動
化状態による造粒を行なうために粉体層高の計測を正確
に行ない得るようにした粉体層の高さの計測を可能にし
又高さの制御が可能な流動層又は転動流動層造粒装置を
提供することにある。
SUMMARY OF THE INVENTION It is an object of the present invention to accurately measure the height of a powder layer without causing problems such as blocking and always performing granulation in a good fluidized state. It is an object of the present invention to provide a fluidized bed or a tumbling fluidized bed granulator capable of measuring the height of a powder bed and controlling the height.

【0007】[0007]

【課題を解決するための手段】本発明の転動流動層造粒
装置は、粉体層の高さの計測のために、流動層造粒装置
又は転動流動層造粒装置の上部の所定の高さに超音波距
離測定機を配置し、これにより粉体層の高さを計測する
ようにした。
SUMMARY OF THE INVENTION A rolling fluidized bed granulator according to the present invention comprises a fluidized bed granulating apparatus or a rolling fluidized bed granulating apparatus provided with an upper part for measuring the height of a powder bed. The height of the powder layer was measured by placing an ultrasonic distance measuring device at the height of the sample.

【0008】更に本発明の転動流動層造粒装置による粉
体層の制御は前記の層高センサ−例えば超音波距離測定
機を配置した流動層又は転動流動層造粒装置で、前記粉
体層の高さの計測により求められた値を予め設定された
目標値と比較し、その差をフィードバックして原料粉体
下部より送風する流動化のための空気量を粉体の高さが
目標値になるようにコントロールすることにより、粉体
層の高さが目標値の一定値を保つようにすることにあ
る。
Further, the control of the powder bed by the tumbling fluidized bed granulator according to the present invention is carried out by using the above bed height sensor, for example, a fluidized bed or a tumbling fluidized bed granulator equipped with an ultrasonic distance measuring machine. The value obtained by measuring the height of the body layer is compared with a preset target value, and the difference is fed back to determine the amount of air for fluidization blown from the lower part of the raw material powder to the height of the powder. The purpose of the present invention is to maintain the height of the powder layer at a constant target value by controlling the target value.

【0009】前述のように流動層の流動化状態やその高
さのコントロールは、重要であるが、実際には、従来適
切な測定手段がなく手動によりしかも勘にたよる調整が
行なわれていた。
As mentioned above, it is important to control the fluidized state of the fluidized bed and its height, but in practice, there has been no suitable measuring means in the past, and adjustments have been made manually and intuitively. .

【0010】一般に粉体層の高さ(レベル)の測定とし
て考えられるのは、各高さ(レベル)にレーザー発娠器
等のビーム発生器を配置し、このビームの物体による遮
断状況をみてその高さを検出することが考えられる。し
かしこの方法では、多数の検出器を上下方向に並べ配置
しなければならず、極めて多くの検出器を必要とす
る。、又流動層は、その上部は粉体や粒体の数が少なく
稀薄な層でしかも粉体が激しく運動しているため、粉体
層の高さを正確に把握することが困難であった。
Generally, it is considered that the height (level) of the powder layer is measured by arranging a beam generator such as a laser precipitator at each height (level) and observing the state of interruption of the beam by an object. It is conceivable to detect the height. However, in this method, a large number of detectors must be arranged in the vertical direction, and an extremely large number of detectors are required. In addition, the upper part of the fluidized bed is a thin layer with a small number of powders and granules, and the powder is moving violently, so it is difficult to accurately grasp the height of the powder bed. .

【0011】以上のような理由から、従来粉体層の高さ
を測定するようにした造粒装置は知られていなかった。
For the above reasons, there has not been known a granulating apparatus for measuring the height of a powder layer.

【0012】本発明においては、造粒槽の上部に超音波
距離測定機を設置して、これにより粉体層上部までの距
離測定実験を行なった結果、一つの距離測定機のみによ
り距離の測定が可能であり、しかも変動が激しく粉体の
密度が極めて小である部分に影響されることのない個所
までの測定が可能であることを見出したことによりなさ
れたものである。したがって超音波距離測定機の設置位
置(高さ)を特定することにより、流動層又は転動流動
層の高さを継続して測定することが出来、それによって
造粒中の各時点での流動化の状態を比較的正確に把握し
得る。
In the present invention, an ultrasonic distance measuring device was installed above the granulation tank, and a distance measurement experiment to the upper part of the powder layer was performed. As a result, the distance was measured only by one distance measuring device. It has been found that it is possible to perform measurement up to a portion which is not affected by a portion where the density of the powder is extremely small and the fluctuation is severe. Therefore, by specifying the installation position (height) of the ultrasonic distance measuring device, the height of the fluidized bed or the tumbling fluidized bed can be continuously measured, whereby the fluidization at each time point during granulation can be performed. Can be grasped relatively accurately.

【0013】図2は、超音波測定機により、粉体層の高
さを測定し得ることを確認するための実験装置を示す図
であって、転動流動造粒槽1中に槽の底面11から高さ
1(320mm)の位置に超音波測定機10を設置し
てこの設置位置から粉体層の上部までの距離h2を超音
波測定機により求め、その差(h1−h2)により粉体層
の高さHを求めた。
FIG. 2 is a view showing an experimental apparatus for confirming that the height of the powder layer can be measured by an ultrasonic measuring machine. The ultrasonic measuring device 10 is installed at a height h 1 (320 mm) from the position 11, and the distance h 2 from this installation position to the upper part of the powder layer is determined by the ultrasonic measuring device, and the difference (h 1 −h) 2 ) The height H of the powder layer was determined.

【0014】一方、図示するようにテレビカメラ12に
より粉体層を撮像し、ディスプレー13でこれを観察、
実際の粉体層の高さを求めた。
On the other hand, an image of the powder layer is taken by a television camera 12 as shown in FIG.
The actual height of the powder layer was determined.

【0015】上記の両測定結果を比較したところ、両測
定値は極めてよく一致することがわかった。
A comparison of the results of the two measurements revealed that the two measured values agreed very well.

【0016】更に本発明は、後に述べる各種実験の結果
からわかるように粉体層の高さと造粒条件特に造粒槽下
部より供給する空気の空気量とは一定の関係を有し、前
述の方法での粉体層の高さの検出値をフィードバックさ
せ、この粉体層の高さに応じての造粒条件具体的には空
気量のコントロールにより、造粒中所望の粉体層を保ち
得るようにしたものである。
Further, in the present invention, as can be seen from the results of various experiments described later, the height of the powder layer and the granulation conditions, particularly the amount of air supplied from the lower part of the granulation tank, have a fixed relationship. The detected value of the height of the powder layer in the method is fed back, and the granulation conditions according to the height of the powder layer, specifically, by controlling the amount of air, maintain the desired powder layer during granulation. It is something that you get.

【0017】[0017]

【実施例】次に本発明の装置を実施例にもとづいて説明
する。
Next, the apparatus of the present invention will be described based on an embodiment.

【0018】図1は図11に示す従来の転動流動層造粒
装置の造粒槽1内に超音波距離測定機10を設置したも
ので、その設置位置は基準面から一定の高さ例えば図に
おける面11から高さh1の位置に設置してある。
FIG. 1 shows an ultrasonic distance measuring device 10 installed in a granulation tank 1 of the conventional rolling fluidized bed granulator shown in FIG. It is placed at a height of h 1 from the surface 11 in FIG.

【0019】このような装置を用いて、転動流動化造粒
を行ないつつその粉体層の高さを測定し得る。
Using such a device, the height of the powder layer can be measured while performing tumbling fluidized granulation.

【0020】つまり、一般の流動層又は転動流動層造粒
方法と同様に金網又は回転板(多孔回転板)2の上に原
料粉体を投入した上で下部より適宜流量の空気を送り又
スプレーより水又はバインダー液を噴霧して造粒を行な
う。ここで超音波距離測定機10によりそれから粉体層
上部までの距離h2を測定して粉体層の高さHを検出す
る。ここで超音波距離測定機での距離の測定であるた
め、前述のように粉体層の適切な高さの測定が可能であ
る。
That is, in the same manner as in a general fluidized bed or tumbling fluidized bed granulation method, raw material powder is put on a wire mesh or a rotating plate (porous rotating plate) 2 and air is sent from a lower portion at an appropriate flow rate. Granulation is performed by spraying water or a binder liquid from a spray. Here by measuring the distance h 2 of then to the powder layer upper by ultrasonic distance measuring 10 detects the height H of the powder layer. Here, since the distance is measured by the ultrasonic distance measuring device, the appropriate height of the powder layer can be measured as described above.

【0021】次に、本発明の装置における粉体層の高さ
の制御について述べる。
Next, the control of the height of the powder layer in the apparatus of the present invention will be described.

【0022】図3は、各種の水分量の時の粉体層の高さ
Hと空気の無次元流速u/umf(uは空気速度,um
fは流動化開始速度)との関係を示す図で、実験結果に
よるものである。この図3において曲線aは水分値が1
2.5w(%)、同様に曲線bは15.0w(%)、曲
線cは17.5w(%)、曲線dは19.0w(%)で
ある。この図から一定の粉体層高Hを保つためには、空
気量を大にする必要があることがわかる。これは、高水
分になるにつれて造粒が進み粒子が圧密化されると共
に、粒子間の付着力の増大による。又この図から、いず
れの水分値においても流動時の粉体層高はほぼ同じ値で
あることがわかる。
FIG. 3 shows the height H of the powder layer and the dimensionless flow velocity u / umf of air (u is the air velocity, um
f is a graph showing the relationship with the fluidization start speed) and is based on the experimental results. In FIG. 3, the curve a indicates that the moisture value is 1.
Similarly, the curve b is 15.0 w (%), the curve c is 17.5 w (%), and the curve d is 19.0 w (%). From this figure, it can be seen that it is necessary to increase the amount of air in order to maintain a constant powder layer height H. This is due to the fact that as the water content increases, the granulation proceeds, the particles are compacted, and the adhesion between the particles increases. Further, from this figure, it can be seen that the powder layer height at the time of fluidization is almost the same regardless of the moisture value.

【0023】以上の結果から粉体層高を粉粒体下部より
供給する空気量をコントロールすることにより一定値に
保ち得ることがわかる。又粉体層高の値により良好な流
動化を得ることが可能である。
From the above results, it can be seen that the powder layer height can be maintained at a constant value by controlling the amount of air supplied from the lower part of the granular material. Further, good fluidization can be obtained by the value of the height of the powder layer.

【0024】本発明の装置における粉体層高の制御は図
4に示すようにHの目標値を設定すると共に前記の超音
波距離測定機によるHの測定値とを比較し、その差にも
とづいて前記の実験結果をもとに空気の流速をコントロ
ールしてHの値が目標値になるようにする。このように
して、目標値との差をフィードバックしこれによる空気
の流速のコントロールによってその差が0になるように
つまり粉体層の高さが目標値になるように制御してい
る。
In the control of the height of the powder layer in the apparatus of the present invention, a target value of H is set as shown in FIG. 4, and the measured value of H is compared with the measured value of the ultrasonic distance measuring apparatus. Thus, the value of H is controlled to the target value by controlling the flow rate of the air based on the above experimental results. In this way, the difference from the target value is fed back, and the flow rate of the air is controlled so that the difference becomes zero, that is, the height of the powder layer is controlled to the target value.

【0025】図5および図6は、本発明の制御方法によ
る実験結果で、図5が水分量のコントロールの結果、図
6は粉体層高コントロールの結果である。
FIGS. 5 and 6 show the results of experiments using the control method of the present invention. FIG. 5 shows the results of controlling the amount of water, and FIG. 6 shows the results of controlling the height of the powder layer.

【0026】図5に示すように水分量の制御が可能であ
る。つまり低水分域(W≦8%)では、層高を低くし、
高水分域(W≧8%)では層高を120mmに設定して
制御した結果が図である。この図から明らかなように、
所望の水分量までは、層高を低くし、水分量の増加によ
り所定の層高(例えば前記の120mm)になるように
コントロールすることにより所望の水分量での造粒が可
能になりしたがって所望の嵩密度の造粒物を得ることが
可能になる。
As shown in FIG. 5, the amount of water can be controlled. In other words, in the low moisture region (W ≦ 8%), the layer height is lowered,
In the high moisture region (W ≧ 8%), the result is obtained by controlling the bed height to 120 mm. As is clear from this figure,
Up to the desired water content, the bed height is lowered, and by controlling the layer height to a predetermined layer height (for example, 120 mm) by increasing the water content, granulation with a desired water content becomes possible. It is possible to obtain granules having a bulk density of

【0027】図6からは、所定の層高を保っての造粒が
可能であり、そのためブロッキング等を生ずることなし
に良好な造粒操作が可能であることがわかる。
From FIG. 6, it can be seen that granulation can be performed while maintaining a predetermined layer height, so that a good granulation operation can be performed without blocking or the like.

【0028】図7は、粉体層高と撹拌翼の回転速度Nと
の関係を示すもので、曲線aはu/umf=2.27、
曲線bはu/umf=4.53、曲線cはu/umf=
6.80、曲線dはu/umf=9.07である。この
図から明らかなように風速が小さい程撹拌翼の影響を受
けやすく、回転数Nの増大により層高Hが低下する。
FIG. 7 shows the relationship between the height of the powder layer and the rotation speed N of the stirring blade. The curve a shows u / umf = 2.27,
Curve b is u / umf = 4.53, and curve c is u / umf =
6.80, curve d is u / umf = 9.07. As is clear from this figure, the lower the wind speed is, the more easily the influence of the stirring blades occurs, and the bed height H decreases as the rotation speed N increases.

【0029】図8は、風速を変化させた時の見かけ密度
ρaと撹拌翼回転速度Nとの関係を示した図である。い
ずれの風速の場合も、ρaは回転数Nにより変化する。
図7等にもとづいて求めたρaと無次元風速u/umf
および撹拌翼の回転数Nとの関係を定量化した実験式を
示すと下記の通りである。
FIG. 8 is a diagram showing the relationship between the apparent density ρa and the stirring blade rotation speed N when the wind speed is changed. Regardless of the wind speed, ρa changes depending on the rotation speed N.
Ρa and dimensionless wind speed u / umf obtained based on FIG.
An empirical formula that quantifies the relationship between the rotation speed N of the stirring blade and the rotation speed N is shown below.

【0030】ρa=5.85×10-2 3−3.00N2
+2.77×103u/umf+468.5 ただし0≦N≦15rps、0≦u/umf≦9 ここで、風速を変化させた時の形状係数Ψおよび安息角
φと撹拌翼回転速度Nとの関係を求めると夫々図9と図
10に示す通りである。ここで50個の粒子の短軸r1
と長軸r2との比r1/r2の平均値をΨeとした。
Ρa = 5.85 × 10-2 NThree-3.00NTwo
+ 2.77 × 10Threeu / umf + 468.5 where 0 ≦ N ≦ 15 rps, 0 ≦ u / umf ≦ 9 where the shape factor Ψ and angle of repose when the wind speed is changed
Fig. 9 and Fig. 9 show the relationship between φ and the stirring blade rotation speed N.
As shown in FIG. Where the short axis r of the 50 particles1
And the major axis rTwoAnd the ratio r1/ RTwoThe average ofeAnd

【0031】図9よりN≦10.0r.p.s.ではN
の値の増加にともない撹拌翼による転動、圧密作用が大
きくなり、Ψeの値は増大し球形度が増大し、又図10
より上記のNの値の時は、Φの値は減少して流動性が向
上することがわかる。尚図7,8,9においてa,b.
cは夫々u/umf=4.53、6.80、9.07に
対するものである。
FIG. 9 shows that N ≦ 10.0r. p. s. Then N
As the value of 増 加 increases, the rolling and consolidation effects of the stirring blades increase, the value of Ψ e increases, the sphericity increases, and FIG.
It can be seen from the above that when the value of N is above, the value of Φ decreases and the fluidity improves. 7, 8, and 9, a, b.
c is for u / umf = 4.53, 6.80, 9.07, respectively.

【0032】又N>10.0r.p.s.の時は、撹拌
翼の回転速度が大であるので粒子が遠心力により造粒槽
の壁面に押し付けられるので効果的な転動圧密効果を受
けにくいことがわかる。
N> 10.0r. p. s. In this case, it can be seen that the rotation speed of the stirring blade is high and the particles are pressed against the wall surface of the granulation tank by centrifugal force, so that it is difficult to receive an effective rolling consolidation effect.

【0033】以上述べた点を考慮することによって、撹
拌翼の回転を組み合わせての本発明の層高の制御によっ
て、所定の圧密の造粒物を形成し得る。
By taking into account the above points, it is possible to form granules having a predetermined consolidation by controlling the bed height of the present invention by combining the rotation of the stirring blades.

【0034】[0034]

【発明の効果】本発明の流動層又は転動流動層造粒装置
は、粉体層高の測定が可能であり、又層高が設定した一
定の高さになるように制御出来、したがってブロッキン
グ等を生ずることなしに良好な造粒を行ない得る。更に
層高の設定値(目標値)の選択によって、所望の嵩密
度、粒径の粉体を得ることが出来る。
The fluidized-bed or tumbling-fluidized-bed granulator according to the present invention can measure the height of the powder bed and can control the height of the bed to a set constant height, and therefore can block the powder. Good granulation can be performed without causing the like. Further, by selecting a set value (target value) of the layer height, a powder having a desired bulk density and particle size can be obtained.

【図面の簡単な説明】[Brief description of the drawings]

【図1】 本発明の実施例1の断面図FIG. 1 is a sectional view of a first embodiment of the present invention.

【図2】 超音波測定機による層高測定値Fig. 2 Measurement of layer height by ultrasonic measuring machine

【図3】 層高と流速との関係を示すグラフFIG. 3 is a graph showing the relationship between bed height and flow velocity.

【図4】 粉体層高自動制御システムの概略図FIG. 4 is a schematic diagram of a powder layer height automatic control system.

【図5】 本発明による水分制御の一例を示す図FIG. 5 is a diagram showing an example of moisture control according to the present invention.

【図6】 本発明による粉体層高制御の一例を示す図FIG. 6 is a diagram showing an example of powder layer height control according to the present invention.

【図7】 粉体層高と撹拌翼回転速度の関係を示す図FIG. 7 is a diagram showing a relationship between a powder layer height and a stirring blade rotation speed.

【図8】 粉粒体の見かけ密度と撹拌翼回転速度の関
係を示す図
FIG. 8 is a diagram showing the relationship between the apparent density of the powder and the rotational speed of the stirring blade.

【図9】 粉粒体の形状係数と撹拌翼回転速度の関係
を示す図
FIG. 9 is a diagram showing the relationship between the shape factor of the granular material and the rotation speed of the stirring blade.

【図10】 粉粒体の安息角と撹拌翼回転速度の関係を
示す図
FIG. 10 is a diagram showing the relationship between the angle of repose of the granular material and the rotation speed of the stirring blade.

【図11】 従来の造粒装置の断面図FIG. 11 is a cross-sectional view of a conventional granulation apparatus.

【符号の説明】 1 造粒槽 2 金網又は回転板 3 ブロアー 4 層高センサー 11 基準面[Description of Signs] 1 Granulation tank 2 Wire mesh or rotating plate 3 Blower 4 Layer height sensor 11 Reference plane

Claims (4)

(57)【特許請求の範囲】(57) [Claims] 【請求項1】 金網又は多孔回転板とその下部に配置
されたエアー供給用パイプと上部に配置された液供給用
スプレーとよりなる造粒装置の基準となる面より一定の
高さに層高センサ−を配置し該層高センサ−から造粒中
の粉体層の上部までの距離を求めることにより粉体層の
高さを測定し、測定結果にもとづき、前記エアー供給用
パイプよりのエアーの量をコントロールするようにした
流動層又は転動流動層造粒装置
1. A layer height which is higher than a reference surface of a granulating apparatus including a wire mesh or a perforated rotating plate, an air supply pipe disposed under the rotating plate, and a liquid supply spray disposed above. The height of the powder layer is measured by arranging a sensor and determining the distance from the layer height sensor to the upper part of the powder layer during granulation .
Fluidized bed or tumbling fluidized bed granulator that controls the amount of air from the pipe
【請求項2】 前記の層高センサ−が超音波距離測定
機である請求項1の流動又は転動流動造粒装置。
2. The fluidized or tumbling fluidized-bed granulating apparatus according to claim 1, wherein said bed height sensor is an ultrasonic distance measuring machine.
【請求項3】 前記の層高センサ−による粉体層高の
測定値と予め設定した所望の目標値との差にもとづいて
エアー供給用パイプよりの空気量を制御して粉体層高が
常に目標値を保つようにした請求項1又は2の流動層又
は転動流動層の造粒装置。
3. The amount of air from the air supply pipe is controlled based on the difference between the measured value of the height of the powder layer by the above-mentioned layer height sensor and a predetermined target value to set the height of the powder layer. 3. The granulating apparatus for a fluidized bed or a tumbling fluidized bed according to claim 1, wherein the target value is always maintained.
【請求項4】 前記金網又は回転板の上部に回転速度
可変の撹拌翼を配置した請求項1、2又は3の流動層又
は転動流動層の造粒装置。
4. The apparatus for granulating a fluidized bed or a tumbling fluidized bed according to claim 1, wherein a stirring blade having a variable rotation speed is disposed above the wire mesh or the rotating plate.
JP30447992A 1992-10-19 1992-10-19 Fluidized bed or tumbling fluidized bed granulator Expired - Lifetime JP3345723B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP30447992A JP3345723B2 (en) 1992-10-19 1992-10-19 Fluidized bed or tumbling fluidized bed granulator

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP30447992A JP3345723B2 (en) 1992-10-19 1992-10-19 Fluidized bed or tumbling fluidized bed granulator

Publications (2)

Publication Number Publication Date
JPH06126149A JPH06126149A (en) 1994-05-10
JP3345723B2 true JP3345723B2 (en) 2002-11-18

Family

ID=17933523

Family Applications (1)

Application Number Title Priority Date Filing Date
JP30447992A Expired - Lifetime JP3345723B2 (en) 1992-10-19 1992-10-19 Fluidized bed or tumbling fluidized bed granulator

Country Status (1)

Country Link
JP (1) JP3345723B2 (en)

Also Published As

Publication number Publication date
JPH06126149A (en) 1994-05-10

Similar Documents

Publication Publication Date Title
Kristensen et al. Granulation: A review on pharmaceutical wet-granulation
JPH0745011B2 (en) Method and apparatus for agglomerating and / or coating particles
Hapgood et al. Improving liquid distribution by reducing dimensionless spray flux in wet granulation—a pharmaceutical manufacturing case study
CA1062907A (en) Continuous powder feed system for maintaining a uniform powder coating thickness on objects being coated by electrostatic fluidized beds
JP3349540B2 (en) Granulation method and apparatus
JP3345723B2 (en) Fluidized bed or tumbling fluidized bed granulator
WO2017061339A1 (en) Particulate matter spraying device, particulate matter spraying method, and method for producing particulate matter-containing article
US3653544A (en) Particle dispensing apparatus and method
JPH0277529A (en) Granulator for raw material to be sintered
JP3347366B2 (en) Rolling granulation apparatus and method
JP3624114B2 (en) Rotary bread granulator and method for producing granulated product using the granulator
JPS62279835A (en) Particle diameter control device for continuous granulating
JPS63201595A (en) Method of coating granulated powder material
WO2021166375A1 (en) Particulate spraying apparatus and particulate spraying method
JPH02229540A (en) Control device for disk pelletizer
US4859387A (en) Beader drum method
JP3595949B2 (en) Granulation control method for granular material in fluidized bed processing equipment
JPH0952629A (en) Discharging device for powder/grain material
US6383562B1 (en) Method and plant for the preparation of granulated materials such as feedstuff pellets sprayed with additives
JP2000000456A (en) Granulating method and device and granulated matter obtained by same
EP4257523A1 (en) Gas transfer type system for supplying constant volume of fine powder by ultrasonic flow, and gas transfer type method for supplying constant volume of fine powder by ultrasonic flow
JPH0952630A (en) Smoothing method for grain filling face in grain filling device
JP3473860B2 (en) Rolling granulation apparatus and rolling granulation method
JPS5861415A (en) Measuring device for delivery of powder
NL9302093A (en) Fluidization of a bed of a cohesive powder.

Legal Events

Date Code Title Description
R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20070906

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20080906

Year of fee payment: 6

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20080906

Year of fee payment: 6

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090906

Year of fee payment: 7

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100906

Year of fee payment: 8

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110906

Year of fee payment: 9

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110906

Year of fee payment: 9

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120906

Year of fee payment: 10

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120906

Year of fee payment: 10

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130906

Year of fee payment: 11

EXPY Cancellation because of completion of term
FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130906

Year of fee payment: 11