JP3342984B2 - Heat storage type heat exchanger and its operation method - Google Patents

Heat storage type heat exchanger and its operation method

Info

Publication number
JP3342984B2
JP3342984B2 JP12860095A JP12860095A JP3342984B2 JP 3342984 B2 JP3342984 B2 JP 3342984B2 JP 12860095 A JP12860095 A JP 12860095A JP 12860095 A JP12860095 A JP 12860095A JP 3342984 B2 JP3342984 B2 JP 3342984B2
Authority
JP
Japan
Prior art keywords
gas
heat storage
temperature
heated
heat exchanger
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP12860095A
Other languages
Japanese (ja)
Other versions
JPH08100999A (en
Inventor
ディ.ヒッケル スティーブン
シー.マークスベリー リン
利和 山村
修平 那谷
俊雄 黒坂
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Kobe Steel Ltd
Original Assignee
Kobe Steel Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Kobe Steel Ltd filed Critical Kobe Steel Ltd
Publication of JPH08100999A publication Critical patent/JPH08100999A/en
Application granted granted Critical
Publication of JP3342984B2 publication Critical patent/JP3342984B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F28HEAT EXCHANGE IN GENERAL
    • F28DHEAT-EXCHANGE APPARATUS, NOT PROVIDED FOR IN ANOTHER SUBCLASS, IN WHICH THE HEAT-EXCHANGE MEDIA DO NOT COME INTO DIRECT CONTACT
    • F28D17/00Regenerative heat-exchange apparatus in which a stationary intermediate heat-transfer medium or body is contacted successively by each heat-exchange medium, e.g. using granular particles
    • F28D17/02Regenerative heat-exchange apparatus in which a stationary intermediate heat-transfer medium or body is contacted successively by each heat-exchange medium, e.g. using granular particles using rigid bodies, e.g. of porous material

Landscapes

  • Engineering & Computer Science (AREA)
  • Chemical & Material Sciences (AREA)
  • Dispersion Chemistry (AREA)
  • Physics & Mathematics (AREA)
  • Thermal Sciences (AREA)
  • Mechanical Engineering (AREA)
  • General Engineering & Computer Science (AREA)
  • Filling Or Discharging Of Gas Storage Vessels (AREA)
  • Heat-Exchange Devices With Radiators And Conduit Assemblies (AREA)

Description

【発明の詳細な説明】DETAILED DESCRIPTION OF THE INVENTION

【0001】[0001]

【産業上の利用分野】本発明は、ICD(イナートガス
・サイクル・ダイレクト)発電設備等に用いられる蓄熱
型熱交換器及びその運転方法に関するものである。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a heat storage type heat exchanger used for an ICD (inert gas cycle direct) power generation facility and the like, and a method of operating the same.

【0002】[0002]

【従来の技術】一般に、非常に高温の加熱ガス(例えば
ICD発電においてヘリウムガスを加熱する場合は2000
K)で被加熱ガスを加熱する場合、蓄熱型熱交換器がよ
く用いられる。
2. Description of the Related Art Generally, a very high-temperature heating gas (for example, when helium gas is heated in an
When heating the gas to be heated in K), a regenerative heat exchanger is often used.

【0003】図10は、従来の蓄熱型熱交換器の一例を
示したものである。図において、断熱容器90の上端に
は高温加熱ガス生成用のバーナ92が配設され、断熱容
器90の上部に空間94を確保してその下方にれんが等
からなる蓄熱体96が収納されている。この断熱容器9
0の下方には、加熱ガスを導出し、また被加熱ガスを導
入するための通路98が形成され、この通路98の下方
には入口99が設けられている。この通路98の入口9
9に弁100を介して図略の被加熱ガス供給源が接続さ
れている。また、断熱容器90の側壁には上記空間94
に臨む位置に被加熱ガスを断熱容器90の外に送り出す
排出口102が設けられ、この排出口102が弁104
を介して下流に設けられた図略の装置等に接続されてい
る。
FIG. 10 shows an example of a conventional heat storage type heat exchanger. In the figure, a burner 92 for generating a high-temperature heating gas is disposed at the upper end of a heat insulating container 90, and a space 94 is secured above the heat insulating container 90, and a heat storage body 96 made of brick or the like is stored below the space 94. . This heat insulation container 9
Below 0, a passage 98 for taking out the heating gas and introducing the gas to be heated is formed, and below this passage 98, an inlet 99 is provided. The entrance 9 of this passage 98
An unillustrated heated gas supply source is connected to 9 via a valve 100. The space 94 is provided on the side wall of the heat insulating container 90.
A discharge port 102 for sending the gas to be heated to the outside of the heat insulating container 90 is provided at a position facing the air outlet.
Is connected to a device (not shown) provided downstream through the device.

【0004】この蓄熱型熱交換器の運転要領は次の通り
である。
[0004] The operation of this regenerative heat exchanger is as follows.

【0005】(1) バーナ92で高温加熱ガスを生成し、
空間94を通じて上記加熱ガスを蓄熱体96に対して下
方に透過させる。蓄熱体96を透過した加熱ガスは、通
路98を通過した後、断熱容器90から外へ送り出す。
バ−ナ92から蓄熱体96への高温加熱ガスの供給は、
蓄熱体96が十分熱せられるように所定時間続ける。
(1) A high-temperature heating gas is generated by the burner 92,
The heating gas is transmitted downward through the space 94 to the heat storage body 96. The heating gas that has passed through the heat storage body 96 is sent out of the heat insulating container 90 after passing through the passage 98.
The supply of the high-temperature heating gas from the burner 92 to the heat storage body 96 is as follows.
The operation is continued for a predetermined time so that the heat storage body 96 is sufficiently heated.

【0006】(2) 加熱済の蓄熱体96の底部から上方に
アルゴンガス等の被加熱ガスを蓄熱体96に透過させ、
蓄熱体96に蓄積された熱エネルギ−を被加熱ガスに伝
導させる。蓄熱体96を通過して高温に熱せられた被加
熱ガスは、排出口102から系外へ導出する。
(2) A gas to be heated such as argon gas is allowed to pass through the heat storage body 96 upward from the bottom of the heated heat storage body 96,
The heat energy stored in the heat storage body 96 is transmitted to the gas to be heated. The heated gas that has been heated to a high temperature after passing through the heat storage body 96 is led out of the system from the outlet 102.

【0007】しかし、このような蓄熱型熱交換器では、
被加熱ガスとの熱交換で蓄熱体96の温度が時間の経過
とともに低下するため、排出口102から排出される被
加熱ガスの温度も十分高く維持することができない。す
なわち、長時間にわたって排出口102から排出される
被加熱ガスを所望の温度に維持し安定化させることがで
きないという不都合がある。
However, in such a heat storage type heat exchanger,
Since the temperature of the heat storage body 96 decreases with time due to heat exchange with the heated gas, the temperature of the heated gas discharged from the outlet 102 cannot be maintained sufficiently high. In other words, there is an inconvenience that the heated gas discharged from the discharge port 102 cannot be maintained at a desired temperature and stabilized for a long time.

【0008】このような不都合を解消する手段として、
従来は次のような方法が知られている。
As means for solving such inconveniences,
Conventionally, the following method is known.

【0009】A)2つの蓄熱型熱交換器、すなわち第1
の蓄熱型熱交換器と第2の蓄熱型熱交換器を併用する。
熱交換の初期では、第1の蓄熱型熱交換器だけで満足の
ゆく温度が得られるので、第1の蓄熱型熱交換器だけを
作動させる。この作動後、第1の蓄熱型熱交換器から排
出される被加熱ガスの温度が時間の経過とともに降下す
るが、所定時間の経過後、第2の蓄熱型熱交換器を作動
させ、第1の蓄熱型熱交換器から排出される被加熱ガス
の温度降下を補う。すなわち、排出される被加熱ガスの
温度を安定させるため、第1と第2の蓄熱型熱交換器の
作動タイミングを相対的にずらす。このようにして、第
1と第2の蓄熱型熱交換器の高温ガスと低温ガスを混合
することにより、被加熱ガス温度を安定化させる(特開
昭61−285394号公報)。
A) Two regenerative heat exchangers, namely the first
And the second heat storage type heat exchanger.
At the beginning of the heat exchange, a satisfactory temperature can be obtained only with the first regenerative heat exchanger, so that only the first regenerative heat exchanger is operated. After this operation, the temperature of the gas to be heated discharged from the first regenerative heat exchanger decreases with the passage of time, but after the elapse of a predetermined time, the second regenerative heat exchanger is activated and To compensate for the temperature drop of the heated gas discharged from the heat storage type heat exchanger. That is, in order to stabilize the temperature of the gas to be discharged, the operation timings of the first and second regenerative heat exchangers are relatively shifted. Thus, the temperature of the gas to be heated is stabilized by mixing the high-temperature gas and the low-temperature gas in the first and second regenerative heat exchangers (JP-A-61-285394).

【0010】B)図10に示す熱交換器において、被加
熱ガスの一部を蓄熱体96に通さずこれをバイパスさせ
るべく、通路98の入り口99と排出口102を直接結
ぶバイパス通路を設ける。このバイパスガスと蓄熱体9
6を透過した後の被加熱ガスとを排出口102で混合す
るとともに、時間の経過とともに上記バイパスガスの流
量を減らすことにより、排出口104から導出される被
加熱ガス温度を安定化させる。
B) In the heat exchanger shown in FIG. 10, a bypass passage is provided directly connecting the inlet 99 of the passage 98 and the outlet 102 so as to bypass a part of the gas to be heated without passing through the heat storage body 96. This bypass gas and the heat storage body 9
The gas to be heated after passing through 6 is mixed at the outlet 102 and the flow rate of the bypass gas is reduced with the passage of time to stabilize the temperature of the heated gas led out from the outlet 104.

【0011】[0011]

【発明が解決しようとする課題】上記A)の手段では、
被加熱ガス温度を安定化させるのに少なくとも2つの熱
交換器が必要であり、設備の大型化は免れ得ない。一
方、B)の手段では、一部の被加熱ガスをバイパスさせ
て蓄熱体96に通さないので、このバイパスガスは高温
の加熱ガスの熱エネルギ−を受けることができない。従
って、熱交換器をフルに活用できず、熱効率が悪い。ま
た、上記バイパスガスは全く加熱されないなので、その
温度は極端に低温のままである。このような低温のバイ
パスガスが高温に熱せられたガスと混合すると、混合さ
れるバイパスガスの量が僅かであっても混合後の被加熱
ガス温度が極端に変動しやすく、微妙な温度調節は行い
にくい。
According to the above-mentioned means A),
At least two heat exchangers are required to stabilize the temperature of the gas to be heated, so that the equipment cannot be enlarged. On the other hand, in the means B), since a part of the gas to be heated is bypassed and not passed through the heat storage body 96, the bypass gas cannot receive the heat energy of the high-temperature heating gas. Therefore, the heat exchanger cannot be fully utilized, and the heat efficiency is poor. Further, since the bypass gas is not heated at all, its temperature remains extremely low. When such a low-temperature bypass gas is mixed with a gas heated to a high temperature, the temperature of the heated gas after mixing tends to fluctuate extremely even if the amount of the bypass gas mixed is small, and delicate temperature adjustment is not possible. Hard to do.

【0012】本発明は、このような事情に鑑み、熱交換
器の台数を増やさなくても長い時間にわたって被加熱ガ
スの温度を安定化させることができる蓄熱型熱交換器及
びその運転方法を提供することを目的とする。
In view of such circumstances, the present invention provides a regenerative heat exchanger capable of stabilizing the temperature of a gas to be heated for a long time without increasing the number of heat exchangers, and a method of operating the same. The purpose is to do.

【0013】[0013]

【課題を解決するための手段】上記課題を解決するため
の手段として、本発明は、断熱壁で形成された容器と、
熱エネルギ−を蓄積するため上記断熱容器内に設けら
れ、第1端部と、この第1端部と反対側にある第2端部
を有し、上記第1端部と第2端部との間でガスが透過可
能な蓄熱体と、加熱ガスを上記第1端部から上記第2端
部へ透過させることにより、上記蓄熱体に互いに温度の
異なる複数の温度領域が形成されるようにこの蓄熱体を
加熱させる加熱手段と、上記蓄熱体の加熱後、上記各温
度領域に対して各々独立して上記第2端部から上記第1
端部へ被加熱ガスを透過させる被加熱ガス供給手段とを
備え、上記第1端部に隣接する位置に、各温度領域を通
過した被加熱ガス同士を混合させる混合部を設けたもの
である(請求項1)。
Means for Solving the Problems As means for solving the above problems, the present invention provides a container formed of a heat insulating wall,
A first end, a second end opposite to the first end, provided in the insulated container for storing thermal energy, the first end and the second end; A plurality of temperature regions having different temperatures from each other are formed in the heat storage body by allowing the heat storage body through which the gas can pass and the heating gas to pass from the first end to the second end. Heating means for heating the heat storage element; and after the heating of the heat storage element, the first end is connected to the first end from the second end independently for each of the temperature regions.
Heating gas supply means for transmitting the gas to be heated to the end; and a mixing unit for mixing the gases to be heated that have passed through the respective temperature regions at a position adjacent to the first end. (Claim 1).

【0014】上記複数の温度領域に高温部と低温部を含
む場合(請求項2)、上記高温部は上記蓄熱体の内側部
に形成し、上記低温部は上記蓄熱体の外側部に形成する
のが好適である(請求項3)。
When the plurality of temperature regions include a high-temperature portion and a low-temperature portion (claim 2), the high-temperature portion is formed inside the heat storage body, and the low-temperature portion is formed outside the heat storage body. Is preferred (claim 3).

【0015】より具体的には、上記高温部と低温部がガ
スの透過方向に積層された複数の蓄熱用ブロックで形成
され、各蓄熱用ブロックがこのブロックをガスの透過方
向に貫くガス通路を有するものが、好適である(請求項
4)。
More specifically, the high-temperature portion and the low-temperature portion are formed by a plurality of heat storage blocks stacked in the gas permeation direction, and each heat storage block has a gas passage passing through the block in the gas permeation direction. What has it is suitable (claim 4).

【0016】この場合、上記高温部や低温部に積層され
た蓄熱用ブロックは、周方向、径方向の少なくとも一方
に分割されていることが、より好ましい(請求項6)。
また、上記高温部での蓄熱用ブロックの積層境界位置と
上記低温部での蓄熱用ブロックの積層境界位置とはガス
の透過方向にずれているのが、より好ましい(請求項
7)。
In this case, it is more preferable that the heat storage block laminated in the high temperature section or the low temperature section is divided into at least one of a circumferential direction and a radial direction.
Further, it is more preferable that the lamination boundary position of the heat storage block in the high temperature part and the lamination boundary position of the heat storage block in the low temperature part are shifted in the gas transmission direction (claim 7).

【0017】また、上記高温部と上記低温部のいずれか
一方はガスの透過方向に積層された複数の蓄熱用ブロッ
クで形成され、各蓄熱用ブロックはこれをガスの透過方
向に貫くガス通路を有し、上記高温部と上記低温部のう
ちの他方は多数のペブル型蓄熱体を充填することにより
形成されているものであってもよい(請求項8)。
Either the high-temperature section or the low-temperature section is formed by a plurality of heat storage blocks stacked in the gas permeation direction, and each heat storage block has a gas passage extending therethrough in the gas permeation direction. The other of the high-temperature portion and the low-temperature portion may be formed by filling a large number of pebble-type heat storage bodies.

【0018】上記被加熱ガス供給手段としては、上記高
温部及び上記低温部への被加熱ガスの流量を調節する流
量調節手段と、被加熱ガスの上記蓄熱体への供給開始
後、時間の経過とともに被加熱ガスの高温部への流量を
増加させるように上記流量調節手段を制御する制御手段
とを備えたものや(請求項9)、上記混合部で混合され
た被加熱ガスの温度を検出する温度検出手段と、上記高
温部と上記低温部への被加熱ガスの流量を調節する流量
調節手段と、上記温度検出手段により検出された温度に
基づき、加熱後の被加熱ガスの温度を所定の温度に保つ
方向に上記高温部及び上記低温部への被加熱ガスの流量
を各々調節させる制御手段とを備えたもの(請求項1
0)が、好適である。
The heated gas supply means includes a flow rate adjusting means for adjusting a flow rate of the heated gas to the high temperature section and the low temperature section, and a time lapse after the start of the supply of the heated gas to the heat storage body. And a control means for controlling the flow rate adjusting means so as to increase the flow rate of the gas to be heated to the high temperature portion, or detecting the temperature of the gas to be heated mixed in the mixing section. Temperature detecting means, a flow rate adjusting means for adjusting a flow rate of the gas to be heated to the high temperature part and the low temperature part, and a temperature of the heated gas to be heated based on the temperature detected by the temperature detecting means. Control means for respectively adjusting the flow rate of the gas to be heated to the high-temperature section and the low-temperature section in a direction to maintain the temperature at a predetermined temperature.
0) is preferred.

【0019】また本発明は、互いに温度の異なる複数の
温度領域が形成可能な蓄熱体を容器内に備えた蓄熱型熱
交換器の運転方法であって、上記各温度領域に各々独立
して被加熱ガスを透過させ、透過後の被加熱ガス同士を
混合するとともに、この被加熱ガスの上記蓄熱体への供
給開始後、時間の経過とともに上記温度領域のうち温度
が高い領域への被加熱ガスの流量を増加させるものであ
る(請求項11)。
The present invention also relates to a method for operating a heat storage type heat exchanger having a heat storage body capable of forming a plurality of temperature regions having different temperatures from each other in a vessel, wherein the heat storage members are independently covered in the respective temperature regions. The gas to be heated is permeated, and the gas to be heated is mixed with each other after the permeation. After the supply of the gas to be heated to the heat storage body is started, the gas to be heated is heated to a higher temperature region in the temperature region as time passes. (Claim 11).

【0020】また本発明は、互いに温度の異なる複数の
温度領域が形成可能な蓄熱体を容器内に備えた蓄熱型熱
交換器の運転方法であって、上記各温度領域に各々独立
して被加熱ガスを透過させ、透過後の被加熱ガス同士を
混合するとともに、この混合された被加熱ガスの温度を
検出し、この温度を所定の温度に保つように各温度領域
での被加熱ガスの透過流量を制御するものである(請求
項12)。
The present invention also relates to a method for operating a heat storage type heat exchanger having a heat storage body capable of forming a plurality of temperature regions having different temperatures from each other in a container. The gas to be heated is permeated, and the gases to be heated are mixed with each other after the permeation, the temperature of the mixed gas to be heated is detected, and the temperature of the gas to be heated in each temperature range is maintained so as to maintain this temperature at a predetermined temperature. It controls the permeation flow rate (claim 12).

【0021】[0021]

【作用】請求項1記載の蓄熱型熱交換器によれば、加熱
ガスによる加熱後に生じる温度分布により、蓄熱体内部
には、互いに温度の異なる複数の温度領域がガスの透過
方向と直交する方向に並んで形成される。そこで、被加
熱ガスを各温度領域に互いに独立して透過させるととも
に、請求項9,11のように、蓄熱体への被加熱ガスの
供給開始後時間の経過とともに高温部への被加熱ガスの
流量を増加させたり、請求項10,12のように、各温
度領域を通過して混合された被加熱ガスの温度を検出
し、この温度を所定の温度に保つように各温度領域への
被加熱ガスの流量を制御したりすることにより、加熱さ
れた被加熱ガスの温度を長時間にわたって所望の温度に
安定して維持することができる。
According to the regenerative heat exchanger of the present invention, a plurality of temperature regions having different temperatures are formed in the heat storage body in a direction orthogonal to the gas transmission direction due to the temperature distribution generated after heating by the heating gas. Are formed side by side. Therefore, the gas to be heated is allowed to pass through each temperature region independently of each other, and the gas to be heated to the high-temperature portion with the lapse of time after the start of the supply of the gas to be heated to the heat storage body. The flow rate is increased, or the temperature of the gas to be heated that has passed through and mixed with each temperature region is detected, and the temperature of the gas to be heated to each temperature region is maintained at a predetermined temperature. By controlling the flow rate of the heating gas, the temperature of the heated gas to be heated can be stably maintained at a desired temperature for a long time.

【0022】一般に、蓄熱体の外側部は断熱容器の側壁
に近くて放熱しやすいため、高温部を蓄熱体の内側部
に、低温部を蓄熱体の外側部に形成することが可能であ
る(請求項3)。この熱交換器では、被加熱ガス導入当
初は外側部に被加熱ガス透過を優先させることにより、
上記外側部が断熱容器外側の大気によって冷却される前
に、外側部の熱エネルギ−を効率良く利用できる。
In general, since the outside of the heat storage body is close to the side wall of the heat insulating container and easily radiates heat, it is possible to form a high-temperature part inside the heat storage body and a low-temperature part outside the heat storage body ( Claim 3). In this heat exchanger, at the beginning of the heated gas introduction, by giving priority to the heated gas permeation to the outside,
Before the outer portion is cooled by the atmosphere outside the heat insulating container, the heat energy of the outer portion can be efficiently used.

【0023】請求項4記載の熱交換器では、蓄熱体が、
ガス透過方向のガス通路をもつ複数の蓄熱用ブロックを
積層することにより形成される。この構成では、蓄熱体
と被加熱ガスの間での熱交換を効率的に行うことができ
る。特に、請求項5,6記載の熱交換器では、上記蓄熱
用ブロックを径方向あるいは周方向に分割しているの
で、各ブロック間の隙間で蓄熱体の熱膨脹を吸収でき、
熱的強度及び耐熱性を著しく高めることができる。ま
た、請求項7記載の熱交換器では、高温部でのブロック
積層境界位置と低温部でのブロック積層境界位置とをガ
スの透過方向にずらしている分、熱エネルギ−が高温部
から低温部に移動するのを抑制できる。すなわち、温度
の異なる領域間の断熱効果を著しく高めることができ
る。
In the heat exchanger according to the fourth aspect, the heat storage body is
It is formed by stacking a plurality of heat storage blocks having gas passages in the gas permeation direction. With this configuration, heat exchange between the heat storage body and the gas to be heated can be efficiently performed. In particular, in the heat exchanger according to claims 5 and 6, since the heat storage block is divided in the radial direction or the circumferential direction, the thermal expansion of the heat storage body can be absorbed in the gap between the blocks.
Thermal strength and heat resistance can be significantly increased. Further, in the heat exchanger according to the seventh aspect, since the block stacking boundary position in the high-temperature portion and the block stacking boundary position in the low-temperature portion are shifted in the gas transmission direction, the heat energy is changed from the high-temperature portion to the low-temperature portion. Can be suppressed. That is, the heat insulating effect between regions having different temperatures can be significantly improved.

【0024】また、請求項8記載の熱交換器では、高温
部と低温部のいずれか一方を多数のペブル型蓄熱体の充
填により形成しているので、各蓄熱体同士の隙間で蓄熱
体と被加熱ガスとの間の熱交換を効率良く行うことがで
きる。
In the heat exchanger according to the present invention, one of the high-temperature portion and the low-temperature portion is formed by filling a large number of pebble-type heat storage bodies. Heat exchange with the gas to be heated can be performed efficiently.

【0025】[0025]

【実施例】本発明の第1実施例を図1〜図4に基づいて
説明する。図1に示す蓄熱型熱交換器は、上下に延びる
断熱容器10を備え、その上端に高温加熱ガス生成用の
バーナ12が配設されている。断熱容器10内には、上
方に混合室(混合部)14を残してその下方に中心部用
蓄熱体16と外周部用蓄熱体18が収納されている。中
心部用蓄熱体16と外周部用蓄熱体18は、図1の上下
方向(ガス透過方向)に積層されたれんが(蓄熱用ブロ
ック)で形成され、れんがの間を加熱ガス及び被加熱ガ
スが透過するようになっている。更に、中心部用蓄熱体
16及び外周部用蓄熱体18のれんがには、各れんがを
断熱容器10の垂直方向に貫くガス通路16aと18a
が設けられ、このガス通路16a,18aを通じてもガ
スが透過できるようになっている。
DETAILED DESCRIPTION OF THE PREFERRED EMBODIMENTS A first embodiment of the present invention will be described with reference to FIGS. The heat storage type heat exchanger shown in FIG. 1 includes a heat insulating container 10 extending vertically, and a burner 12 for generating a high-temperature heating gas is disposed at an upper end thereof. In the heat insulating container 10, a heat storage body 16 for the central part and a heat storage body 18 for the outer peripheral part are accommodated below the mixing chamber (mixing part) 14 while leaving it above. The central heat storage body 16 and the outer peripheral heat storage body 18 are formed of bricks (heat storage blocks) stacked in the vertical direction (gas transmission direction) in FIG. 1, and the heating gas and the gas to be heated pass between the bricks. It is transparent. Further, the bricks of the heat storage body 16 for the central part and the heat storage body 18 for the outer peripheral part have gas passages 16a and 18a passing through each brick in the vertical direction of the heat insulating container 10.
Are provided, so that gas can permeate through the gas passages 16a and 18a.

【0026】図2に示すように、上記中心部用蓄熱体1
6は円板状をなし、これを径方向(ガス透過方向と直交
する方向)の外側から取り巻くように外周部用れんが型
蓄熱体18が積層されている。外周部用れんが型蓄熱体
18は、周方向及び径方向に分割され、上下に隣接する
外周部用蓄熱体18同士の積層境界19が、同じく上下
に隣接する中心部用れんが型蓄熱体16同士の境界17
に対して上下方向にずれるように、両れんが型蓄熱体1
6,18が積層されている。
As shown in FIG. 2, the central heat storage body 1
Reference numeral 6 denotes a disk shape, and a brick-type heat storage body 18 for an outer peripheral portion is laminated so as to surround the disk from the outside in a radial direction (a direction orthogonal to the gas permeation direction). The outer-area brick-type regenerator 18 is divided in the circumferential direction and the radial direction, and the lamination boundary 19 between the vertically adjacent outer-area thermal storage bodies 18 is different from that of the vertically-adjacent center-area brick-type regenerator 16. Boundary 17
Brick type regenerator 1 so that it is shifted vertically
6, 18 are laminated.

【0027】図2に示すように、上記中心部用蓄熱体1
6は同心円状に形成された中心核部と境界部を有してい
る。境界部は周方向に相互に分割された所定の数のれん
がで形成されている。外周部用蓄熱体18は、円環形状
をしており、中心部用蓄熱体16の周りに載置され、周
方向及び径方向に分割された所定の数のれんがで形成さ
れている。
As shown in FIG. 2, the central heat storage body 1
Reference numeral 6 has a central core portion and a boundary portion formed concentrically. The boundary is formed of a predetermined number of bricks that are mutually divided in the circumferential direction. The outer peripheral heat storage element 18 has an annular shape, is placed around the central heat storage element 16, and is formed of a predetermined number of bricks divided in the circumferential direction and the radial direction.

【0028】さらに、この実施例では、中心部用蓄熱体
16でのれんがの積層境界17の位置と、外周部用蓄熱
体18のでのれんがの積層境界19の位置とが、互いに
上下方向にずらされている。
Further, in this embodiment, the position of the stacking boundary 17 of the bricks in the central heat storage element 16 and the position of the stacking boundary 19 of the bricks in the outer peripheral heat storage element 18 are vertically shifted from each other. Have been.

【0029】なお、本発明ではこれら蓄熱体16,18
の材質を問わない。ただし、この実施例のようにMHD
発電設備に用いられる蓄熱型熱交換器では、蓄熱体1
6,18の上部Aの加熱温度が非常に高くなるので、こ
のA部にはジルコニア製のれんが等を、その下方のB部
にはアルミナ製のれんが等を用いるのが好ましい。
In the present invention, these heat storage bodies 16 and 18 are used.
Any material can be used. However, as in this embodiment, the MHD
In the heat storage type heat exchanger used for the power generation equipment, the heat storage body 1
Since the heating temperature of the upper portions A of 6, 18 becomes extremely high, it is preferable to use zirconia bricks and the like for this A portion and alumina bricks and the like for the B portion therebelow.

【0030】断熱容器10の底部には、第1通路20及
び第2通路22が設けられている。第1通路20は、断
面円形をしており、被加熱ガスを中心部用蓄熱体16に
のみ導入するよう、中心部用蓄熱体16の底部と接続さ
れている。第2通路は、断面円環状をしており、被加熱
ガスを外周部用蓄熱体18にのみ導入するよう、外周部
用蓄熱体18の底部と接続されている。すなわち、第1
通路20と第2通路22は、第2通路22が第1通路2
0を取り囲む形で相互独立している。この第1通路20
の下部に設けられた入口24には、流量調節弁(流量調
節手段)26を介して図略の被加熱ガスの供給源が接続
され、かつ、この被加熱ガス供給源は、流量調節弁(流
量調節手段)30を介して上記第2通路22下部の入口
28に接続されている。
A first passage 20 and a second passage 22 are provided at the bottom of the heat insulating container 10. The first passage 20 has a circular cross section, and is connected to the bottom of the central heat storage body 16 so that the gas to be heated is introduced only into the central heat storage body 16. The second passage has an annular cross section, and is connected to the bottom of the outer peripheral heat storage body 18 so that the heated gas is introduced only into the outer peripheral heat storage body 18. That is, the first
The passage 20 and the second passage 22 are the same as the first passage 2
They are mutually independent around 0. This first passage 20
A supply source of a gas to be heated (not shown) is connected to an inlet 24 provided at a lower portion of the heater via a flow control valve (flow control means) 26, and the supply source of the gas to be heated is a flow control valve ( It is connected to an inlet 28 below the second passage 22 via a flow rate adjusting means 30.

【0031】また、断熱容器10において上記混合室1
4に隣接した位置には、断熱容器10から排出される被
加熱ガスを導出する排出口32が形成され、この排出口
32が弁34を介して下流側の装置に接続されるように
なっている。
In the heat insulating container 10, the mixing chamber 1
At a position adjacent to 4, a discharge port 32 for discharging the heated gas discharged from the heat insulating container 10 is formed. The discharge port 32 is connected to a downstream device via a valve 34. I have.

【0032】この蓄熱型熱交換器には、制御装置(流量
制御手段)35が付設されている。この制御装置35
は、上記流量調節弁26,30と連結され、第1通路2
0及び第2通路22でのガスの流量を各々独立して調節
するものである。
The heat storage heat exchanger is provided with a control device (flow control means) 35. This control device 35
Is connected to the flow control valves 26 and 30 and the first passage 2
The flow rates of the gas in the zero and second passages 22 are independently adjusted.

【0033】次に、この蓄熱型熱交換器の作用を説明す
る。
Next, the operation of the heat storage type heat exchanger will be described.

【0034】まず、弁26,30,34を閉じ、バーナ
12を作動させて高温の加熱ガスを発生させ、これを蓄
熱体16,18に対してその上端(第1端部)から下端
(第2端部)へ向けて透過させる。蓄熱体16,18を
下方に透過した加熱ガスは、断熱容器10の外へ、図略
の排出口を通って排出され、この加熱ガスが蓄熱体1
6,18の各ガス通路16a,18a内を通過する際、
この加熱ガスの熱エネルギ−が蓄熱体16,18に伝導
される。ここで、外周部用蓄熱体18は断熱容器10の
側壁に隣接しており、中心部用熱交換器に比べて熱交換
器外部の大気と熱交換しやすい(すなわち冷却されやす
い)ので、この外周部用蓄熱体18の温度は、通常、中
心部用蓄熱体16の温度より低くなる。
First, the valves 26, 30, and 34 are closed, and the burner 12 is operated to generate high-temperature heating gas, which is supplied to the heat storage bodies 16 and 18 from the upper end (first end) to the lower end (first end). 2 end). The heating gas that has passed through the heat storage bodies 16 and 18 is discharged to the outside of the heat insulating container 10 through a discharge port (not shown).
When passing through each of the gas passages 16a and 18a,
The heat energy of the heated gas is transmitted to the heat storage bodies 16 and 18. Here, the outer peripheral heat storage body 18 is adjacent to the side wall of the heat insulating container 10 and easily exchanges heat with the atmosphere outside the heat exchanger (ie, is easily cooled) as compared with the central heat exchanger. The temperature of the outer peripheral heat storage body 18 is usually lower than the temperature of the central heat storage body 16.

【0035】このような加熱終了後、弁34を開いた状
態で、制御装置35は流量調節弁26,30を開く。そ
の後、第1,第2通路20、22を通じて、中心部用蓄
熱体16及び外周部用蓄熱体18に対し個別に被加熱ガ
スを供給し、この被加熱ガスを蓄熱体16,18に対し
て下端から上端に通した後、混合室14で混合して排出
口32から排出する。
After the completion of the heating, the controller 35 opens the flow control valves 26 and 30 with the valve 34 opened. Thereafter, the heated gas is individually supplied to the central heat storage body 16 and the outer peripheral heat storage body 18 through the first and second passages 20 and 22, and the heated gas is supplied to the heat storage bodies 16 and 18. After passing from the lower end to the upper end, they are mixed in the mixing chamber 14 and discharged from the discharge port 32.

【0036】この時、制御装置35は、図4に示すよう
に、弁26,30を制御する。すなわち、被加熱ガスの
総供給流量を一定に保ちながら、時間の経過に伴い、高
温部である中心部用蓄熱体16に対する被加熱ガスの供
給流量の割合を次第に増やし、逆に低温部である外周部
用蓄熱体18に対する被加熱ガスの供給流量の割合を次
第に減らすような流量制御を行う。
At this time, the control device 35 controls the valves 26 and 30 as shown in FIG. That is, while keeping the total supply flow rate of the heated gas constant, the ratio of the supply flow rate of the heated gas to the central heat storage body 16 which is a high temperature part gradually increases with time, and conversely, the low temperature part. Flow rate control is performed such that the ratio of the supply flow rate of the heated gas to the outer peripheral heat storage body 18 is gradually reduced.

【0037】その制御内容を図4のグラフに例示する。
この例では、熱交換の初期に(すなわち、0分時に)、
被加熱ガスの60%を外周部用蓄熱体18に供給し、残
り40%を中心部用蓄熱体16に供給する。次いで、外
周部用蓄熱体18に供給する被加熱ガスの量を次第に減
らす。加熱開始から10分が経過した時点で外周部用蓄
熱体18への被加熱ガスの供給を停止し、被加熱ガスの
ほとんど全量を中心部用蓄熱体16にのみ供給する。
The control contents are illustrated in a graph of FIG.
In this example, early in the heat exchange (ie, at 0 minutes),
60% of the gas to be heated is supplied to the outer peripheral heat storage element 18 and the remaining 40% is supplied to the central heat storage element 16. Next, the amount of the heated gas supplied to the outer peripheral heat storage body 18 is gradually reduced. When ten minutes have elapsed from the start of heating, the supply of the heated gas to the outer peripheral heat storage body 18 is stopped, and almost all of the heated gas is supplied only to the central heat storage body 16.

【0038】このような制御によれば、被加熱ガスの供
給初期、すなわち、外周部用蓄熱体18がまた十分な高
温となっている期間は、多くの被加熱ガスを外周部用蓄
熱体18に送ることにより、この外周部用蓄熱体18の
もつ熱エネルギーを有効に利用できる。そして、時間の
経過と共に、温度が低下し易い外周部用蓄熱体18を透
過する被加熱ガスの流量を次第に減少させ、その代わり
に、依然として高温を保つ中心部用蓄熱体16へのガス
流量割合を増やすことにより、外周部用蓄熱体18での
温度降下を補うことができ、その結果、被加熱ガスの供
給初期から長い時間にわたって、排出される被加熱ガス
の温度を比較的高温に安定して維持することが可能にな
る。
According to such control, during the initial stage of the supply of the heated gas, that is, during the period when the outer peripheral heat storage body 18 is at a sufficiently high temperature, a large amount of the heated gas is transferred to the outer peripheral heat storage body 18. The heat energy of the outer peripheral heat storage body 18 can be used effectively. Then, as the time elapses, the flow rate of the gas to be heated passing through the outer peripheral heat storage body 18 whose temperature tends to decrease gradually decreases, and instead, the gas flow rate to the central heat storage body 16 which still maintains a high temperature is maintained. By increasing the temperature, the temperature drop in the outer peripheral heat storage body 18 can be compensated, and as a result, the temperature of the heated gas discharged from the initial stage of supply of the heated gas can be stabilized at a relatively high temperature for a long time. Can be maintained.

【0039】特に、この実施例では、中心部用蓄熱体1
6の積層境界17の位置と、外周部用蓄熱体18での積
層境界19の位置とを上下方向にずらしており、被加熱
ガスが中心部用蓄熱体16から外周部用蓄熱体18にあ
るいはその逆に移動するのを抑制しているので、蓄熱体
16,18間の断熱性が高く、上記効果をより顕著に得
ることが可能となっている。
In particular, in this embodiment, the central heat storage element 1
6 and the position of the lamination boundary 19 on the outer peripheral heat storage body 18 are vertically shifted, so that the gas to be heated is transferred from the central heat storage body 16 to the outer peripheral heat storage body 18 or On the other hand, since the movement is suppressed, the heat insulation between the heat storage bodies 16 and 18 is high, and the above effect can be more remarkably obtained.

【0040】また、この実施例では、中心部用蓄熱体1
6と外周部用蓄熱体18を周方向及び径方向に分割して
いるので、蓄熱体16,18の熱膨張を各分割ブロック
間に形成された隙間によって吸収でき、その結果、熱的
強度や耐熱性を高めることができる。
In this embodiment, the heat storage element 1 for the central portion is used.
Since the heat storage body 6 and the outer circumference heat storage body 18 are divided in the circumferential direction and the radial direction, the thermal expansion of the heat storage bodies 16 and 18 can be absorbed by the gaps formed between the respective divided blocks. Heat resistance can be increased.

【0041】図3(a)は、この実施例における蓄熱型
熱交換器での被加熱ガス(アルゴンガス)温度の時間変
化を示し、同図(b)は前記図10に示すような従来の
蓄熱型熱交換器での被加熱ガス(アルゴンガス)温度の
時間変化を示したものである。この図3(b)に示すよ
うに、従来の蓄熱型熱交換器では、熱交換の初期は、非
常に高温の被加熱ガスを生成することができるものの、
時間経過に伴ってほぼ直線的に被加熱ガスの温度が低下
して最終時点ではかなり低い温度になる。これに対し、
同図(a)に示すように、本実施例の蓄熱型熱交換器に
よれば、熱交換の間中、排出される被加熱ガスの温度を
長時間にわあった比較的高温に安定して維持することが
可能である。
FIG. 3A shows a change over time of the temperature of the gas to be heated (argon gas) in the heat storage type heat exchanger in this embodiment, and FIG. 3B shows a conventional temperature change as shown in FIG. It is a diagram showing a time change of a temperature of a gas to be heated (argon gas) in a heat storage type heat exchanger. As shown in FIG. 3B, in the conventional heat storage type heat exchanger, a very high temperature gas to be heated can be generated at the beginning of heat exchange.
As time elapses, the temperature of the gas to be heated decreases substantially linearly, and reaches a considerably low temperature at the final point. In contrast,
As shown in FIG. 2A, according to the heat storage type heat exchanger of the present embodiment, the temperature of the gas to be heated discharged during the heat exchange is stabilized at a relatively high temperature for a long time. Can be maintained.

【0042】次に、図5を参照して第2実施例を説明す
る。この実施例では、前記第1実施例における制御装置
35に代え、流量制御手段36が設けられている。この
流量制御手段36は、排出口32から排出される被加熱
ガスの温度を検出し、この検出温度に基づいて弁26,
30での流量をフィードバック制御するものであり、よ
り具体的には、第1及び第2通路20,22に供給され
る被加熱ガスの量を流量調節弁26,30によってそれ
ぞれ制御し、排出口32から排出される被加熱ガスの温
度を目標の一定値に維持する。従って、排出される被加
熱ガスの温度が下がれば、流量調節弁26から中心部用
蓄熱体16に供給される被加熱ガスの量を増加させる。
このような制御により、第1実施例と同様、排出される
被加熱ガスの温度を長時間にわたって比較的高温域に安
定して維持できる。
Next, a second embodiment will be described with reference to FIG. In this embodiment, a flow control means 36 is provided in place of the control device 35 in the first embodiment. The flow control means 36 detects the temperature of the gas to be heated discharged from the discharge port 32, and based on the detected temperature, the valve 26,
The flow rate of the gas to be heated in the first and second passages 20 and 22 is controlled by the flow rate control valves 26 and 30, respectively. The temperature of the gas to be heated discharged from 32 is maintained at a target constant value. Accordingly, when the temperature of the discharged heated gas decreases, the amount of the heated gas supplied from the flow control valve 26 to the central heat storage unit 16 is increased.
By such control, similarly to the first embodiment, the temperature of the heated gas to be discharged can be stably maintained in a relatively high temperature range for a long time.

【0043】本発明は以上のような実施例に限定される
ものでなく、例として次のような態様及び実施例をとる
ことも可能である。
The present invention is not limited to the embodiments described above, and the following embodiments and embodiments can be taken as examples.

【0044】(1) 前記各実施例では、制御装置35や流
量制御手段36を備えた自動制御システムを示したが、
本発明では蓄熱体16,18への被加熱ガスの透過を手
動で制御するようにしてもよい。
(1) In each of the above embodiments, the automatic control system including the control device 35 and the flow rate control means 36 has been described.
In the present invention, the permeation of the gas to be heated to the heat storage bodies 16 and 18 may be manually controlled.

【0045】(2) 図2には、蓄熱体16,18が径方向
及び周方向に分割された所定の数のブロックで形成され
たものを示したが、熱膨張を特に考慮に入れなくても良
い場合には、これら蓄熱体16,18は、径方向あるい
は周方向のいずれかに分割されたブロックで形成しても
よい。また、蓄熱体自体の構造も上記実施例に限定され
ず、例えば、図6(a)に示すように、正六角形等のエ
レメント40を組み合わせ、これを径方向に分断するこ
とにより中心部用れんが型蓄熱体42と外周部用れんが
型蓄熱体44とを形成するようにしてもよいし、同図
(b)に示すように中心部用れんが型蓄熱体16及び外
周部用れんが型蓄熱体18を矩形状にしてもよい。
(2) FIG. 2 shows the case where the heat storage bodies 16 and 18 are formed of a predetermined number of blocks divided in the radial direction and the circumferential direction, but thermal expansion is not particularly taken into consideration. Alternatively, the heat storage bodies 16 and 18 may be formed of blocks divided in either the radial direction or the circumferential direction. Further, the structure of the heat storage body itself is not limited to the above-described embodiment. For example, as shown in FIG. 6A, an element 40 such as a regular hexagon is combined, and this is divided in the radial direction to form a central brick. The mold regenerator 42 and the outer peripheral brick regenerator 44 may be formed, or the center brick regenerator 16 and the outer peripheral brick regenerator 18 as shown in FIG. May be rectangular.

【0046】(3) 上記第1実施例及び第2実施例では、
中心部を高温部、外周部を低温部としているが、断熱容
器が中空状(横断面ドーナツ状)、すなわち中心部をも
たない断面形状を有している場合には、断熱容器の内周
壁に隣接した最内部及び外周壁に隣接した最外部が低温
部、これら最内部と最外部に挾まれた部分が高温部とな
る。この場合も、互いに温度の異なる低温部及び高温部
がガス透過方向と直交する方向に並んで形成されること
になり、これら高温部及び低温部でのガス透過流量を独
立して制御することにより、前記各実施例と同様の効果
が得られる。
(3) In the first and second embodiments,
The central portion is a high temperature portion and the outer peripheral portion is a low temperature portion. However, when the heat insulating container has a hollow shape (a donut shape in cross section), that is, a cross sectional shape without a central portion, the inner peripheral wall of the heat insulating container is formed. The outermost part adjacent to the innermost part and the outermost part adjacent to the outer peripheral wall are the low temperature part, and the part sandwiched between the innermost part and the outermost part is the high temperature part. Also in this case, the low-temperature portion and the high-temperature portion having different temperatures are formed side by side in a direction orthogonal to the gas permeation direction, and by independently controlling the gas permeation flow rates in the high-temperature portion and the low-temperature portion. The same effects as those of the above embodiments can be obtained.

【0047】(4) 上記第1実施例及び第2実施例では、
中心部用蓄熱体、外周部用蓄熱体ともに、ガス通路を有
するれんが状ブロックで形成されたものを示したが、第
3実施例として図7に示すように、外周部用蓄熱体を、
多数のペブル型蓄熱体(不規則な外形をもつ小石状の固
形物)46の充填により形成してもよいし、第4実施例
として図8に示すように、中心部用蓄熱体に上記ペブル
型蓄熱体46を用いてもよい。この場合、各ペブル型蓄
熱体46同士の隙間で蓄熱体とガスとの熱交換を効率よ
く行うことができる。
(4) In the first and second embodiments,
Although the heat storage element for the center part and the heat storage element for the outer peripheral part are both formed by brick blocks having gas passages, as shown in FIG.
A large number of pebble-type heat accumulators (pebble-like solids having an irregular outer shape) 46 may be formed by filling them. Alternatively, as shown in FIG. The mold heat storage 46 may be used. In this case, heat exchange between the heat storage element and the gas can be efficiently performed in the gap between the pebble-type heat storage elements 46.

【0048】(5) 上記実施例では、蓄熱体を高温部と低
温部との2つの部分に分けたものを示したが、本発明で
は蓄熱体を3つ以上の部位に分けるようにしてもよい。
この場合も、各部に対応して相互独立した被加熱ガスの
供給通路を設けることにより、上記と同様の効果が得ら
れる。
(5) In the above embodiment, the heat storage element is divided into two parts, a high temperature part and a low temperature part. However, in the present invention, the heat storage element may be divided into three or more parts. Good.
Also in this case, the same effect as described above can be obtained by providing the supply passages for the gas to be heated which are independent of each other.

【0049】(6) 本発明は、単一の熱交換器でも安定し
た被加熱ガスが得られるものであるが、特開昭61−2
85394号公報等に示されるように複数の熱交換器を
併用するようにしてもよい。
(6) According to the present invention, a stable gas to be heated can be obtained even with a single heat exchanger.
A plurality of heat exchangers may be used in combination as disclosed in Japanese Patent No. 85394 and the like.

【0050】(7) 上記実施例では、断熱容器の上端に設
けられたバ−ナから加熱ガスを下方に透過させることに
より、高温部を中心部に、低温部を外周部にそれぞれ形
成しているが、第5実施例として図9に示すように、蓄
熱体の外周部に高温部を形成し、中心部に低温部を形成
するようにしてもよい。同図の蓄熱型熱交換器では、被
加熱ガス供給ラインと加熱ガス排出ラインとが断熱容器
10の底部に設けられている。被加熱ガス供給ライン
は、断熱容器10に供給される被加熱ガスの総流入量を
調節する総流入量調節弁26´と、通路20への被加熱
ガスの流入量と通路22への被加熱ガスの流入量との比
率を調節する支流流入量調節弁30´を備えている。加
熱ガス排出ラインは、断熱容器10から排出される加熱
ガスの総排出量を調節する総排出量調節弁37と、通路
20から排出される加熱ガスの排出量と通路22から排
出される加熱ガスの排出量との比率を調節する支流流出
量調節弁38を備えている。上記調節弁26´,30
´,37,38は制御装置35によって制御され、この
うち被加熱ガス調節弁26´,30´は図1に示したシ
ステムと同様に制御される。一方、加熱ガス調節弁3
7,38の流量は、通路20から排出される加熱ガスよ
りも通路22から排出される加熱ガスの量が多くなるよ
うに制御される。このような加熱ガス流量制御により、
中心部用蓄熱体16よりも外周部用蓄熱体18の方がよ
り高温に熱せられ、その結果、高温部は外周部に形成さ
れ、低温部は中心部に形成される。
(7) In the above embodiment, the hot gas is allowed to permeate downward through the burner provided at the upper end of the heat insulating container, so that the high temperature portion is formed at the center and the low temperature portion is formed at the outer periphery. However, as shown in FIG. 9 as a fifth embodiment, a high-temperature portion may be formed at the outer peripheral portion of the heat storage body and a low-temperature portion may be formed at the center portion. In the heat storage type heat exchanger of FIG. 1, a heated gas supply line and a heated gas discharge line are provided at the bottom of the heat insulating container 10. The heated gas supply line includes a total inflow control valve 26 ′ that controls the total inflow of the heated gas supplied to the heat insulating container 10, a flow of the heated gas into the passage 20, and the heating of the passage 22. A tributary flow control valve 30 'for adjusting the ratio of the gas flow to the gas flow is provided. The heating gas discharge line includes a total discharge control valve 37 for controlling the total discharge of the heating gas discharged from the heat insulating container 10, a discharge amount of the heating gas discharged from the passage 20, and a heating gas discharged from the passage 22. And a tributary outflow amount control valve 38 for adjusting the ratio to the discharge amount. The control valves 26 ', 30
, 37 and 38 are controlled by the controller 35, and among them, the heated gas control valves 26 'and 30' are controlled in the same manner as in the system shown in FIG. On the other hand, the heating gas control valve 3
The flow rates of the heating gases 7 and 38 are controlled so that the amount of the heating gas discharged from the passage 22 is larger than that of the heating gas discharged from the passage 20. By such heating gas flow control,
The outer peripheral heat storage 18 is heated to a higher temperature than the central thermal storage 16, and as a result, the high temperature part is formed in the outer peripheral part and the low temperature part is formed in the central part.

【0051】(8) 上記実施例では、高温部と低温部とが
同軸状に配列されているが、これら高温部と低温部を水
平方向に並置することも可能である。例えば、高温部を
蓄熱体の右半分に設け、低温部を左半分に設けるように
してもよい。
(8) In the above embodiment, the high temperature part and the low temperature part are arranged coaxially. However, it is also possible to arrange these high temperature part and low temperature part in a horizontal direction. For example, the high temperature part may be provided in the right half of the heat storage body, and the low temperature part may be provided in the left half.

【0052】[0052]

【発明の効果】以上のように、本発明によれば次の効果
を得ることができる。
As described above, according to the present invention, the following effects can be obtained.

【0053】請求項1記載の熱交換器では、加熱ガスが
蓄熱体を透過した後の温度分布に基づいて蓄熱体を複数
の温度領域(請求項2では高温部と低温部)に分け、各
領域に対して個別に被加熱ガスを供給し、各領域を通過
した後のガスを混合部で混合するようにしたものである
ので、被加熱ガスの供給開始後、請求項9,11記載の
ように時間の経過に伴って上記高温部への被加熱ガス供
給流量を増加させたり、請求項10,12記載のように
混合後の被加熱ガス温度を検出してこの検出温度を所定
温度に保つように各領域への被加熱ガスの流量を制御す
るよことにより、熱交換器の台数を増やさなくても、加
熱後の被加熱ガス温度を長い時間にわたって安定して所
望の高温に維持することができる効果がある。
In the heat exchanger according to the first aspect, the heat storage body is divided into a plurality of temperature regions (a high temperature part and a low temperature part in claim 2) based on a temperature distribution after the heating gas has passed through the heat storage body. The gas to be heated is individually supplied to the region, and the gas after passing through each region is mixed in the mixing section. The flow rate of the supply of the heated gas to the high-temperature portion is increased with the passage of time, or the temperature of the heated gas after mixing is detected and the detected temperature is set to a predetermined temperature. By controlling the flow rate of the gas to be heated to each area so as to maintain the temperature, the temperature of the gas to be heated is stably maintained at a desired high temperature for a long time without increasing the number of heat exchangers. There is an effect that can be.

【0054】より具体的に、請求項3記載の熱交換器で
は、高温部を中心部に設け、断熱容器の内壁と接触して
いる外周部を低温部、断熱容器内壁から離れた中心部を
高温部とすることにより、蓄熱体内部に蓄積された熱エ
ネルギ−を効率よく利用できる効果がある。
More specifically, in the heat exchanger according to the third aspect, the high temperature portion is provided at the center portion, and the outer peripheral portion in contact with the inner wall of the heat insulating container is the low temperature portion, and the central portion distant from the inner wall of the heat insulating container is the central portion. The use of the high-temperature portion has an effect that the heat energy stored in the heat storage body can be efficiently used.

【0055】ここで、請求項4記載のように上記蓄熱体
を蓄熱用ブロックの積層により形成する場合、請求項
5,6記載のように蓄熱体を径方向や周方向に複数のブ
ロックに分割することにより、これらブロック同士の隙
間で蓄熱体の熱膨脹を吸収でき、蓄熱体の熱的強度及び
耐熱性を高めることができる効果がある。また、請求項
7記載のように、高温部でのブロック積層境界位置と低
温部でのブロック積層境界位置とをガス透過方向にずら
すことにより、熱エネルギ−が高温部から低温部に移動
するのを抑制し、高温部と低温部との間の断熱性を高め
ることができる効果がある。
Here, when the heat storage element is formed by laminating the heat storage blocks as described in claim 4, the heat storage element is divided into a plurality of blocks in a radial direction or a circumferential direction as described in claims 5 and 6. By doing so, the thermal expansion of the heat storage body can be absorbed in the gaps between these blocks, and there is an effect that the thermal strength and heat resistance of the heat storage body can be increased. Further, by shifting the block stacking boundary position in the high temperature section and the block stacking boundary position in the low temperature section in the gas permeation direction, the thermal energy moves from the high temperature section to the low temperature section. And the heat insulation between the high temperature part and the low temperature part can be enhanced.

【0056】一方、請求項8記載の熱交換器では、高温
部と上記低温部のうちの一方を多数のペブル型蓄熱体を
充填することにより形成しているので、これらペブル型
蓄熱体同士の隙間で蓄熱体とガスとの熱交換を効率よく
行うことができる効果がある。
On the other hand, in the heat exchanger according to the eighth aspect, one of the high-temperature portion and the low-temperature portion is formed by filling a large number of pebble-type heat accumulators. There is an effect that heat exchange between the heat storage body and the gas can be efficiently performed in the gap.

【図面の簡単な説明】[Brief description of the drawings]

【図1】本発明の第1実施例における蓄熱型熱交換器の
全体構成図である。
FIG. 1 is an overall configuration diagram of a heat storage type heat exchanger according to a first embodiment of the present invention.

【図2】上記蓄熱型熱交換器内に積層されるれんがで形
成された蓄熱体の斜視図である。
FIG. 2 is a perspective view of a heat storage body formed of bricks stacked in the heat storage type heat exchanger.

【図3】(a)は上記蓄熱型熱交換器における被加熱ガ
ス排出温度の時間変化を示すグラフ、(b)は従来の蓄
熱型熱交換器における被加熱ガス排出温度の時間変化を
示すグラフである。
FIG. 3 (a) is a graph showing a time change of a heated gas discharge temperature in the heat storage type heat exchanger, and FIG. 3 (b) is a graph showing a time change of a heated gas discharge temperature in a conventional heat storage type heat exchanger. It is.

【図4】上記蓄熱型熱交換器において行われる流量制御
の内容を示すグラフである。
FIG. 4 is a graph showing the content of flow control performed in the heat storage type heat exchanger.

【図5】本発明の第2実施例における蓄熱型熱交換器の
全体構成図である。
FIG. 5 is an overall configuration diagram of a heat storage type heat exchanger according to a second embodiment of the present invention.

【図6】(a)(b)は上記蓄熱体の変形例を示す平面
図である。
FIGS. 6A and 6B are plan views showing modified examples of the heat storage body.

【図7】本発明の第3実施例における蓄熱型熱交換器の
全体構成図である。
FIG. 7 is an overall configuration diagram of a heat storage type heat exchanger according to a third embodiment of the present invention.

【図8】本発明の第4実施例における蓄熱型熱交換器の
全体構成図である。
FIG. 8 is an overall configuration diagram of a heat storage type heat exchanger according to a fourth embodiment of the present invention.

【図9】本発明の第5実施例における蓄熱型熱交換器の
全体構成図である。
FIG. 9 is an overall configuration diagram of a heat storage type heat exchanger according to a fifth embodiment of the present invention.

【図10】従来の蓄熱型熱交換器の一例を示す全体構成
図である。
FIG. 10 is an overall configuration diagram showing an example of a conventional heat storage type heat exchanger.

【符号の説明】[Explanation of symbols]

10 断熱容器 12 バーナ 14 混合室 16 中心部用蓄熱体 17,19 積層境界 18 外周部用蓄熱体 20 第1通路 22 第2通路 26,30 流量調節弁(流量調節手段) 35 制御装置(流量制御手段) 36 流量制御手段 46 ペブル型蓄熱体 DESCRIPTION OF SYMBOLS 10 Insulated container 12 Burner 14 Mixing chamber 16 Heat storage material for central part 17, 19 Stacking boundary 18 Heat storage material for outer peripheral part 20 First passage 22 Second passage 26, 30 Flow control valve (flow control means) 35 Control device (flow control) Means) 36 Flow control means 46 Pebble type heat storage

フロントページの続き (72)発明者 リン シー.マークスベリー アメリカ合衆国 ミネソタ州 プライマ ウス,キングスビューレーン 509 (72)発明者 山村 利和 兵庫県高砂市荒井町新浜2丁目3番1号 株式会社神戸製鋼所 高砂製作所内 (72)発明者 那谷 修平 兵庫県高砂市荒井町新浜2丁目3番1号 株式会社神戸製鋼所 高砂製作所内 (72)発明者 黒坂 俊雄 神戸市西区高塚台1丁目5番5号 株式 会社神戸製鋼所神戸総合技術研究所内 (58)調査した分野(Int.Cl.7,DB名) F28D 17/02 F28D 20/00 Continuation of front page (72) Inventor Linshi. Marksbury United States Minnesota, Primus, Kings View Lane 509 (72) Inventor Toshikazu Yamamura 2-3-1, Shinhama, Araimachi, Takasago-shi, Hyogo Kobe Steel, Ltd. Inside Takasago Works (72) Inventor Shuhei Naya Takasago-shi, Hyogo Prefecture 2-3-1, Shinhama, Araimachi Kobe Steel, Ltd. Takasago Works (72) Inventor Toshio Kurosaka 1-5-5, Takatsukadai, Nishi-ku, Kobe Kobe Steel, Ltd.Kobe Research Institute (58) Field surveyed (Int.Cl. 7 , DB name) F28D 17/02 F28D 20/00

Claims (12)

(57)【特許請求の範囲】(57) [Claims] 【請求項1】 断熱壁で形成された容器と、熱エネルギ
−を蓄積するため上記断熱容器内に設けられ、第1端部
と、この第1端部と反対側にある第2端部を有し、上記
第1端部と第2端部との間でガスが透過可能な蓄熱体
と、加熱ガスを上記第1端部から上記第2端部へ透過さ
せることにより、上記蓄熱体に互いに温度の異なる複数
の温度領域が形成されるようにこの蓄熱体を加熱させる
加熱手段と、上記蓄熱体の加熱後、上記各温度領域に対
して各々独立して上記第2端部から上記第1端部へ被加
熱ガスを透過させる被加熱ガス供給手段とを備え、上記
第1端部に隣接する位置に、各温度領域を通過した被加
熱ガス同士を混合させる混合部を設けたことを特徴とす
る蓄熱型熱交換器。
1. A container formed of a heat insulating wall, a first end provided in the heat insulating container for storing thermal energy, and a second end opposite to the first end. A heat storage body having a gas permeable between the first end and the second end, and a heat gas being transmitted from the first end to the second end by allowing the heating gas to pass through the heat storage body. Heating means for heating the heat accumulator such that a plurality of temperature regions having different temperatures from each other are formed; and, after heating the heat accumulator, independently from the second end from the second end for each of the temperature regions. Heating gas supply means for transmitting the gas to be heated to one end; and a mixing unit for mixing the gases to be heated that have passed through each temperature region at a position adjacent to the first end. Heat storage type heat exchanger.
【請求項2】 請求項1記載の蓄熱型熱交換器におい
て、上記複数の温度領域は高温部と低温部を含むことを
特徴とする蓄熱型熱交換器。
2. The heat storage type heat exchanger according to claim 1, wherein said plurality of temperature regions include a high temperature part and a low temperature part.
【請求項3】 請求項2記載の蓄熱型熱交換器におい
て、上記高温部は上記蓄熱体の内側部に形成され、上記
低温部は上記蓄熱体の外側部に形成されることを特徴と
する蓄熱型熱交換器。
3. The heat storage type heat exchanger according to claim 2, wherein the high temperature part is formed inside the heat storage body, and the low temperature part is formed outside the heat storage body. Heat storage type heat exchanger.
【請求項4】 請求項2または3記載の蓄熱型熱交換器
において、上記高温部と低温部はガスの透過方向に積層
された複数の蓄熱用ブロックで形成され、各蓄熱用ブロ
ックはこのブロックをガスの透過方向に貫くガス通路を
有していることを特徴とする蓄熱型熱交換器。
4. The heat storage type heat exchanger according to claim 2, wherein the high-temperature portion and the low-temperature portion are formed by a plurality of heat storage blocks stacked in a gas permeation direction, and each heat storage block is composed of the blocks. Characterized by having a gas passage penetrating in the gas permeation direction.
【請求項5】 請求項4記載の蓄熱型熱交換器におい
て、上記高温部に積層された蓄熱用ブロックは周方向、
径方向の少なくとも一方に分割されていることを特徴と
する蓄熱型熱交換器。
5. The heat storage type heat exchanger according to claim 4, wherein the heat storage block laminated on the high temperature portion has a circumferential direction,
A heat storage type heat exchanger divided into at least one in a radial direction.
【請求項6】 請求項4または5記載の蓄熱型熱交換器
において、上記低温部に積層された蓄熱用ブロックは周
方向、径方向の少なくとも一方に分割されていることを
特徴とする蓄熱型熱交換器。
6. The heat storage type heat exchanger according to claim 4, wherein the heat storage block laminated on the low-temperature portion is divided into at least one of a circumferential direction and a radial direction. Heat exchanger.
【請求項7】 請求項4〜6のいずれかに記載の蓄熱型
熱交換器において、上記高温部での蓄熱用ブロックの積
層境界位置と上記低温部での蓄熱用ブロックの積層境界
位置とをガスの透過方向にずらしたことを特徴とする蓄
熱型熱交換器。
7. The heat storage type heat exchanger according to claim 4, wherein a lamination boundary position of the heat storage block in the high temperature part and a lamination boundary position of the heat storage block in the low temperature part are determined. A heat storage type heat exchanger characterized by being shifted in a gas permeation direction.
【請求項8】 請求項2または3記載の蓄熱型熱交換器
において、上記高温部と上記低温部のいずれか一方はガ
スの透過方向に積層された複数の蓄熱用ブロックで形成
され、各蓄熱用ブロックはこれをガスの透過方向に貫く
ガス通路を有し、上記高温部と上記低温部のうちの他方
は多数のペブル型蓄熱体を充填することにより形成され
ていることを特徴とする蓄熱型熱交換器。
8. The heat storage type heat exchanger according to claim 2, wherein one of the high-temperature portion and the low-temperature portion is formed by a plurality of heat storage blocks stacked in a gas permeation direction. The heat block has a gas passage penetrating the block in the gas permeation direction, and the other of the high-temperature portion and the low-temperature portion is formed by filling a large number of pebble-type heat storage bodies. Type heat exchanger.
【請求項9】 請求項1〜8のいずれかに記載の蓄熱型
熱交換器において、上記被加熱ガス供給手段は、上記高
温部及び上記低温部への被加熱ガスの流量を調節する流
量調節手段と、被加熱ガスの上記蓄熱体への供給開始
後、時間の経過とともに被加熱ガスの高温部への流量を
増加させるように上記流量調節手段を制御する制御手段
とを備えていることを特徴とする蓄熱型熱交換器。
9. The heat storage type heat exchanger according to claim 1, wherein the heated gas supply means adjusts a flow rate of the heated gas to the high temperature section and the low temperature section. Means, and control means for controlling the flow rate adjusting means so as to increase the flow rate of the gas to be heated to the high-temperature portion with the lapse of time after the supply of the gas to be heated to the heat storage unit is started. Heat storage type heat exchanger.
【請求項10】 請求項1〜8のいずれかに記載の蓄熱
型熱交換器において、上記被加熱ガス供給手段は、上記
混合部で混合された被加熱ガスの温度を検出する温度検
出手段と、上記高温部と上記低温部への被加熱ガスの流
量を調節する流量調節手段と、上記温度検出手段により
検出された温度に基づき、加熱後の被加熱ガスの温度を
所定の温度に保つ方向に上記高温部及び上記低温部への
被加熱ガスの流量を各々調節させる制御手段とを備えて
いることを特徴とする蓄熱型熱交換器。
10. The heat storage type heat exchanger according to claim 1, wherein said heated gas supply means includes a temperature detecting means for detecting a temperature of the heated gas mixed in said mixing section. Flow rate adjusting means for adjusting the flow rate of the heated gas to the high temperature section and the low temperature section; and a direction for maintaining the temperature of the heated gas at a predetermined temperature after heating based on the temperature detected by the temperature detecting means. And a control means for adjusting the flow rate of the gas to be heated to the high-temperature section and the low-temperature section, respectively.
【請求項11】 互いに温度の異なる複数の温度領域が
形成可能な蓄熱体を容器内に備えた蓄熱型熱交換器の運
転方法であって、上記各温度領域に各々独立して被加熱
ガスを透過させ、透過後の被加熱ガス同士を混合すると
ともに、この被加熱ガスの上記蓄熱体への供給開始後、
時間の経過とともに上記温度領域のうち温度が高い領域
への被加熱ガスの流量を増加させることを特徴とする蓄
熱型熱交換器の運転方法。
11. A method for operating a heat storage type heat exchanger having a heat storage body capable of forming a plurality of temperature regions having different temperatures from each other in a container, wherein the gas to be heated is independently supplied to each of the temperature regions. Permeate, while mixing the heated gas after permeation, after the start of supplying the heated gas to the heat storage body,
A method for operating a regenerative heat exchanger, comprising increasing a flow rate of a gas to be heated to an area having a higher temperature in the temperature area over time.
【請求項12】 互いに温度の異なる複数の温度領域が
形成可能な蓄熱体を容器内に備えた蓄熱型熱交換器の運
転方法であって、上記各温度領域に各々独立して被加熱
ガスを透過させ、透過後の被加熱ガス同士を混合すると
ともに、この混合された被加熱ガスの温度を検出し、こ
の温度を所定の温度に保つように各温度領域での被加熱
ガスの透過流量を制御することを特徴とする蓄熱型熱交
換器の運転方法。
12. A method for operating a heat storage type heat exchanger having a heat storage body capable of forming a plurality of temperature regions having different temperatures from each other in a container, wherein the gas to be heated is independently supplied to each of the temperature regions. The gas to be heated is mixed with the gas to be heated after transmission, and the temperature of the mixed gas to be heated is detected, and the permeation flow rate of the gas to be heated in each temperature region is maintained so as to maintain this temperature at a predetermined temperature. A method for operating a regenerative heat exchanger characterized by controlling.
JP12860095A 1994-05-31 1995-05-26 Heat storage type heat exchanger and its operation method Expired - Fee Related JP3342984B2 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
US08/251,715 1994-05-31
US08/251,715 US5419388A (en) 1994-05-31 1994-05-31 Regenerative heat exchanger system and an operating method for the same

Publications (2)

Publication Number Publication Date
JPH08100999A JPH08100999A (en) 1996-04-16
JP3342984B2 true JP3342984B2 (en) 2002-11-11

Family

ID=22953099

Family Applications (1)

Application Number Title Priority Date Filing Date
JP12860095A Expired - Fee Related JP3342984B2 (en) 1994-05-31 1995-05-26 Heat storage type heat exchanger and its operation method

Country Status (2)

Country Link
US (1) US5419388A (en)
JP (1) JP3342984B2 (en)

Families Citing this family (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR100463550B1 (en) * 2003-01-14 2004-12-29 엘지전자 주식회사 cooling and heating system
EP2101134A1 (en) * 2008-02-28 2009-09-16 Paul Wurth Refractory & Engineering GmbH Checker brick
JP5542163B2 (en) * 2012-02-20 2014-07-09 Dowaホールディングス株式会社 Heat accumulator
US20150211804A1 (en) * 2014-01-28 2015-07-30 Kunshan Jue-Chung Electronics Co., Ltd. Energy storage assembly and energy storage element thereof
ES2855131T3 (en) * 2016-03-15 2021-09-23 Airbus Operations Sl Heat exchanger outlet deflector
WO2024083330A1 (en) * 2022-10-20 2024-04-25 Energyintel Services Ltd Regenerator

Family Cites Families (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4047560A (en) * 1975-07-08 1977-09-13 Ppg Industries, Inc. Regenerator flow control
US4291750A (en) * 1979-03-23 1981-09-29 Energy Recycling Company Selective extraction heat storage unit
US4256173A (en) * 1979-03-29 1981-03-17 Ppg Industries, Inc. Two regenerator-flue system for regenerative furnaces
US4346753A (en) * 1981-01-06 1982-08-31 Bricmont & Associates, Inc. Regenerator checkerwork brick
US4394122A (en) * 1981-09-15 1983-07-19 Libbey-Owens-Ford Company Furnace regenerator with improved flow distribution
US4974666A (en) * 1988-05-31 1990-12-04 Toshiba Monofrax Co., Ltd. Refractory brick assembly for a heat regenerator
DE3841708C1 (en) * 1988-12-10 1989-12-28 Kloeckner Cra Patent Gmbh, 4100 Duisburg, De

Also Published As

Publication number Publication date
US5419388A (en) 1995-05-30
JPH08100999A (en) 1996-04-16

Similar Documents

Publication Publication Date Title
JP6133998B2 (en) Air conditioning
JP3342984B2 (en) Heat storage type heat exchanger and its operation method
JP4436771B2 (en) Heat exchanger, heat pump type hot water supply device and heat pump type hot water supply and heating device
JP2009299942A (en) Hot water supply system
WO2010135165A2 (en) Thermal energy storage apparatus
JP2678964B2 (en) Switching heat storage type heat exchanger
JP4215699B2 (en) Heat pump water heater / heater
JP5212762B2 (en) Temperature control method for fuel cell stack structure and fuel cell stack structure
JP3869801B2 (en) Heat pump water heater / heater
JP2004218910A (en) Heat pump type hot-water supply heating device
JP4215661B2 (en) Heat pump water heater / heater
JP2000356487A (en) Heat storage system
US3966393A (en) Hot blast stove apparatus
JPS58142769A (en) Fuel battery
JPH1054571A (en) Large-scale floor heating system
JP2005274021A (en) Heat pump hot water supply heating device
JP2002146513A (en) Carburizer by gas heating
JP2005336544A (en) Method for holding heat in hot blowing stove and heat-holding apparatus
JPS63255507A (en) Exhaust air temperature control device for internal combustion engine
JP6906432B2 (en) Heat storage system
JP2004340483A (en) Heat medium circulation type heating device
JPS58157061A (en) Layer-built fuel cell
JP2924380B2 (en) Heat transfer device
JP2000346484A (en) Heat utilizing system utilizing hydrogen storage alloy
JP2000179979A (en) Heat utilizing system employing hydrogen occlusion alloy

Legal Events

Date Code Title Description
FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20070823

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20080823

Year of fee payment: 6

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20080823

Year of fee payment: 6

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090823

Year of fee payment: 7

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090823

Year of fee payment: 7

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100823

Year of fee payment: 8

LAPS Cancellation because of no payment of annual fees