JP3341340B2 - Continuous casting method - Google Patents

Continuous casting method

Info

Publication number
JP3341340B2
JP3341340B2 JP04890593A JP4890593A JP3341340B2 JP 3341340 B2 JP3341340 B2 JP 3341340B2 JP 04890593 A JP04890593 A JP 04890593A JP 4890593 A JP4890593 A JP 4890593A JP 3341340 B2 JP3341340 B2 JP 3341340B2
Authority
JP
Japan
Prior art keywords
reduction
slab
roll
center
segregation
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP04890593A
Other languages
Japanese (ja)
Other versions
JPH06262325A (en
Inventor
研三 綾田
進 石黒
正樹 新田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Kobe Steel Ltd
Original Assignee
Kobe Steel Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Kobe Steel Ltd filed Critical Kobe Steel Ltd
Priority to JP04890593A priority Critical patent/JP3341340B2/en
Publication of JPH06262325A publication Critical patent/JPH06262325A/en
Application granted granted Critical
Publication of JP3341340B2 publication Critical patent/JP3341340B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Landscapes

  • Continuous Casting (AREA)

Description

【発明の詳細な説明】DETAILED DESCRIPTION OF THE INVENTION

【0001】[0001]

【産業上の利用分野】本発明は鋳片中心部の偏析やセン
ターポロシティを可及的に減少させることのできる連続
鋳造方法に関するものである。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a continuous casting method capable of minimizing segregation and center porosity at the center of a slab.

【0002】[0002]

【従来の技術】連続鋳造方法においては、鋳片中心部に
生じる偏析やセンターポロシティを如何に軽減するかと
いうことが重要課題の一つとなっている。偏析防止に関
しては、電磁撹拌技術の適用や低温鋳造の実施、或は不
均一核生成促進物質の添加等に代表される偏析分散技術
が実用化され、更には溶鋼内不純物濃度の低減を図る為
の高度清浄化技術の導入、更には鋳片引抜工程中のバル
ジング防止技術の導入等が実施され、相当の成果が挙げ
られている。
2. Description of the Related Art In a continuous casting method, one of the important issues is how to reduce segregation and center porosity generated in the center of a slab. Regarding segregation prevention, segregation dispersion technology represented by application of electromagnetic stirring technology, implementation of low-temperature casting, or addition of a heterogeneous nucleation promoting substance has been put to practical use, and in order to reduce the impurity concentration in molten steel. In addition, the introduction of advanced cleaning technology and the introduction of a bulging prevention technology during the slab drawing process have been implemented, and considerable results have been obtained.

【0003】一方凝固末期の凝固収縮に伴う溶鋼流動に
よって惹起される偏析、或は該凝固収縮の直接的結果で
あるセンターポロシティの形成については、十分な解決
策が確立されていないというのが実情である。
On the other hand, regarding the segregation caused by the flow of molten steel accompanying the solidification shrinkage at the end of solidification, or the formation of center porosity, which is a direct result of the solidification shrinkage, a sufficient solution has not yet been established. It is.

【0004】そこで近年の連続鋳造技術においては、鋳
片引抜工程における終盤過程に多数の圧下用ロールを設
け、中心部に未凝固部を残している凝固末期鋳片を低圧
化率で圧下することが提案されている。この様な低率圧
下を与えると、前記溶鋼流動を抑制して偏析の防止に寄
与すると共に、凝固収縮に対する補償が行なわれてセン
ターポロシティの生成が防止され、鋳造欠陥のない連続
鋳造製品を提供することが可能となる。
[0004] Therefore, in recent continuous casting technology, a large number of rolling rolls are provided in the final stage of the slab drawing process, and a late solidified slab having an unsolidified portion left in the center is reduced at a low pressure reduction rate. Has been proposed. When such a low rate reduction is applied, the flow of the molten steel is suppressed to contribute to the prevention of segregation, and at the same time, the compensation for solidification shrinkage is performed to prevent the generation of center porosity, thereby providing a continuous casting product without casting defects. It is possible to do.

【0005】この様な低率圧下付与技術としては、特公
昭59−16862号、特公平3−8863号、同3−
8864号、同3−6855号、同4−20696号、
同4−22664号各公報に記載のものが知られてい
る。これらの公知技術は、低率圧下を行う位置(引抜工
程の終盤過程において、鋳片中心部の未凝固状態を考慮
して低率圧下を開始してから終了するまでの区間の意
味、以下同じ)について一応の統一概念(中心部の固相
率を基準とする考え方)を提示しているが、圧下の程度
については、例えば圧下率(1.5%以下)、割合
(0.5〜2.5mm/分)、単位時間の圧下量0.6ξ
〜1.1ξ(ξは偏平比の1/4)といった種々の概念
が提示されており、未だ確定的な概念には至っていない
様である。しかも後述する様に鋳片の鋼種や鋳造条件、
更には鋳片引抜速度等との関係にまで考慮を払った低率
圧下条件については全く知られていない。
[0005] Such low-rate reduction application techniques are disclosed in Japanese Patent Publication Nos. 59-16682, 3-8663, and 3-8663.
No. 8864, No. 3-6855, No. 4-20696,
The ones described in JP-A-4-22664 are known. These known techniques are defined as a position where low-rate reduction is performed (the meaning of a section from the start to the end of low-rate reduction in the final stage of the drawing process in consideration of the unsolidified state of the slab center, hereinafter the same). ), A tentatively unified concept (a concept based on the solid phase ratio at the center) is presented. For the degree of reduction, for example, the reduction ratio (1.5% or less) and the ratio (0.5 to 2) .5 mm / min), 0.6 mm reduction per unit time
Various concepts such as ξ1.1ξ (ξ is 4 of the flattening ratio) have been presented, and it seems that the concept has not yet reached a definitive concept. Moreover, as described later, the type of slab and the casting conditions,
Furthermore, there are no known low-rate reduction conditions that take into account the relationship with the slab drawing speed and the like.

【0006】一方上記の様な低率圧下を行う為の具体的
装置技術としては、例えば特開昭50−55529号や
特公昭54−38978号の各公報に記載されている様
に、鋳片幅と同一か、又はより長い実効長さを有するロ
ール(一般にフラットロールと称される)を用いて圧下
を加える方法と、例えば特公平2−56982号公報に
開示されている様にロールの長さ方向中央部の径を、鋳
片幅寸法より短い範囲で大きく(ロール両端部の径より
大きく)したロール(本明細書では中太ロールと称す)
を用いて圧下する方法が知られている(図9参照:図に
おいて、1は中太ロール、2は鋳片、3は未凝固部、4
は軸を夫々示す)。
On the other hand, as a specific apparatus technology for performing the above-described low-rate reduction, for example, as described in JP-A-50-55529 and JP-B-54-38978, cast slabs are disclosed. A method of applying a reduction by using a roll having an effective length equal to or longer than the width (generally called a flat roll), and a method of applying a roll length as disclosed in Japanese Patent Publication No. 2-56982. A roll whose diameter at the center in the length direction is larger (larger than the diameter at both ends of the roll) in a range shorter than the width of the slab (referred to as a medium roll in this specification).
(See FIG. 9: 1 is a medium-sized roll, 2 is a slab, 3 is an unsolidified portion, 4
Indicate the axes, respectively).

【0007】[0007]

【発明が解決しようとする課題】上記した様に従来の低
率圧下技術では、圧下の程度をどの様に規定するかとい
う角度からの検討すら混沌としており、未解決課題とし
て残されているが、それに止まらず、例えば鋳片に内部
割れを生じる原因となり易いC濃度が具体的にはどの様
な影響、或は凝固組織の形態に大きい影響を与えるタン
ディッシュ内溶鋼の過熱度や鋳造速度等との間にはどの
様な関係があるかにまで考慮を払って圧下量を最適に調
整するといった考え方については全く知られていない様
である。従って圧下によって内部割れを生じ易い高炭素
鋼を対象とする場合をも含めた適正圧下条件を確立する
ことが望まれている。
As described above, in the conventional low-rate rolling technology, even the examination from the angle of how to define the degree of rolling is chaotic, and remains as an unsolved problem. In addition to this, for example, the effect of the C concentration, which tends to cause internal cracks in the slab, has a specific effect, or the degree of superheating of the molten steel in the tundish and the casting speed, which greatly affect the form of the solidified structure. It seems that there is no known idea of how to optimally adjust the rolling reduction by paying attention to the relationship between the two. Therefore, it is desired to establish appropriate rolling conditions including the case where high-carbon steel, which is liable to cause internal cracks due to rolling, is targeted.

【0008】[0008]

【課題を解決するための手段】本発明は上記の様な事情
に鑑みてなされたものであって、凝固末期の低率圧下工
程に関して圧下勾配なる新しい概念を導入すると共に、
凝固末期における低率圧下の開始時期並びに上記した圧
下勾配の各操業条件を、C濃度、溶鋼過熱度、鋳片引抜
速度等の因子を考慮して調整する様に構成したことによ
り、上記課題を達成したものである。即ち本発明の連続
鋳造方法とは、下記(1)式で求められる中心固相率
(fs)となる時点から前記圧下を開始して、中心固相
率が0.8に至るまで前記圧下を加えることとし、且つ
このときの単位時間当りの鋳片厚みに対する圧下量の割
合として与えられる圧下勾配(S)が下記(2)式を満
足する様に圧下を加えることを要旨とするものである。
SUMMARY OF THE INVENTION The present invention has been made in view of the above circumstances, and introduces a new concept of a reduction gradient in a low-rate reduction process at the end of solidification.
The above problem was solved by configuring the starting time of the low rate reduction at the end of solidification and the operating conditions of the above-described reduction gradient in consideration of factors such as C concentration, molten steel superheat degree, and slab drawing speed. It has been achieved. That is, the continuous casting method of the present invention means that the reduction is started from the time when the central solid fraction (fs) obtained by the following equation (1) is reached, and the reduction is continued until the central solid fraction reaches 0.8. The gist is that the reduction is applied so that the reduction gradient (S) given as the ratio of the reduction amount to the slab thickness per unit time at this time satisfies the following expression (2). .

【0009】[0009]

【数3】 式中 ΔT:タンディッシュ内溶鋼過熱度(℃) Vc:鋳造速度(m/min) [%C]:溶鋼炭素濃度(%)(Equation 3) Where ΔT: degree of superheat of molten steel in tundish (° C.) Vc: casting speed (m / min) [% C]: carbon concentration of molten steel (%)

【0010】[0010]

【数4】 式中 ΔT,Vc,[%C]は前と同じ意味(Equation 4) In the formula, ΔT, Vc and [% C] have the same meaning as before.

【0011】[0011]

【作用】以下本発明の完成に至る研究経緯に触れつつ本
発明を説明する。一般に高炭素鋼鋳片は凝固末期に過剰
圧下を加えると内部割れを生じ易いことが知られてい
る。従って圧下勾配(本明細書では単位時間当たりの鋳
片厚みに対する圧下量の割合を圧下勾配と称し、%/m
inの単位で与えられる)はできるだけ小さくすること
が必要であり、勿論中心偏析やセンターポロシティをな
くすという基本的命題もあるので、これらを総合的に考
えた適正な圧下勾配が求められる。
The present invention will be described below with reference to the research history leading to the completion of the present invention. It is generally known that high carbon steel slabs are liable to cause internal cracking when excessive reduction is applied at the end of solidification. Therefore, the reduction gradient (in this specification, the ratio of the reduction amount to the slab thickness per unit time is referred to as the reduction gradient,% / m
(given in units of in) must be as small as possible, and there is, of course, the basic proposition of eliminating center segregation and center porosity. Therefore, an appropriate rolling gradient considering these factors comprehensively is required.

【0012】また高炭素鋼鋳片においてよく見られるV
状偏析は等軸晶の広さによってその形態が異なることが
知られており、一般に等軸晶が広いほどV状偏析の幅も
広くなる。そしてこの傾向は鋼中炭素濃度が高くなるに
つれて顕著になってくる。従って低率圧下の所期の目的
を達成する為には、鋼中炭素含有量および等軸晶量を承
知してそれらに見合う様な圧下開始最適時期を定める必
要がある。一方等軸晶帯は高炭素鋼になるほど広く出現
する様になるので、圧下による凝固殻の変形が結晶粒間
に分散され易い等軸晶では(柱状晶の場合と比較し
て)、中心偏析改善効果を得る為にはより多くの圧下を
必要とするという背景がある。この様な観点から、鋳造
末期の低率圧下による中心偏析の改善を目的とする場合
は、鋼中のC含有量および等軸晶量に応じて最適の圧下
勾配を定めることが不可欠な手段となるのである。
[0012] In addition, V which is often found in high carbon steel slabs
It is known that the form of the segregation depends on the width of the equiaxed crystal. Generally, the wider the equiaxed crystal, the wider the width of the V-shaped segregation. This tendency becomes more remarkable as the carbon concentration in the steel increases. Therefore, in order to achieve the intended purpose of low-rate reduction, it is necessary to know the carbon content and the equiaxed crystal content in steel and to determine the optimal rolling start time corresponding to them. On the other hand, since the equiaxed zone becomes wider as the carbon steel becomes higher, the deformation of the solidified shell due to the reduction is easily dispersed among the crystal grains. There is a background that more reduction is required to obtain an improvement effect. From such a viewpoint, when the purpose is to improve center segregation due to low rate reduction at the end of casting, it is indispensable to determine the optimal reduction gradient in accordance with the C content and the amount of equiaxed crystal in the steel. It becomes.

【0013】ところで鋳片内の等軸晶量に影響を与える
因子としては、鋳造速度Vc(m/min)と鋳造温度
(タンディッシュ内溶鋼過熱度ΔT℃)があり、これら
が小さくなるほど等軸晶域は広まることが知られてい
る。即ちこれらの値が小さいほどV状偏析の幅は広ま
り、V状偏析を改善する為に必要な圧下よりも早期(低
固相率側)に開始する必要がある。
Factors that affect the amount of equiaxed crystals in a slab include casting speed Vc (m / min) and casting temperature (superheat degree of molten steel in a tundish ΔT ° C.). The crystal domain is known to spread. That is, the smaller these values are, the wider the width of V-shaped segregation becomes, and it is necessary to start earlier (low solid phase ratio side) than the reduction required for improving V-shaped segregation.

【0014】また鋳片内の等軸晶域は鋼中の炭素含有量
が高くなるほど、また鋳造速度Vcや前記鋳造温度が共
に小さくなるほど広まることが知られている。他方中心
偏析を改善する為の必要圧下勾配量は等軸晶の増加に伴
い増大する為、結局鋼中の炭素含有量、鋳造速度、前記
鋳造温度の全てを考慮して設定する必要があるのであ
る。
It is known that the equiaxed crystal region in the slab becomes wider as the carbon content in the steel increases, and as the casting speed Vc and the casting temperature decrease. On the other hand, since the amount of reduction required to improve center segregation increases with the increase of equiaxed crystals, it is necessary to set the carbon content in steel, casting speed, and all of the casting temperature in the end. is there.

【0015】そこで本発明者らはC濃度を種々に変更し
た試験鋼種を対象とし、様々な鋳造条件および引抜条件
の下で調査した結果、本発明で推奨する前記構成要件に
到達したのである。
[0015] The inventors of the present invention have investigated various test steel types with various C concentrations under various casting and drawing conditions, and as a result, have reached the above-mentioned constituent requirements recommended in the present invention.

【0016】まず本発明においては凝固末期における低
率圧下の開始時点を、鋳片中心部の固相率(中心固相
率)に基づいて定めている。凝固末期の鋳片中心部にお
ける固相率としては、下記計算式で求められる中心固相
率を測定値とし、これを基準値と対比して定める。
First, in the present invention, the starting point of the low rate pressure at the end of solidification is determined based on the solid phase ratio (central solid phase ratio) at the center of the slab. The solid phase ratio at the center of the slab at the end of solidification is determined by comparing the central solid phase ratio obtained by the following formula with a measured value, and comparing this with a reference value.

【0017】[0017]

【数5】 式中 T:鋳片中心部温度 %C:鋳片のC濃度(Equation 5) Where T: slab center temperature% C: slab C concentration

【0018】一方固相率については、上記した研究経緯
に関する説明から理解される様に、鋼中炭素濃度、タン
ディッシュ内溶鋼過熱度および鋳造速度によって定まっ
てくる。前記(1)式はこれらを変数として求めた中心
固相率であるが、この中心固相率は当然に鋳片引抜走行
位置によって変化する。そこで各部位毎に(3)式から
求められる中心固相率が(1)式によって求められる中
心固相率よりも少ない値を示す位置[換言すれば鋳片中
心部において固相率が上記計算値を示す位置より上流側
(鋳型側)の位置]から低率圧下を開始する。そしてそ
れより下流側において中心固相率が次第に増大していく
間は低率圧下を継続し、鋳片中心部に残されている未凝
固物の凝固が進んで流動性を示す限界となる様な中心固
相率0.8に至るまでは必らず前記低率圧下を継続す
る。必要であれば中心固相率1.0まで低率圧下を継続
しても良く、特に高炭素鋼の場合は未凝固溶湯の流動を
最後まで阻止して中心偏析の防止に努めることは有意義
なことである。
On the other hand, the solid fraction is determined by the carbon concentration in the steel, the degree of superheat of the molten steel in the tundish, and the casting speed, as understood from the above description of the research history. The above equation (1) is the central solid phase ratio obtained by using these as variables, and this central solid phase ratio naturally changes depending on the slab drawing traveling position. Therefore, for each part, the position where the central solid fraction obtained from equation (3) shows a smaller value than the central solid fraction obtained from equation (1) [in other words, the solid fraction at the center of the slab is calculated as above. From the position indicating the value (position on the upstream side (mold side)). Then, while the center solid fraction gradually increases downstream, the low rate reduction is continued, and the solidification of the unsolidified material remaining in the center of the slab proceeds to reach the limit showing fluidity. The low rate reduction is continued without fail until the central solid phase ratio reaches 0.8. If necessary, the low rate reduction may be continued up to the center solid phase ratio of 1.0. Particularly in the case of high carbon steel, it is meaningful to prevent the flow of the unsolidified molten metal to the end to prevent the center segregation. That is.

【0019】もし中心固相率が上記値を超えてから低率
圧下を開始する様なことになると、低率圧下の開始が遅
過ぎて、その時点では既に凝固末期部分における凝固収
縮が始まって溶鋼流動を惹起し、それによる偏析を生じ
る。一方流動相限界である中心固相率0.8の位置以前
で低率圧下を中止すると、凝固収縮による溶鋼流動を生
じる状態で低率圧下を解除したことになるので、偏析の
形成は回避できない。また凝固収縮に対する補償が行な
われないこととなるので、センターポロシティが形成さ
れてしまう。
If the low-rate reduction starts after the center solid phase ratio exceeds the above-mentioned value, the low-rate reduction starts too late, and at that time, the coagulation contraction in the late coagulation portion has already started. Induces molten steel flow, resulting in segregation. On the other hand, if the low rate reduction is stopped before the position of the central solid phase ratio of 0.8, which is the fluid phase limit, the low rate reduction is released in a state where molten steel flows due to solidification shrinkage, so the formation of segregation cannot be avoided. . Further, since compensation for coagulation shrinkage is not performed, center porosity is formed.

【0020】次に本発明のもっとも重要な条件の1つで
ある低率圧下の程度については、前記の如く%/min の
単位で与えられる圧下勾配の概念に従って制御を行う。
この概念は毎分当たり鋳片厚み方向に対してどの程度の
圧下比率で圧下を行うかを数値化して示すものである
が、本発明では前記(2)式を満足する範囲内から選択
するものとする。(2)式における上限は、圧下によっ
て内部割れを発生する限界であり、下限は圧下によって
偏析改善効果を示す為の限界である。尚上限を超えると
逆V偏析を生じ易くなるという危険もあるから、前記
(2)式の条件は順守すべきものである。
Next, the degree of low rate reduction, which is one of the most important conditions of the present invention, is controlled according to the concept of the reduction gradient given in the unit of% / min as described above.
This concept numerically indicates the reduction ratio at which the rolling reduction is performed in the slab thickness direction per minute. In the present invention, the reduction ratio is selected from the range satisfying the expression (2). And The upper limit in the expression (2) is a limit at which internal cracks are generated by rolling down, and the lower limit is a limit for showing a segregation improving effect by rolling down. If the upper limit is exceeded, there is a danger that reverse V segregation is likely to occur, so the condition of the above formula (2) must be observed.

【0021】本発明で使用する低率圧下ロールについて
は格別制限されることがなく、前記したフラットロール
や中太ロールは本発明において使用可能である。しかし
より好ましいのは、本出願人において開発した後述の短
幅ロールである。即ちフラットロールや中太ロールには
次に述べる様な問題がある。
The low-rate roll used in the present invention is not particularly limited, and the above-mentioned flat roll and medium-thick roll can be used in the present invention. However, more preferred are the short width rolls described below developed by the present applicant. That is, the flat roll and the middle roll have the following problems.

【0022】まずフラットロールでは、鋳片の両側面か
ら中央方向へ向けて成長したシェルが高剛性を示すため
圧下抵抗が大きく(特に偏平比の小さいブルーム鋳片の
場合に顕著)、中心の未凝固部断面積の縮小に効く効率
(圧下効率)が悪い為、偏析防止の為には大きな圧下量
が必要になってロールにかかる付加が増大し、ロールや
軸受けの摩耗が激しくなるという問題がある。また必要
圧下量に対応する為の設備コストや運転コストも高くな
る。一方中太ロールでは、ロール両端部より大径にされ
た中央部分のみで鋳片に対する実効的な圧下が加えられ
るため、前記シェルによる圧下抵抗が少なく、従って圧
下効率が向上し、比較的小さい圧下量でも偏析やセンタ
ーポロシティの防止効果が高いと評価されているが、鋳
片からの熱的影響によるロールの熱反りを極力少なくし
て圧下精度を保持しようとすれば、ロール両端側の直径
が結構大きいロールでなければならず、勢い中央部の直
径が大きくなり、従って鋳片引抜方向に隣接している短
幅ロールとの間隔(ロールピッチ)も大きくなり、鋳片
のバルジング(ロール間隔で生じる鋳片の膨張)が大き
くなって偏析やセンターポロシティの防止効果が失われ
るという問題がある。この様なところから本願出願人
は、鋳片幅の0.2−0.8倍の実効長さを有する圧下
ロールを開発し、既に特許出願を行っている(特願平5
−5958号)。
First, in a flat roll, the shell grown from both sides of the slab toward the center has high rigidity, so that the rolling resistance is large (especially in the case of a bloom slab having a small aspect ratio). The efficiency of the reduction of the cross-sectional area of the solidified portion (rolling efficiency) is poor, so a large amount of rolling is required to prevent segregation, and the load on the roll increases, and the wear of the roll and the bearing becomes severe. is there. In addition, equipment costs and operating costs for responding to the required reduction amount also increase. On the other hand, in the case of a medium-sized roll, since the effective reduction of the slab is applied only at the central portion having a larger diameter than the both ends of the roll, the reduction resistance by the shell is small, and therefore, the reduction efficiency is improved, and the reduction is relatively small. It is evaluated that the effect of preventing segregation and center porosity is high even with the amount, but if the roll warpage due to the thermal influence from the slab is to be minimized and the rolling accuracy is to be maintained, the diameter of both ends of the roll will be reduced. The roll must be quite large, the diameter of the center of the momentum increases, and therefore the gap (roll pitch) between adjacent short width rolls in the slab drawing direction also increases, and bulging of the slab (by the roll interval) This causes a problem that the effect of preventing segregation and center porosity is lost. Under such circumstances, the present applicant has developed a reduction roll having an effective length of 0.2-0.8 times the slab width, and has already filed a patent application (Japanese Patent Application No. Hei 5 (1993) -195).
-5958).

【0023】図7,8は本発明における短幅ロールの使
用概念を示す説明図であり、図中1は短幅ロール、2は
鋳片、3は未凝固部、4は軸、5はフラットロールを示
す。図7は鋳片の上下から同一寸法の短幅ロールを作用
させた場合を示し、図8は鋳片の上側から短幅ロールを
作用させ、下側はフラットロール5で支持した場合を示
す。この短幅ロール1は既に特願平5−5958号にお
いてその詳細を説明しているが、要は短幅ロール1の軸
方向長さWが鋳片2の幅寸法W’より実質的に短いもの
であって、特に下記の関係を満足するものが好んで用い
られ、本明細書ではこのWを実効長さと称している。 0.2W’≦ W ≦ 0.8W’ (4) 尚より好ましいのは 0.3W’≦ W ≦ 0.7W’ (5) の関係を満たすものである。
FIGS. 7 and 8 are explanatory views showing the concept of using a short width roll in the present invention, wherein 1 is a short width roll, 2 is a cast piece, 3 is an unsolidified portion, 4 is a shaft, and 5 is a flat. Indicates a role. FIG. 7 shows a case where short width rolls of the same dimensions are applied from above and below the slab, and FIG. 8 shows a case where short width rolls are applied from the upper side of the slab and the lower side is supported by the flat roll 5. The short width roll 1 has already been described in detail in Japanese Patent Application No. 5-5958, but the point is that the axial length W of the short width roll 1 is substantially shorter than the width dimension W ′ of the slab 2. In particular, those satisfying the following relationship are preferably used. In this specification, W is called an effective length. 0.2W '≦ W ≦ 0.8W ′ (4) More preferably, the relationship of 0.3W ′ ≦ W ≦ 0.7W ′ (5) is satisfied.

【0024】この様な短幅ロールは軸方向長さが短いの
で、殊更大きい径としなくとも十分な剛性を発揮する。
従ってロール径を小さくすることができ、ロールピッチ
の短縮化が図れるから、中太ロールを使用していた従来
技術の欠点であるバルジングを抑えることが可能となっ
た。尚バルジング防止の観点から、ロールピッチは35
0mm以下とすることが推奨される。
Since such a short width roll has a short axial length, it exhibits sufficient rigidity without having a particularly large diameter.
Therefore, the roll diameter can be reduced and the roll pitch can be shortened, so that it is possible to suppress bulging which is a drawback of the conventional technique using a medium-thick roll. From the viewpoint of preventing bulging, the roll pitch is 35
It is recommended that it be 0 mm or less.

【0025】また図7,8から明らかである様に、本発
明の短幅ロールは未凝固部3の存在する鋳片中心部を効
率よく集中的に圧下できるので、偏析防止やセンターポ
ロシティ防止の為の必要圧下量も少なくて済み、運転コ
ストを低下できる。またロール表面やロール軸の摩擦も
少なくなるので設備のメンテナンスコストも低減可能で
ある。尚図7の配置構成では鋳片の両側から鋳片中心部
を圧下しており、また図8の配置構成では鋳片の上側か
ら鋳片中心部を圧下しているが、前記した様な圧下勾配
条件を満足する様な低率圧下を行う限り、偏析防止やセ
ンターポロシティ防止効果は両者において実質的な差異
はない。
As is apparent from FIGS. 7 and 8, the short width roll of the present invention can efficiently and intensively reduce the central portion of the slab where the unsolidified portion 3 exists, thereby preventing segregation and center porosity. The required reduction amount is also small, and the operating cost can be reduced. In addition, since the friction between the roll surface and the roll shaft is reduced, the maintenance cost of the equipment can be reduced. In the arrangement shown in FIG. 7, the center of the slab is reduced from both sides of the slab, and in the arrangement shown in FIG. 8, the center of the slab is reduced from the upper side of the slab. As long as the low pressure reduction that satisfies the gradient condition is performed, there is no substantial difference between the segregation prevention and the center porosity prevention effects.

【0026】尚短幅ロールは、前記した図7,8の配置
構成例で示す様に、鋳片2の上下両方から圧下する様な
配置や、上または下のいずれか一方のみを本発明の短幅
ロールとし、反対側を前記したフラットロールとして圧
下する様に構成することが好ましいが、鋳片引抜方向全
長に亘って全てを同一配置構成としなければならない訳
ではなく、例えば図7,8の配置構成を交互に採用する
といった設計変更も可能である。本発明は中・低炭素鋼
から高炭素鋼に至るまで幅広く適用でき、いずれの場合
も、期待通りの効果が得られることが分かった。
As shown in the arrangement examples of FIGS. 7 and 8 described above, the short-width roll is arranged so as to be lowered from both the upper and lower sides of the slab 2 or only one of the upper and lower sides of the present invention. It is preferable that the rolls are formed to be short width rolls and the opposite side is rolled down as the flat rolls described above. However, it is not necessary that all rolls have the same arrangement over the entire length in the slab drawing direction. For example, FIGS. It is also possible to change the design such that the arrangement configuration is alternately adopted. The present invention can be widely applied to medium to low carbon steels to high carbon steels, and in any case, it has been found that the expected effects can be obtained.

【0027】[0027]

【実施例】C濃度0.6〜1.20%の各種鋼種を用
い、タンディッシュ内溶鋼過熱度10〜40℃、鋳片サ
イズ380×600(mm)、鋳造速度0.4〜0.7m
/min 、鋳型内電磁攪拌併用として連続鋳造を実施し
た。圧下ロールスタンドにおける圧下用ロールとして
は、上方側より300mm幅の短幅圧下ロール(直径:3
00mm、ロールピッチ:320mm)を作用させ、下方側
はフラットロール(直径:300mm、ロールピッチ:3
20mm)を用いて低率圧下を施した(図8の配置構
成)。鋳型内電磁撹拌によって鋳片厚みの20〜40%
厚の等軸晶域を形成させ、凝固末期位置に設けられる圧
下ロールスタンドに所定の圧下勾配を与えて凝固完了ま
で圧下を実施した。尚V偏析および内部割れは鋳片縦断
面のサルファプリントにより調査した。
EXAMPLE Using various types of steel having a C concentration of 0.6 to 1.20%, the superheat degree of molten steel in a tundish is 10 to 40 ° C., the slab size is 380 × 600 (mm), and the casting speed is 0.4 to 0.7 m.
/ Min, and continuous casting was carried out in combination with electromagnetic stirring in the mold. As the roll for reduction in the reduction roll stand, a short width reduction roll having a width of 300 mm from the upper side (diameter: 3 mm)
00 mm, roll pitch: 320 mm, and the lower side is a flat roll (diameter: 300 mm, roll pitch: 3).
20 mm) to reduce the pressure at a low rate (arrangement configuration in FIG. 8). 20-40% of slab thickness by electromagnetic stirring in the mold
A thick equiaxed crystal region was formed, and a predetermined reduction gradient was applied to a reduction roll stand provided at the final stage of solidification, and reduction was performed until solidification was completed. In addition, V segregation and internal cracking were investigated by sulfur printing of a vertical section of the slab.

【0028】図1に0.8%Cにおける圧下開始固相率
とΔT・Vcの関係を示す。尚この場合の圧下勾配は
0.20%/minで行った。黒丸は圧下開始が遅すぎ
た為、V偏析の外側が残存した場合である。一方、白丸
はV偏析が残存しなかった場合である。図に示す様にΔ
T・Vcが増加する程、適正な圧下開始固相率は増加す
る。図2は1.0%Cにおける同様な結果を示す。圧下
勾配は同様に0.20%/minで行った。
FIG. 1 shows a relationship between the solid phase ratio at the time of reduction at 0.8% C and ΔT · Vc. In this case, the rolling gradient was 0.20% / min. The black circles indicate the case where the outside of V segregation remained because the rolling start was too late. On the other hand, open circles indicate the case where V segregation did not remain. As shown in the figure,
As T · Vc increases, the appropriate rolling-start solid phase ratio increases. FIG. 2 shows a similar result at 1.0% C. The rolling gradient was similarly set at 0.20% / min.

【0029】上記実験を0.6%C〜1.2%C鋼につ
いて行い、ここに得られた結果より、適正圧下開始固相
率を求める(1)式を導き、計算により求めた圧下開始
固相率とΔT・Vcの関係を図3にまとめて示す。
The above experiment was conducted on 0.6% C to 1.2% C steel, and from the results obtained, the equation (1) for obtaining an appropriate rolling start solid phase ratio was derived, and the rolling start calculated by calculation was obtained. FIG. 3 shows the relationship between the solid phase ratio and ΔT · Vc.

【0030】図4に0.8%Cにおける圧下勾配とΔT
・Vcの関係を示す。尚、この場合圧下開始固相率は
(1)式で得られた結果に基づきV偏析の生じない条件
で行った。図中、黒丸は圧下勾配が大きすぎ、内部割れ
が発生した場合であり、×印は鋳片中心部にV偏析のV
状の先端が残存した場合である。上限、下限値ともΔT
・Vcの増加と共に減少する。図5は1.0%Cにおけ
る同様な結果を示す。同様の実験を0.6%C〜1.2
%C鋼について行い、ここに得られた結果より、適正圧
下勾配を求める(2)式を導き、計算により求めた圧下
開始固相率とΔT・Vcの関係を図6にまとめて示す。
FIG. 4 shows the reduction gradient and ΔT at 0.8% C.
-Indicates the relationship of Vc. In this case, the rolling start solid phase ratio was determined based on the result obtained by the equation (1) under the condition that V segregation did not occur. In the figure, the black circles indicate the case where the rolling gradient was too large and internal cracks occurred, and the crosses indicate the V segregation V at the center of the slab.
In this case, the tip of the shape remains. ΔT for both upper and lower limits
• Decreases with increasing Vc. FIG. 5 shows a similar result at 1.0% C. Similar experiments were performed at 0.6% C to 1.2%.
% C steel, and from the results obtained, the formula (2) for obtaining an appropriate rolling gradient is derived, and the relationship between the reduction solid phase ratio and ΔT · Vc obtained by calculation is summarized in FIG.

【0031】[0031]

【発明の効果】本発明は上記の様に構成され、溶鋼中の
C濃度、タンディッシュ内溶鋼過熱度、鋳造速度等の連
続鋳造条件を総合的に勘案して圧下の開始時期および圧
下程度を定めることができるので、最適条件での操業が
約束されることになり、ロール摩耗や軸摩耗を生じない
様な低率圧下により、中心偏析、センターポロシティ、
内部割れ等のない鋳片を連続鋳造法によって製造するこ
とが可能となった。特にブルーム連鋳の様に鋳造欠陥を
生じ易いものに対しても優れた効果を発揮できることが
確認された。
The present invention is constructed as described above, and takes into consideration the continuous casting conditions such as the C concentration in molten steel, the superheat degree of molten steel in a tundish, the casting speed, etc., to determine the start timing and the degree of reduction in rolling. As a result, operation under optimal conditions is promised, and center segregation, center porosity,
It has become possible to produce a slab without internal cracks by a continuous casting method. In particular, it has been confirmed that an excellent effect can be exerted even on a casting which is liable to produce a casting defect such as bloom continuous casting.

【図面の簡単な説明】[Brief description of the drawings]

【図1】ΔT・Vcと圧下開始固相率の関係を示すグラ
フ(0.8%Cのとき)。
FIG. 1 is a graph (at 0.8% C) showing the relationship between ΔT · Vc and the rolling-start solid phase ratio.

【図2】ΔT・Vcと圧下開始固相率の関係を示すグラ
フ(1.0%Cのとき)。
FIG. 2 is a graph showing the relationship between ΔT · Vc and the rolling start solid phase ratio (at 1.0% C).

【図3】ΔT・Vcと圧下開始固相率の関係を示すグラ
フ(0.6〜1.2%Cのまとめ)。
FIG. 3 is a graph showing the relationship between ΔT · Vc and the solid phase ratio at the start of rolling (summarization of 0.6 to 1.2% C).

【図4】ΔT・Vcと圧下勾配の関係を示すグラフ
(0.8%Cのとき)。
FIG. 4 is a graph showing a relationship between ΔT · Vc and a reduction gradient (at 0.8% C).

【図5】ΔT・Vcと圧下勾配の関係を示すグラフ
(1.0%Cのとき)。
FIG. 5 is a graph showing the relationship between ΔT · Vc and the rolling down gradient (at 1.0% C).

【図6】ΔT・Vcと圧下勾配の関係を示すグラフ
(0.6〜1.2%Cのまとめ)。
FIG. 6 is a graph showing the relationship between ΔT · Vc and the rolling down gradient (summary of 0.6 to 1.2% C).

【図7】本発明における短幅ロールの使用概念説明図。FIG. 7 is an explanatory view of a concept of using a short width roll in the present invention.

【図8】本発明における短幅ロールの他の使用概念説明
図。
FIG. 8 is an explanatory view of another usage concept of the short width roll in the present invention.

【図9】従来の中太ロールの説明図。FIG. 9 is an explanatory view of a conventional medium-sized roll.

【符号の説明】[Explanation of symbols]

1 中太ロール 2 鋳片 3 未凝固部 5 フラットロール 11 短幅ロール DESCRIPTION OF SYMBOLS 1 Medium roll 2 Cast piece 3 Unsolidified part 5 Flat roll 11 Short width roll

───────────────────────────────────────────────────── フロントページの続き (72)発明者 新田 正樹 兵庫県加古川市金沢町1番地 株式会社 神戸製鋼所 加古川製鉄所内 (56)参考文献 特開 昭60−121054(JP,A) 特開 昭61−132247(JP,A) 特公 平4−22664(JP,B2) (58)調査した分野(Int.Cl.7,DB名) B22D 11/128 350 B22D 11/20 ──────────────────────────────────────────────────続 き Continuation of the front page (72) Inventor Masaki Nitta 1 Kanazawa-cho, Kakogawa-shi, Hyogo Prefecture Kobe Steel, Ltd. Kakogawa Works (56) References JP-A-60-121054 (JP, A) JP-A Sho 61-132247 (JP, A) JP 4-22664 (JP, B2) (58) Fields surveyed (Int. Cl. 7 , DB name) B22D 11/128 350 B22D 11/20

Claims (2)

(57)【特許請求の範囲】(57) [Claims] 【請求項1】 連続鋳造法の鋳片引抜工程における終盤
過程で該引抜中の鋳片に対して圧下力を加える方法であ
って、下記(1)式で求められる中心固相率(fs)と
なる時点から前記圧下を開始して、中心固相率が0.8
に至るまで前記圧下を加えることとし、且つこのときの
単位時間当りの鋳片厚みに対する圧下量の割合として与
えられる圧下勾配(S)が下記(2)式を満足する様に
圧下を加えることを特徴とする連続鋳造方法。 【数1】 式中 ΔT:タンディッシュ内溶鋼過熱度(℃) Vc:鋳造速度(m/min) [%C]:溶鋼炭素濃度(%) 【数2】 式中 ΔT,Vc,[%C]は前と同じ意味
1. A method of applying a rolling force to a slab being drawn in a final stage in a slab drawing step of a continuous casting method, wherein a central solid fraction (fs) obtained by the following equation (1) is obtained. The reduction is started from the time when the center solid phase ratio is 0.8
And the reduction is applied so that the reduction gradient (S) given as a ratio of the reduction amount to the slab thickness per unit time at this time satisfies the following expression (2). Characteristic continuous casting method. (Equation 1) Where ΔT: degree of superheat of molten steel in the tundish (° C.) Vc: casting speed (m / min) [% C]: carbon concentration of molten steel (%) In the formula, ΔT, Vc and [% C] have the same meaning as before.
【請求項2】 鋳片幅の0.2〜0.8倍の実効長さを
有する圧下ロールを、該鋳片の上下両方から又はいずれ
か一方から作用させて圧下を行う請求項1に記載の連続
鋳造方法。
2. The reduction according to claim 1, wherein the reduction roll having an effective length of 0.2 to 0.8 times the width of the slab is acted on both or both of the upper and lower sides of the slab. Continuous casting method.
JP04890593A 1993-03-10 1993-03-10 Continuous casting method Expired - Fee Related JP3341340B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP04890593A JP3341340B2 (en) 1993-03-10 1993-03-10 Continuous casting method

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP04890593A JP3341340B2 (en) 1993-03-10 1993-03-10 Continuous casting method

Publications (2)

Publication Number Publication Date
JPH06262325A JPH06262325A (en) 1994-09-20
JP3341340B2 true JP3341340B2 (en) 2002-11-05

Family

ID=12816288

Family Applications (1)

Application Number Title Priority Date Filing Date
JP04890593A Expired - Fee Related JP3341340B2 (en) 1993-03-10 1993-03-10 Continuous casting method

Country Status (1)

Country Link
JP (1) JP3341340B2 (en)

Families Citing this family (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP4723451B2 (en) * 2006-10-12 2011-07-13 株式会社神戸製鋼所 Continuous casting method of high carbon steel related to internal cracks derived from recuperation
JP6075336B2 (en) * 2014-07-15 2017-02-08 Jfeスチール株式会社 Steel continuous casting method
RU2678112C2 (en) * 2014-12-24 2019-01-23 ДжФЕ СТИЛ КОРПОРЕЙШН Continuous steel casting method
CN114054706B (en) * 2021-11-19 2023-04-25 河南济源钢铁(集团)有限公司 Production control method for improving pickling low-power quality of bearing steel round steel

Also Published As

Publication number Publication date
JPH06262325A (en) 1994-09-20

Similar Documents

Publication Publication Date Title
JP2814958B2 (en) Continuous casting method
JP2809186B2 (en) Continuous casting method
JP3341340B2 (en) Continuous casting method
JP2995519B2 (en) Light reduction of continuous cast strand
JP3401785B2 (en) Cooling method of slab in continuous casting
JP3341338B2 (en) Continuous casting method
JP2980006B2 (en) Continuous casting method
JPH08238550A (en) Method for continuously casting steel
JP3341339B2 (en) Continuous casting method
JPS6372457A (en) Continuous casting method for steel
JPS6234461B2 (en)
JP2964888B2 (en) Continuous casting method
JPH0436776B2 (en)
JP2009119486A (en) Method for producing continuously cast slab
JP2561180B2 (en) Continuous casting method
JP4026792B2 (en) Billet continuous casting method
JP7273307B2 (en) Steel continuous casting method
JPH038863B2 (en)
JP3055462B2 (en) Continuous casting method
JPS6228056A (en) Continuous casting method
JPH0346217B2 (en)
JPH078421B2 (en) Continuous casting method
JP3147803B2 (en) Continuous casting method
JP2002192310A (en) Method for continuously casting steel
JP3488656B2 (en) Steel continuous casting method

Legal Events

Date Code Title Description
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20020723

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20070823

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20080823

Year of fee payment: 6

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20080823

Year of fee payment: 6

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090823

Year of fee payment: 7

LAPS Cancellation because of no payment of annual fees