JP3339912B2 - Focusing method of zoom lens - Google Patents

Focusing method of zoom lens

Info

Publication number
JP3339912B2
JP3339912B2 JP11679393A JP11679393A JP3339912B2 JP 3339912 B2 JP3339912 B2 JP 3339912B2 JP 11679393 A JP11679393 A JP 11679393A JP 11679393 A JP11679393 A JP 11679393A JP 3339912 B2 JP3339912 B2 JP 3339912B2
Authority
JP
Japan
Prior art keywords
lens
lens group
negative
group
zoom
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP11679393A
Other languages
Japanese (ja)
Other versions
JPH06331890A (en
Inventor
野沢敏秀
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Olympus Corp
Original Assignee
Olympus Optic Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Olympus Optic Co Ltd filed Critical Olympus Optic Co Ltd
Priority to JP11679393A priority Critical patent/JP3339912B2/en
Priority to US08/141,025 priority patent/US5483380A/en
Publication of JPH06331890A publication Critical patent/JPH06331890A/en
Application granted granted Critical
Publication of JP3339912B2 publication Critical patent/JP3339912B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Description

【発明の詳細な説明】DETAILED DESCRIPTION OF THE INVENTION

【0001】[0001]

【産業上の利用分野】本発明は、ズームレンズのフォー
カシング方式に関し、特に、主にバックフォーカスの短
いコンパクトカメラ等に使用されるズームレンズであっ
て、変倍比が2〜3倍程度で、小型なズームレンズに有
効なフォーカシング方式に関する。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a focusing system for a zoom lens, and more particularly to a zoom lens mainly used for a compact camera having a short back focus, which has a zoom ratio of about 2 to 3 times. The present invention relates to a focusing method effective for a small zoom lens.

【0002】[0002]

【従来の技術】バックフォーカスの短いコンパクトカメ
ラ等に使用されるズームレンズとして、特開昭56−1
28911号、特開昭62−264019号、特開昭6
3−266413号等で知られているような、物体側か
ら順に、正レンズ群、負レンズ群にて構成された2群ズ
ームレンズが数多く用いられている。
2. Description of the Related Art As a zoom lens used for a compact camera having a short back focus, Japanese Patent Application Laid-Open No.
No. 28911, JP-A-62-264019, JP-A-62-264019
2. Description of the Related Art A large number of two-unit zoom lenses including a positive lens unit and a negative lens unit in order from the object side, as known in JP-A-3-266413 and the like, are used.

【0003】近年、コンパクトカメラの更なる広角化と
高変倍化が望まれ、本出願人も、特願平4−28769
2号や特願平5−80536号で、従来の正・負2群ズ
ームレンズ並みの大きさながら、変倍比が2倍以上で、
広角端の画角も70度程度までに拡げたコンパクトなズ
ームレンズを提案している。
In recent years, further wide-angle and high-power zooming of compact cameras have been desired, and the present applicant has also filed Japanese Patent Application No. Hei 4-28769.
No. 2 and Japanese Patent Application No. 5-80536, the zoom ratio is twice or more, while being as large as the conventional positive / negative two-unit zoom lens.
We have proposed a compact zoom lens with the wide-angle end angle of view expanded to about 70 degrees.

【0004】上記のような各ズームレンズにおいて、無
限遠物点から至近撮影距離へのフォーカシング方式は、
従来、前群の正レンズ群を移動させることによりピント
調整を行うのが一般的であった。
In each of the above-described zoom lenses, a focusing method from an object point at infinity to a close photographing distance is as follows.
Conventionally, focus adjustment has generally been performed by moving the positive lens group of the front group.

【0005】[0005]

【発明が解決しようとする課題】図2に従来の正の前群
F と負の後群GR からなる2群ズームレンズのフォー
カシング方式の近軸配置図を示す。このように、前群G
F をフォーカスレンズ群にすると、フォーカスレンズ群
の停止精度に対する像面位置の変動量、すなわち、フォ
ーカスレンズ群の像面感度εF が後群GR の横倍率βR
の2乗、すなわち、 εF =βR 2 … になる。ただし、物点は無限遠として考える。
FIG. 2 shows a paraxial arrangement of a focusing system of a conventional two-unit zoom lens comprising a positive front unit G F and a negative rear unit G R. Thus, the front group G
If the F a focus lens group, the fluctuation amount of the image plane position relative to the focusing lens group stopping accuracy, i.e., the lateral magnification of the image surface sensitivity of the focus lens group epsilon F is the rear group G R beta R
, Ie, ε F = β R 2 . However, the object point is considered as infinity.

【0006】望遠端における後群の横倍率は、ズームレ
ンズの変倍比を高くすればするほど大きくなる。そのた
めに、望遠端におけるフォーカスレンズ群の像面感度も
大きくなるので、フォーカスレンズ群の停止精度を高変
倍化に合わせて上げて行かなければならず、メカニズム
的にフォーカスレンズ群の移動制御が困難になってしま
う。
The lateral magnification of the rear unit at the telephoto end increases as the zoom ratio of the zoom lens increases. As a result, the image surface sensitivity of the focus lens group at the telephoto end also increases, so the stopping accuracy of the focus lens group must be increased in accordance with the high zoom ratio, and the movement control of the focus lens group is mechanically controlled. It will be difficult.

【0007】本発明はこのような従来技術の問題点に鑑
みてなされたものであり、その目的は、本出願人が提案
した特願平4−287692号と特願平5−80536
号のような小型のズームレンズにおいて、フォーカスレ
ンズ群の像面感度が望遠端においてもメカニズム的に制
御が可能な程度の大きさになるようなフォーカシング方
式を提供することである。
[0007] The present invention has been made in view of such problems of the prior art, and has as its object the application of Japanese Patent Application Nos. Hei 4-287692 and Hei 5-80536 proposed by the present applicant.
It is an object of the present invention to provide a focusing system in which a small zoom lens such as the one described above has an image surface sensitivity of a focus lens group which is large enough to be mechanically controllable at the telephoto end.

【0008】[0008]

【課題を解決するための手段】上記目的を達成する本発
明のズームレンズのフォーカシング方式は、物体側から
順に、負の第1レンズ群、正の第2レンズ群、負の第3
レンズ群にて構成され、第1レンズ群と第2レンズ群が
一体で移動しかつ第2レンズ群と第3レンズ群との間隔
を単調に減少させ、変倍時に可変のレンズ群間隔を前記
第2レンズ群と前記第3レンズ群との間隔のみとするこ
とによって広角端から望遠端へ変倍を行うズームレンズ
において、無限遠物点から至近距離へのフォーカシング
を第2レンズ群を物体側へ移動して行う構成とし、か
つ、前記第1レンズ群は以下の条件を満足する1枚の
負レンズで構成されたことを特徴とするものである。 −2.5<(r1 +r2 )/(r1 −r2 )<−0.3 … ただし、r1 :第1レンズ群G1における負レンズの物
体側曲率半径 r2 :第1レンズ群G1における負レンズの像面側曲率
半径 である。
In order to achieve the above object, a focusing system of a zoom lens according to the present invention comprises, in order from the object side, a negative first lens group, a positive second lens group, and a negative third lens group.
The first lens group and the second lens group move integrally, and the distance between the second lens group and the third lens group is monotonously reduced. In a zoom lens that performs zooming from the wide-angle end to the telephoto end by setting only the distance between the second lens group and the third lens group, focusing from an object point at infinity to a close distance is performed by moving the second lens group toward the object side. And the first lens group is composed of one negative lens satisfying the following condition. −2.5 <(r 1 + r 2 ) / (r 1 −r 2 ) <− 0.3 where r 1 : object-side radius of curvature of the negative lens in the first lens group G 1 r 2 : first lens group This is the radius of curvature of the image side of the negative lens at G1.

【0009】本発明のもう1つのズームレンズのフォー
カシング方式は、物体側から順に、負の第1レンズ群、
正の第2レンズ群、負の第3レンズ群にて構成され、か
つ、前記第2レンズ群は、物体側から順に、正の第2A
レンズ群と正の第2Bレンズ群とで構成し、第2Bレン
ズ群と第3レンズ群との間隔を単調に減少させ、かつ、
変倍時に可変のレンズ群間を前記第1レンズ群と前記第
2Aレンズ群との間隔、前記第2Aレンズ群と前記第2
Bレンズ群との間隔、前記2Bレンズ群と前記第3レン
ズ群との間隔のみとし、かつ、前記第1レンズ群と前記
第2Bレンズ群とを変倍時一体とすることによって広角
端から望遠端へ変倍を行うズームレンズにおいて、前記
第2Aレンズ群が広角端から中間焦点距離までは前記第
1レンズ群へ近づき、中間焦点距離から望遠端にかけて
は前記第2Bレンズ群へ近づくように移動し、無限遠物
点から至近距離へのフォーカシングを第2レンズ群を物
体側へ移動して行う構成とし、かつ、前記第1レンズ群
は上記の条件を満足する1枚の負レンズで構成された
ことを特徴とするものである。
According to another focusing method of the zoom lens of the present invention, a negative first lens unit,
The second lens group includes a positive second lens group and a negative third lens group, and the second lens group includes, in order from the object side, a positive 2A
A lens group and a positive second B lens group, the distance between the second B lens group and the third lens group is monotonously reduced, and
The distance between the variable lens groups at the time of zooming is the distance between the first lens group and the second A lens group, and the distance between the second A lens group and the second
Telephoto from the wide-angle end by setting only the distance between the B lens group, the distance between the 2B lens group and the third lens group, and integrating the first lens group and the second B lens group during zooming. In a zoom lens that performs zooming to an end, the second A lens group moves closer to the first lens group from the wide-angle end to the intermediate focal length, and moves closer to the second B lens group from the intermediate focal length to the telephoto end. Focusing from an object point at infinity to a close distance is performed by moving the second lens group to the object side, and the first lens group includes one negative lens satisfying the above conditions. It is characterized by having.

【0010】[0010]

【作用】図1に、本発明のフォーカシング方式を採用し
たズームレンズの近軸配置図を示し、第2レンズ群G2
がフォーカスレンズ群になっている。ここで、第2レン
ズ群G2、第3レンズ群G3の無限遠物点における横倍
率をそれぞれβ2 、β3 とすると、フォーカスレンズ群
である第2レンズ群G2の無限遠物点における像面感度
ε2 は、 ε2 =β3 2 −(β2 β3 2 … となる。
FIG. 1 shows a paraxial arrangement of a zoom lens adopting the focusing method according to the present invention.
Is a focus lens group. Here, assuming that the lateral magnifications of the second lens group G2 and the third lens group G3 at the object point at infinity are respectively β 2 and β 3 , the image plane at the object point at infinity of the second lens group G2 that is the focus lens group is set. sensitivity epsilon 2 is, ε 2 = β 3 2 - (β 2 β 3) 2 ... become.

【0011】図1における第3レンズ群G3は図2にお
ける後群GR に相当するので、それぞれの横倍率β3
βR は同じ値となる。すなわち、βR =β3 であるか
ら、 ε2 =βR 2 −(β2 β3 2 =εF −(β2 β3 2 … となる。
[0011] Since the third lens group in FIG. 1 G3 corresponds to the rear group G R in FIG. 2, each of the lateral magnification beta 3,
β R has the same value. That is, since β R = β 3 , ε 2 = β R 2 − (β 2 β 3 ) 2 = ε F − (β 2 β 3 ) 2 .

【0012】したがって、本発明のフォーカシング方式
を採用することにより、フォーカスレンズ群の像面感度
ε2 は従来のフォーカスレンズ群の像面感度εF よりも
(β2 β3 2 だけ小さくすることができる。
Therefore, by adopting the focusing method of the present invention, the image surface sensitivity ε 2 of the focus lens group is made smaller by (β 2 β 3 ) 2 than the image surface sensitivity ε F of the conventional focus lens group. Can be.

【0013】第1レンズ群G1の焦点距離f1 が短けれ
ば短いほど、β2 を大きくすることができるので、ε2
を小さくすることができる。しかしながら、ε2 があま
り小さくなりすぎると、フォーカシングにおける第2レ
ンズ群G2の移動量が大きくなりすぎてしまうために、
第1レンズ群G1と第2レンズ群G2の間隔を拡げなけ
ればならず、レンズ系が大きくなってしまう。そこで、
第1レンズ群G1の焦点距離f1 は以下の条件を満たす
ことが望ましい。
The shorter the focal length f 1 of the first lens group G 1 , the larger β 2 can be, so that ε 2
Can be reduced. However, if ε 2 is too small, the amount of movement of the second lens group G2 during focusing becomes too large.
The distance between the first lens group G1 and the second lens group G2 must be increased, and the lens system becomes large. Therefore,
The focal length f 1 of the first lens group G1 is preferably satisfies the following conditions.

【0014】 1.2<|f1 |/FW <1.8 … ただし、FW :広角端における全系の焦点距離 上記の条件の下限の1.2を越すと、上記で説明した
ように、ε2 が小さくなりすぎ、レンズ系が大きくなっ
てしまう。また、上限の1.8を越すと、β2を大きく
することができず、ε2 が大となり、望遠端におけるフ
ォーカスレンズ群の移動制御が困難となる。
1.2 <| f 1 | / F W <1.8, where F W is the focal length of the entire system at the wide-angle end. In addition, ε 2 becomes too small, and the lens system becomes large. If the upper limit of 1.8 is exceeded, β 2 cannot be increased, and ε 2 increases, making it difficult to control the movement of the focus lens group at the telephoto end.

【0015】さらに、以下の条件、を満たすこと
が、本発明の目的を達成する上で望ましい。
Furthermore, it is desirable to satisfy the following conditions in order to achieve the object of the present invention.

【0016】 0.6<f2 /|f3 |<1.2 … 2.5<β3T<4.0 … ただし、f2 :望遠端における第2レンズ群G2の焦点
距離 f3 :第3レンズ群G3の焦点距離 β3T:望遠端における第3レンズ群G3の横倍率 上記の条件は、第2レンズ群G2の焦点距離に関し、
その下限の0.6を越えて第2レンズ群G2の焦点距離
が短くなると、β2 が大きくなるために第1レンズ群G
1と第2レンズ群G2との間隔を狭くしなければなら
ず、第2レンズ群G2のフォーカシングによる移動スペ
ースを確保するのが困難となる。その上限の1.2を越
えて第2レンズ群G2の焦点距離が長くなると、第2レ
ンズ群G2と第3レンズ群G3との間隔が必要以上に長
くなるため、レンズ系の全長が長くなってしまう。
0.6 <f 2 / | f 3 | <1.2 2.5 <β 3T <4.0 where f 2 is the focal length of the second lens group G2 at the telephoto end f 3 is the second Focal length β 3T of the third lens group G3: lateral magnification of the third lens group G3 at the telephoto end The above conditions relate to the focal length of the second lens group G2.
If the focal length of the second lens group exceeds the 0.6 lower limit G2 is short, group first lens to beta 2 increases G
The distance between the first lens group G2 and the second lens group G2 must be reduced, and it becomes difficult to secure a moving space by focusing of the second lens group G2. If the focal length of the second lens group G2 becomes longer than the upper limit of 1.2, the distance between the second lens group G2 and the third lens group G3 becomes unnecessarily long, so that the total length of the lens system becomes long. Would.

【0017】また、上記条件は、第3レンズ群G3の
横倍率に関し、その下限の2.5を越えると、広角端に
おけるバックフォーカスの確保が困難となるために、変
倍比を2倍以上にできなくなる。上限の4.0を越える
と、ε2 が大となり、望遠端におけるフォーカスレンズ
群の移動制御が困難となる。
In addition, the above-mentioned condition relates to the lateral magnification of the third lens group G3. If the lower limit of 2.5 is exceeded, it becomes difficult to secure the back focus at the wide-angle end. Can not be. When the value exceeds the upper limit of 4.0, ε 2 becomes large, and it becomes difficult to control the movement of the focus lens unit at the telephoto end.

【0018】また、レンズ全系の収差を少ないレンズ枚
数でも良好に補正するために、第1レンズ群G1は1枚
の負レンズで構成し、以下の条件を満たすのが好まし
い。
In order to satisfactorily correct the aberration of the entire lens system even with a small number of lenses, it is preferable that the first lens group G1 comprises one negative lens and satisfies the following conditions.

【0019】 −2.5<(r1 +r2 )/(r1 −r2 )<−0.3 … ただし、r1 :第1レンズ群G1における負レンズの物
体側曲率半径 r2 :第1レンズ群G1における負レンズの像面側曲率
半径 条件は、第3レンズ群G3で発生する非点収差や歪曲
収差を第1レンズ群G1でバランスよく補正するための
条件式であって、上限の−0.3を越えると、第1レン
ズ群G1で発生する非点収差や歪曲収差が小さくなりす
ぎ、下限の−2.5を越えると、これらが大きくなりす
ぎてしまう。
[0019] -2.5 <(r 1 + r 2 ) / (r 1 -r 2) <- 0.3 ... However, r 1: curvature at the object side of the negative lens in the first lens group G1 radius r 2: the The image-surface-side radius of curvature of the negative lens in the first lens group G1 is a conditional expression for correcting the astigmatism and distortion generated in the third lens group G3 in a balanced manner by the first lens group G1. Exceeds -0.3, the astigmatism and distortion generated in the first lens group G1 become too small, and if the lower limit of -2.5 is exceeded, they become too large.

【0020】また、第2レンズ群G2を、物体側から順
に、正の第2Aレンズ群と正の第2Bレンズ群とで構成
し、第2Aレンズ群は少なくとも2枚の正レンズと少な
くとも1枚の負レンズを含み、第2Bレンズ群は少なく
とも1枚の両凸正レンズと少なくとも1枚の負メニスカ
スレンズで構成することにより、球面収差や軸上色収差
を良好に補正できる。
The second lens group G2 includes, in order from the object side, a positive second A lens group and a positive second B lens group, and the second A lens group includes at least two positive lenses and at least one positive lens. The second B lens group includes at least one biconvex positive lens and at least one negative meniscus lens, so that spherical aberration and axial chromatic aberration can be satisfactorily corrected.

【0021】[0021]

【実施例】以下、図面を参照にして本発明のフォーカシ
ング方式を採用したズームレンズの実施例1〜4につい
て説明する。実施例1〜2は広角端から望遠端への変倍
の際に、第1レンズ群G1と第2レンズ群G2は一体で
移動するズームレンズである。
DETAILED DESCRIPTION OF THE PREFERRED EMBODIMENTS Embodiments 1 to 4 of a zoom lens adopting a focusing system according to the present invention will be described below with reference to the drawings. Embodiments 1 and 2 are zoom lenses in which the first lens group G1 and the second lens group G2 move integrally when zooming from the wide-angle end to the telephoto end.

【0022】実施例1のズームレンズの広角端(図
(a))及び望遠端(図(b))の断面図を図3に示す
が、この実施例のレンズ配置は、第1レンズ群G1は、
物体側に凹面を向けた負メニスカスレンズ1枚からな
り、第2レンズ群G2は、両凸レンズ、両凹レンズ、両
凸レンズ、両凸レンズと物体側に凹面を向けた負メニス
カスレンズの接合レンズの5枚からなり、絞りが続き、
第3レンズ群G3は、物体側に凹面を向けた正メニスカ
スレンズ、物体側に凹面を向けた2枚の負メニスカスレ
ンズの3枚からなる。
FIG. 3 is a cross-sectional view of the zoom lens of Embodiment 1 at the wide-angle end (FIG. 3A) and the telephoto end (FIG. 3B). The lens arrangement in this embodiment is the same as that of the first lens group G1. Is
The second lens group G2 is composed of a double-convex lens, a double-concave lens, a double-convex lens, and a cemented lens of a double-convex lens and a negative meniscus lens having a concave surface facing the object side. Consisting of
The third lens group G3 includes three positive meniscus lenses having a concave surface facing the object side and two negative meniscus lenses having a concave surface facing the object side.

【0023】この実施例1のレンズデータは後記する
が、無限遠物点に対するその広角端(図(a))、中間
焦点距離(図(b))、望遠端(図(c))における球
面収差、非点収差、歪曲収差、倍率色収差を表す収差図
を図6に示す。
The lens data of the first embodiment will be described later. The spherical surface at the wide-angle end (FIG. 9A), the intermediate focal length (FIG. 9B), and the telephoto end (FIG. 9C) with respect to the object point at infinity. FIG. 6 is an aberration diagram showing aberration, astigmatism, distortion, and chromatic aberration of magnification.

【0024】実施例2のズームレンズの広角端(a)及
び望遠端(b)の断面図を図4に示すが、この実施例
は、第2レンズ群G2中の第6面(物体側から3番目の
両凸レンズの像面側の面)には非球面を使用しており、
そのレンズ配置は、第1レンズ群G1は、物体側に凹面
を向けた負メニスカスレンズ1枚からなり、第2レンズ
群G2は、、物体側に凸面を向けた正メニスカスレン
ズ、両凹レンズ、両凸レンズ、両凸レンズと物体側に凹
面を向けた負メニスカスレンズの接合レンズの5枚から
なり、絞りが続き、第3レンズ群G3は、物体側に凹面
を向けた正メニスカスレンズ、物体側に凹面を向けた2
枚の負メニスカスレンズの3枚からなる。
FIG. 4 is a sectional view of the zoom lens of Embodiment 2 at the wide-angle end (a) and the telephoto end (b). In this embodiment, the sixth surface (from the object side) in the second lens unit G2 is used. An aspherical surface is used for the image surface side of the third biconvex lens,
The lens arrangement is such that the first lens group G1 is composed of one negative meniscus lens having a concave surface facing the object side, and the second lens group G2 is composed of a positive meniscus lens having a convex surface facing the object side, a biconcave lens, and a biconcave lens. The third lens group G3 includes a convex lens, a biconvex lens, and a cemented lens of a negative meniscus lens having a concave surface facing the object side. The third lens group G3 includes a positive meniscus lens having a concave surface facing the object side and a concave surface facing the object side. Turned to 2
It consists of three negative meniscus lenses.

【0025】この実施例2のレンズデータは後記する
が、無限遠物点に対するその広角端(図(a))、中間
焦点距離(図(b))、望遠端(図(c))における球
面収差、非点収差、歪曲収差、倍率色収差を表す収差図
を図7に示す。
The lens data of Example 2 will be described later. The spherical surface at the wide-angle end (FIG. 9A), the intermediate focal length (FIG. 9B), and the telephoto end (FIG. 9C) with respect to the object point at infinity. FIG. 7 is an aberration diagram showing aberration, astigmatism, distortion, and lateral chromatic aberration.

【0026】次の実施例3〜4は、第2Aレンズ群G2
Aが広角端から中間焦点距離までは第1レンズ群G1へ
近づき、中間焦点距離から望遠端までは第2Bレンズ群
G2Bへ近づくように移動することで、実施例1、2よ
りも変倍比を大きくしたズームレンズである。また、第
1レンズ群G1と第2Bレンズ群G2Bは一体で移動し
ている。
The following third and fourth embodiments use the second A lens group G2.
A moves from the wide-angle end to the intermediate focal length so as to approach the first lens group G1, and from the intermediate focal length to the telephoto end so as to approach the second B lens group G2B. This is a zoom lens with a larger size. Further, the first lens group G1 and the second B lens group G2B are moving integrally.

【0027】実施例3のズームレンズの広角端(図
(a))、中間焦点距離(図(b))及び望遠端(図
(c))の断面図を図5に示す。実施例4は実施例3と
同様であるので図示は省く。それらのレンズ配置は、実
施例3、4共、第1レンズ群G1は、両凹レンズ1枚か
らなり、第2Aレンズ群G2Aは、両凸レンズ、像面側
に凸面を向けた負メニスカスレンズ、両凸レンズの3枚
からなり、第2Bレンズ群G2Bは、両凸レンズと像面
側に凸面を向けた負メニスカスレンズとの接合レンズか
らなり、その後に絞りを有し、第3レンズ群G3は、何
れも像面側に凸面を向けた、正メニスカスレンズ、負メ
ニスカスレンズ、負メニスカスレンズの3枚からなる。
非球面は、実施例3、4共、第2Aレンズ群G2Aの最
も像面側の面1面に用いている。
FIG. 5 is a sectional view of the zoom lens of Embodiment 3 at the wide-angle end (FIG. 7A), the intermediate focal length (FIG. 8B), and the telephoto end (FIG. 8C). The fourth embodiment is the same as the third embodiment and is not shown. In the lens arrangements of Examples 3 and 4, the first lens group G1 includes one biconcave lens, and the second A lens group G2A includes a biconvex lens, a negative meniscus lens having a convex surface facing the image surface side, and a biconcave lens. The second B lens group G2B is composed of a cemented lens of a biconvex lens and a negative meniscus lens having a convex surface facing the image surface side. The second lens group G2B has a stop after that. Also has three lenses, a positive meniscus lens, a negative meniscus lens, and a negative meniscus lens, with the convex surface facing the image plane side.
The aspherical surface is used as the one surface closest to the image plane of the second A lens group G2A in both the third and fourth embodiments.

【0028】上記実施例3及び実施例4のレンズデータ
は後記するが、無限遠物点に対するそれらの広角端(図
(a))、中間焦点距離(図(b))、望遠端(図
(c))における球面収差、非点収差、歪曲収差、倍率
色収差を表す収差図をそれぞれ図8、図9に示す。
The lens data of the third and fourth embodiments will be described later. The wide-angle end (FIG. 10A), the intermediate focal length (FIG. 10B), and the telephoto end (FIG. FIGS. 8 and 9 show spherical aberration, astigmatism, distortion, and lateral chromatic aberration in c)), respectively.

【0029】上記各実施例における望遠端でのフォーカ
スレンズ群の無限遠物点における像面感度εF (従来の
フォーカシング方式)とε2 (本発明のフォーカシング
方式)を対比すると、次の通りである。
When comparing the image plane sensitivity ε F (conventional focusing method) and ε 2 (focusing method of the present invention) at the object point at infinity at the telephoto end in each of the above embodiments, the following is obtained. is there.

【0030】次に、各実施例のレンズデータを示すが、
以下において、記号は、上記の外、fは全系の焦点距
離、FNOはFナンバー、ωは半画角、fB はバックフォ
ーカス、r1 、r2 …は各レンズ面の曲率半径、d1
2 …は各レンズ面間の間隔、nd1、nd2…は各レンズ
のd線の屈折率、νd1、νd2…は各レンズのアッベ数で
ある。また、非球面形状は、光軸方向をx、光軸に直交
する方向をにyとした時、次の式にて表される。 x= cy2 /{1+(1−c221/2 }+A44
A66 +A88 ただし、c=1/rであり、rは光軸上の曲率半径、
A4、A6、A8は非球面係数である。
Next, lens data of each embodiment will be shown.
In the following, the symbols are the above, f is the focal length of the entire system, F NO is the F number, ω is the half angle of view, f B is the back focus, r 1 , r 2, ... d 1 ,
d 2 ... the spacing between the lens surfaces, n d1, n d2 ... d-line refractive index of each lens, ν d1, ν d2 ... is the Abbe number of each lens. The aspherical shape is represented by the following equation, where x is the optical axis direction and y is the direction orthogonal to the optical axis. x = cy 2 / {1+ ( 1-c 2 y 2) 1/2} + A 4 y 4 +
However A 6 y 6 + A 8 y 8, a c = 1 / r, r is the radius of curvature on the optical axis,
A 4 , A 6 , and A 8 are aspherical coefficients.

【0031】実施例1 f = 28.51 〜 40.00 〜 60.00 FNO= 3.58 〜 5.02 〜 7.53 ω = 37.12 〜 28.84 〜 20.09 ° fB = 5.31 〜 16.23 〜 35.24 r1 = -25.388 d1 = 1.32 nd1 =1.65844 νd1 =50.86 r2 = -156.695 d2 = 1.80 r3 = 19.750 d3 = 2.94 nd2 =1.60342 νd2 =38.01 r4 = -146.970 d4 = 1.72 r5 = -15.786 d5 = 1.22 nd3 =1.80100 νd3 =34.97 r6 = 35.907 d6 = 0.11 r7 = 41.019 d7 = 4.42 nd4 =1.58913 νd4 =61.18 r8 = -13.393 d8 = 0.10 r9 = 18.228 d9 = 3.80 nd5 =1.57099 νd5 =50.80 r10= -11.757 d10= 1.20 nd6 =1.78590 νd6 =44.18 r11= -34.270 d11= 0.80 r12= ∞(絞り) d12=(可変) r13= -49.372 d13= 3.30 nd7 =1.63930 νd7 =44.88 r14= -12.430 d14= 0.10 r15= -15.452 d15= 1.20 nd8 =1.65844 νd8 =50.86 r16= -152.470 d16= 4.94 r17= -9.446 d17= 1.80 nd9 =1.69680 νd9 =55.52 r18= -31.784 |f1 |/FW = 1.62 f2 /|f3 |= 0.89 β3 T = 2.88 (r1 +r2 )/(r1 −r2 )= -1.39
[0031] Example 1 f = 28.51 ~ 40.00 ~ 60.00 F NO = 3.58 ~ 5.02 ~ 7.53 ω = 37.12 ~ 28.84 ~ 20.09 ° f B = 5.31 ~ 16.23 ~ 35.24 r 1 = -25.388 d 1 = 1.32 n d1 = 1.65844 ν d1 = 50.86 r 2 = -156.695 d 2 = 1.80 r 3 = 19.750 d 3 = 2.94 n d2 = 1.60342 ν d2 = 38.01 r 4 = -146.970 d 4 = 1.72 r 5 = -15.786 d 5 = 1.22 n d3 = 1.80100 ν d3 = 34.97 r 6 = 35.907 d 6 = 0.11 r 7 = 41.019 d 7 = 4.42 n d4 = 1.58913 ν d4 = 61.18 r 8 = -13.393 d 8 = 0.10 r 9 = 18.228 d 9 = 3.80 n d5 = 1.57099 ν d5 = 50.80 r 10 = -11.757 d 10 = 1.20 nd 6 = 1.78590 ν d6 = 44.18 r 11 = -34.270 d 11 = 0.80 r 12 = ∞ (aperture) d 12 = (variable) r 13 = -49.372 d 13 = 3.30 n d7 = 1.63930 ν d7 = 44.88 r 14 = -12.430 d 14 = 0.10 r 15 = -15.452 d 15 = 1.20 n d8 = 1.65844 ν d8 = 50.86 r 16 = -152.470 d 16 = 4.94 r 17 = -9.446 d 17 = 1.80 n d9 = 1.69680 ν d9 = 55.52 r 18 = -31.784 | F 1 | / F W = 1.62 f 2 / | f 3 | = 0.89 β 3 T = 2.88 (r 1 + r 2 ) / (r 1 -r 2 ) = -1.39
.

【0032】実施例2 f = 34.99 〜 54.96 〜 79.92 FNO= 3.60 〜 5.65 〜 8.22 ω = 31.69 〜 21.45 〜 15.12 ° fB = 6.08 〜 24.65 〜 47.86 r1 = -26.612 d1 = 1.30 nd1 =1.65830 νd1 =57.33 r2 = -84.007 d2 = 1.80 r3 = 17.236 d3 = 2.34 nd2 =1.66892 νd2 =44.98 r4 = 47.927 d4 = 1.20 r5 = -43.062 d5 = 1.20 nd3 =1.80100 νd3 =34.97 r6 = 38.181 d6 = 0.70 r7 = 51.336 d7 = 2.16 nd4 =1.57250 νd4 =57.76 r8 = -39.936 (非球面) d8 = 2.40 r9 = 31.441 d9 = 4.38 nd5 =1.61765 νd5 =55.05 r10= -8.940 d10= 1.20 nd6 =1.79952 νd6 =42.24 r11= -18.730 d11= 0.80 r12= ∞(絞り) d12=(可変) r13= -20.146 d13= 2.04 nd7 =1.66998 νd7 =39.27 r14= -13.667 d14= 2.82 r15= -13.740 d15= 1.20 nd8 =1.63854 νd8 =55.38 r16= -52.693 d16= 3.61 r17= -12.882 d17= 1.80 nd9 =1.69680 νd9 =55.52 r18= -26.219 非球面係数 第8面 A4 = 1.8719 ×10-5 A6 = 1.4994 ×10-7 A8 =-6.9203 ×10-9 |f1 |/FW = 1.7 f2 /|f3 |= 0.91 β3 T = 3.22 (r1 +r2 )/(r1 −r2 )= -1.93
[0032] Example 2 f = 34.99 ~ 54.96 ~ 79.92 F NO = 3.60 ~ 5.65 ~ 8.22 ω = 31.69 ~ 21.45 ~ 15.12 ° f B = 6.08 ~ 24.65 ~ 47.86 r 1 = -26.612 d 1 = 1.30 n d1 = 1.65830 ν d1 = 57.33 r 2 = -84.007 d 2 = 1.80 r 3 = 17.236 d 3 = 2.34 n d2 = 1.66892 ν d2 = 44.98 r 4 = 47.927 d 4 = 1.20 r 5 = -43.062 d 5 = 1.20 n d3 = 1.80100 ν d3 = 34.97 r 6 = 38.181 d 6 = 0.70 r 7 = 51.336 d 7 = 2.16 n d4 = 1.57250 ν d4 = 57.76 r 8 = -39.936 (aspherical surface) d 8 = 2.40 r 9 = 31.441 d 9 = 4.38 n d5 = 1.61765 ν d5 = 55.05 r 10 = -8.940 d 10 = 1.20 nd 6 = 1.79952 ν d6 = 42.24 r 11 = -18.730 d 11 = 0.80 r 12 = ∞ (aperture) d 12 = (variable) r 13 =- 20.146 d 13 = 2.04 n d7 = 1.66998 ν d7 = 39.27 r 14 = -13.667 d 14 = 2.82 r 15 = -13.740 d 15 = 1.20 n d8 = 1.63854 ν d8 = 55.38 r 16 = -52.693 d 16 = 3.61 r 17 = -12.882 d 17 = 1.80 n d9 = 1.69680 ν d9 = 55.52 r 18 = -26.219 Aspheric surface 8th surface A 4 = 1.8719 × 10 -5 A 6 = 1.4994 × 10 -7 A 8 = -6.9203 × 10 -9 | F 1 | / F W = 1.7 f 2 / | f 3 | = 0.91 β 3 T = 3.22 (r 1 + r 2 ) / (r 1 -r 2 ) = -1.93
.

【0033】実施例3 f = 28.84 〜 48.0 〜 78.0 FNO= 4.6 〜 6.0 〜 8.0 ω = 37.765〜 24.632〜 15.646° fB = 4.21 〜 21.48 〜 51.05 r1 = -29.935 d1 = 1.300 nd1 =1.65844 νd1 =50.86 r2 = 276.982 d2 =(可変) r3 = 29.323 d3 = 2.447 nd2 =1.60342 νd2 =38.01 r4 = -875.557 d4 = 1.912 r5 = -17.829 d5 = 2.088 nd3 =1.83400 νd3 =37.16 r6 = -61.216 d6 = 0.179 r7 = 125.064 d7 = 3.688 nd4 =1.51633 νd4 =64.15 r8 = -20.368(非球面) d8 =(可変) r9 = 27.111 d9 = 5.774 nd5 =1.53996 νd5 =59.57 r10= -10.124 d10= 1.200 nd6 =1.80610 νd6 =40.95 r11= -18.618 d11= 0.800 r12= ∞(絞り) d12=(可変) r13= -39.357 d13= 3.517 nd7 =1.59551 νd7 =39.21 r14= -14.726 d14= 1.092 r15= -16.637 d15= 1.193 nd8 =1.74400 νd8 =44.73 r16= -43.461 d16= 4.546 r17= -12.395 d17= 1.800 nd9 =1.69680 νd9 =55.52 r18= -62.066 非球面係数 第8面 A4= 0.10209×10-4 A6=-0.59663×10-8 A8=-0.21208×10-8 |f1 |/FW = 1.42 f2 /|f3 |= 0.89 β3 T = 3.43 (r1 +r2 )/(r1 −r2 )= -1.80
[0033] Example 3 f = 28.84 ~ 48.0 ~ 78.0 F NO = 4.6 ~ 6.0 ~ 8.0 ω = 37.765~ 24.632~ 15.646 ° f B = 4.21 ~ 21.48 ~ 51.05 r 1 = -29.935 d 1 = 1.300 n d1 = 1.65844 ν d1 = 50.86 r 2 = 276.982 d 2 = ( variable) r 3 = 29.323 d 3 = 2.447 n d2 = 1.60342 ν d2 = 38.01 r 4 = -875.557 d 4 = 1.912 r 5 = -17.829 d 5 = 2.088 n d3 = 1.83400 ν d3 = 37.16 r 6 = -61.216 d 6 = 0.179 r 7 = 125.064 d 7 = 3.688 nd 4 = 1.51633 ν d4 = 64.15 r 8 = -20.368 (aspheric) d 8 = (variable) r 9 = 27.111 d 9 = 5.774 n d5 = 1.53996 ν d5 = 59.57 r 10 = -10.124 d 10 = 1.200 n d6 = 1.80610 ν d6 = 40.95 r 11 = -18.618 d 11 = 0.800 r 12 = ∞ ( stop) d 12 = (variable ) r 13 = -39.357 d 13 = 3.517 n d7 = 1.59551 ν d7 = 39.21 r 14 = -14.726 d 14 = 1.092 r 15 = -16.637 d 15 = 1.193 n d8 = 1.74400 ν d8 = 44.73 r 16 = -43.461 d 16 = 4.546 r 17 = -12.395 d 17 = 1.800 n d9 = 1.69680 ν d9 = 55.52 r 18 = -62.066 Aspherical coefficients eighth surface A 4 = 0.10209 × 10 -4 A 6 = -0.59663 × 10 -8 A 8 = -0.21208 × 10 -8 | F 1 | / F W = 1.42 f 2 / | f 3 | = 0.89 β 3 T = 3.43 (r 1 + r 2 ) / (r 1 -r 2 ) = -1.80
.

【0034】実施例4 f = 28.84 〜 49.98 〜 82.5 FNO= 4.6 〜 6.0 〜 8.0 ω = 37.792〜 23.737〜 14.811° fB = 4.13 〜 23.26 〜 54.91 r1 = -32.658 d1 = 1.300 nd1 =1.65844 νd1 =50.86 r2 = 119.635 d2 =(可変) r3 = 28.959 d3 = 2.802 nd2 =1.60342 νd2 =38.01 r4 = -193.846 d4 = 1.958 r5 = -17.020 d5 = 2.115 nd3 =1.83400 νd3 =37.16 r6 = -63.355 d6 = 0.220 r7 = 159.253 d7 = 3.750 nd4 =1.51633 νd4 =64.15 r8 = -19.431(非球面) d8 =(可変) r9 = 26.696 d9 = 5.890 nd5 =1.53996 νd5 =59.57 r10= -10.193 d10= 1.200 nd6 =1.80610 νd6 =40.95 r11= -18.823 d11= 0.800 r12= ∞(絞り) d12=(可変) r13= -41.680 d13= 3.583 nd7 =1.59551 νd7 =39.21 r14= -14.813 d14= 1.127 r15= -16.380 d15= 1.200 nd8 =1.74400 νd8 =44.73 r16= -44.980 d16= 4.517 r17= -12.606 d17= 1.800 nd9 =1.69680 νd9 =55.52 r18= -65.414 非球面係数 第8面 A4= 0.75716×10-5 A6= 0.17822×10-7 A8=-0.22029×10-8 |f1 |/FW = 1.35 f2 /|f3 |= 0.90 β3 T = 3.63 (r1 +r2 )/(r1 −r2 )= -0.57
[0034] Example 4 f = 28.84 ~ 49.98 ~ 82.5 F NO = 4.6 ~ 6.0 ~ 8.0 ω = 37.792~ 23.737~ 14.811 ° f B = 4.13 ~ 23.26 ~ 54.91 r 1 = -32.658 d 1 = 1.300 n d1 = 1.65844 ν d1 = 50.86 r 2 = 119.635 d 2 = ( variable) r 3 = 28.959 d 3 = 2.802 n d2 = 1.60342 ν d2 = 38.01 r 4 = -193.846 d 4 = 1.958 r 5 = -17.020 d 5 = 2.115 n d3 = 1.83400 ν d3 = 37.16 r 6 = -63.355 d 6 = 0.220 r 7 = 159.253 d 7 = 3.750 nd 4 = 1.51633 ν d4 = 64.15 r 8 = -19.431 (aspheric) d 8 = (variable) r 9 = 26.696 d 9 = 5.890 n d5 = 1.53996 ν d5 = 59.57 r 10 = -10.193 d 10 = 1.200 n d6 = 1.80610 ν d6 = 40.95 r 11 = -18.823 d 11 = 0.800 r 12 = ∞ ( stop) d 12 = (variable ) r 13 = -41.680 d 13 = 3.583 n d7 = 1.59551 ν d7 = 39.21 r 14 = -14.813 d 14 = 1.127 r 15 = -16.380 d 15 = 1.200 n d8 = 1.74400 ν d8 = 44.73 r 16 = -44.980 d 16 = 4.517 r 17 = -12.606 d 17 = 1.800 n d9 = 1.69680 ν d9 = 55.52 r 18 = -65.414 Aspheric surface coefficient 8th surface A 4 = 0.75716 × 10 -5 A 6 = 0.17822 × 10 -7 A 8 = -0.22029 × 10 -8 | F 1 | / F W = 1.35 f 2 / | f 3 | = 0.90 β 3 T = 3.63 (r 1 + r 2 ) / (r 1 -r 2 ) = -0.57
.

【0035】[0035]

【発明の効果】以上の説明から明らかなように、本発明
のフォーカシング方式によると、本出願人が先に提案し
た特願平4−287692号と特願平5−80536号
のような、バックフォーカスが短いコンパクトカメラ等
に使用される変倍比が2〜3倍程度で小型なズームレン
ズにおいて、フォーカスレンズ群の像面感度を従来のフ
ォーカスレンズ群の像面感度よりも小さくすることがで
き、望遠端においてもフォーカスレンズ群の移動をメカ
ニズム的に制御可能な程度の大きさにすることができ
る。
As is clear from the above description, according to the focusing method of the present invention, the backing system as disclosed in Japanese Patent Application Nos. 4-287792 and 5-80536 previously proposed by the present applicant has been disclosed. In a small zoom lens with a zoom ratio of about 2 to 3 times used in a compact camera or the like having a short focus, the image surface sensitivity of the focus lens group can be made smaller than that of the conventional focus lens group. Even at the telephoto end, the movement of the focus lens group can be made large enough to be mechanically controllable.

【図面の簡単な説明】[Brief description of the drawings]

【図1】本発明のフォーカシング方式を採用したズーム
レンズの近軸配置図である。
FIG. 1 is a paraxial arrangement diagram of a zoom lens employing a focusing system of the present invention.

【図2】従来の2群ズームレンズのフォーカシング方式
の近軸配置図である。
FIG. 2 is a paraxial arrangement diagram of a focusing system of a conventional two-unit zoom lens.

【図3】本発明の実施例1のズームレンズの広角端
(a)及び望遠端(b)の断面図である。
FIG. 3 is a sectional view of a zoom lens according to a first embodiment of the present invention at a wide-angle end (a) and at a telephoto end (b).

【図4】実施例2のズームレンズの広角端(a)及び望
遠端(b)の断面図である。
FIG. 4 is a sectional view of a zoom lens according to a second embodiment at a wide-angle end (a) and at a telephoto end (b).

【図5】実施例3のズームレンズの広角端(a)、中間
焦点距離(b)及び望遠端(c)の断面図である。
FIG. 5 is a sectional view of a zoom lens according to a third exemplary embodiment at a wide-angle end (a), an intermediate focal length (b), and a telephoto end (c).

【図6】実施例1のズームレンズの無限遠物点に対する
広角端(a)、中間焦点距離(b)、望遠端(c)にお
ける球面収差、非点収差、歪曲収差、倍率色収差を表す
収差図である。
FIG. 6 shows aberrations representing spherical aberration, astigmatism, distortion, and lateral chromatic aberration at the wide-angle end (a), the intermediate focal length (b), and the telephoto end (c) with respect to an object point at infinity of the zoom lens according to the first embodiment. FIG.

【図7】実施例2のズームレンズの図6と同様な収差図
である。
FIG. 7 is an aberration diagram similar to FIG. 6 of the zoom lens according to the second embodiment.

【図8】実施例3のズームレンズの図6と同様な収差図
である。
FIG. 8 is an aberration diagram similar to FIG. 6 of the zoom lens according to the third embodiment.

【図9】実施例4のズームレンズの図6と同様な収差図
である。
FIG. 9 is an aberration diagram similar to FIG. 6 of the zoom lens according to the fourth embodiment.

【符号の説明】[Explanation of symbols]

G1…第1レンズ群 G2…第2レンズ群 G3…第3レンズ群 G2A…第2Aレンズ群 G2B…第2Bレンズ群 G1: first lens group G2: second lens group G3: third lens group G2A: second A lens group G2B: second B lens group

───────────────────────────────────────────────────── フロントページの続き (58)調査した分野(Int.Cl.7,DB名) G02B 9/00 - 17/08 G02B 21/02 - 21/04 G02B 25/00 - 25/04 ──────────────────────────────────────────────────続 き Continued on the front page (58) Fields surveyed (Int. Cl. 7 , DB name) G02B 9/00-17/08 G02B 21/02-21/04 G02B 25/00-25/04

Claims (5)

(57)【特許請求の範囲】(57) [Claims] 【請求項1】 物体側から順に、負の第1レンズ群、正
の第2レンズ群、負の第3レンズ群にて構成され、第1
レンズ群と第2レンズ群が一体で移動しかつ第2レンズ
群と第3レンズ群との間隔を単調に減少させ、変倍時に
可変のレンズ群間隔を前記第2レンズ群と前記第3レン
ズ群との間隔のみとすることによって広角端から望遠端
へ変倍を行うズームレンズにおいて、 無限遠物点から至近距離へのフォーカシングを第2レン
ズ群を物体側へ移動して行う構成とし、かつ、 前記第1レンズ群は以下の条件を満足する1枚の負レ
ンズで構成されたことを特徴とするズームレンズのフォ
ーカシング方式。 −2.5<(r 1 +r 2 )/(r 1 −r 2 )<−0.3 … ただし、r 1 :第1レンズ群G1における負レンズの物
体側曲率半径 2 :第1レンズ群G1における負レンズの像面側曲率
半径 である。
1. A first lens group, a second positive lens group, and a third negative lens group are arranged in order from the object side .
Lens group and the second lens group monotonically decreases the distance between the third lens group and the second lens group vital move integrally, during zooming
A variable lens group spacing is set between the second lens group and the third lens.
In a zoom lens that performs zooming from the wide-angle end to the telephoto end by setting only the distance to the zoom lens group, focusing from an object point at infinity to a close distance is performed by moving the second lens group to the object side , and said first lens group one negative les satisfying the following conditions
Zoom lens lens
Focusing method. −2.5 <(r 1 + r 2 ) / (r 1 −r 2 ) <− 0.3 where r 1 is a negative lens in the first lens group G1.
Body-side radius of curvature r 2 : image-side curvature of the negative lens in the first lens group G1
Radius .
【請求項2】 物体側から順に、負の第1レンズ群、正
の第2レンズ群、負の第3レンズ群にて構成され、か
つ、前記第2レンズ群は、物体側から順に、正の第2A
レンズ群と正の第2Bレンズ群とで構成し、第2Bレン
ズ群と第3レンズ群との間隔を単調に減少させ、かつ、
変倍時に可変のレンズ群間を前記第1レンズ群と前記第
2Aレンズ群との間隔、前記第2Aレンズ群と前記第2
Bレンズ群との間隔、前記2Bレンズ群と前記第3レン
ズ群との間隔のみとし、かつ、前記第1レンズ群と前記
第2Bレンズ群とを変倍時一体とすることによって広角
端から望遠端へ変倍を行うズームレンズにおいて、 前記第2Aレンズ群が広角端から中間焦点距離までは前
記第1レンズ群へ近づき、中間焦点距離から望遠端にか
けては前記第2Bレンズ群へ近づくように移動し、 無限遠物点から至近距離へのフォーカシングを第2レン
ズ群を物体側へ移動して行う構成とし、かつ、 前記第1レンズ群は以下の条件を満足する1枚の負レ
ンズで構成されたことを特徴とするズームレンズのフォ
ーカシング方式。 −2.5<(r 1 +r 2 )/(r 1 −r 2 )<−0.3 … ただし、r 1 :第1レンズ群G1における負レンズの物
体側曲率半径 2 :第1レンズ群G1における負レンズの像面側曲率
半径 である。
2. A negative first lens unit and a positive first lens unit in order from the object side.
A second lens group and a negative third lens group,
The second lens group includes, in order from the object side, a positive second A
The second B lens unit includes a lens unit and a positive second B lens unit.
The distance between the lens group and the third lens group is monotonously reduced, and
The first lens group and the second lens group
The distance between the 2A lens group, the second A lens group and the second
The distance from the B lens group, the 2B lens group and the third lens
Only the distance between the first lens group and the
Wide angle by integrating the second B lens group during zooming
In the zoom lens that performs zooming from the end to the telephoto end, the second A lens unit is located at the wide-angle end to the intermediate focal length.
When approaching the first lens group, moving from the intermediate focal length to the telephoto end
The second lens unit is moved so as to approach the second B lens unit , and focusing from an object point at infinity to a close distance is performed by a second lens unit.
The lens group is moved to the object side, and the first lens group is a single negative lens satisfying the following condition.
Of a zoom lens characterized by
Focusing method. −2.5 <(r 1 + r 2 ) / (r 1 −r 2 ) <− 0.3 where r 1 is a negative lens in the first lens group G1.
Body-side radius of curvature r 2 : image-side curvature of the negative lens in the first lens group G1
Radius .
【請求項3】 前記第1レンズ群の焦点距離f1 が以下
の条件を満足することを特徴とする請求項1又は2
載のズームレンズのフォーカシング方式。 1.2<|f1 |/FW <1.8 … ただし、FW :広角端における全系の焦点距離 である。
3. A focusing method according to claim 1 or 2, wherein the zoom lens is characterized in that the focal length f 1 of the first lens unit satisfy the following condition. 1.2 <| f 1 | / F W <1.8 where F W is the focal length of the entire system at the wide-angle end.
【請求項4】 以下の条件、を満足することを特徴
とする請求項記載のズームレンズのフォーカシング方
式。 0.6<f2 /|f3 |<1.2 … 2.5<β3T<4.0 … ただし、f2 :望遠端における第2レンズ群G2の焦点
距離 f3 :第3レンズ群G3の焦点距離 β3T:望遠端における第3レンズ群G3の横倍率 である。
4. The zoom lens focusing method according to claim 3 , wherein the following condition is satisfied. 0.6 <f 2 / | f 3 | <1.2 2.5 <β 3T <4.0 where f 2 is the focal length of the second lens group G2 at the telephoto end. F 3 is the third lens group. Focal length β3T of G3: lateral magnification of the third lens group G3 at the telephoto end.
【請求項5】 前記第2レンズ群は、物体側から順に、
正の第2Aレンズ群と正の第2Bレンズ群とで構成さ
れ、前記第2Aレンズ群は少なくとも2枚の正レンズと
少なくとも1の負レンズを含み、前記第2Bレンズ群は
少なくとも1枚の両凸正レンズと少なくとも1枚の負メ
ニスカスレンズで構成されていることを特徴とする請求
記載のズームレンズのフォーカシング方式。
5. The second lens group includes, in order from the object side,
The second A lens group includes at least two positive lenses and at least one negative lens, and the second B lens group includes at least one positive lens. convex positive lens and at least one focusing system according to claim 1, wherein the zoom lens characterized by being composed of a negative meniscus lens.
JP11679393A 1992-10-26 1993-05-19 Focusing method of zoom lens Expired - Fee Related JP3339912B2 (en)

Priority Applications (2)

Application Number Priority Date Filing Date Title
JP11679393A JP3339912B2 (en) 1993-05-19 1993-05-19 Focusing method of zoom lens
US08/141,025 US5483380A (en) 1992-10-26 1993-10-25 Compact zoom lens system having high zoom ratio and wide view angle

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP11679393A JP3339912B2 (en) 1993-05-19 1993-05-19 Focusing method of zoom lens

Publications (2)

Publication Number Publication Date
JPH06331890A JPH06331890A (en) 1994-12-02
JP3339912B2 true JP3339912B2 (en) 2002-10-28

Family

ID=14695827

Family Applications (1)

Application Number Title Priority Date Filing Date
JP11679393A Expired - Fee Related JP3339912B2 (en) 1992-10-26 1993-05-19 Focusing method of zoom lens

Country Status (1)

Country Link
JP (1) JP3339912B2 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101859019A (en) * 2009-04-13 2010-10-13 株式会社腾龙 Wide-angle zoom lens

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101859019A (en) * 2009-04-13 2010-10-13 株式会社腾龙 Wide-angle zoom lens
CN101859019B (en) * 2009-04-13 2015-01-28 株式会社腾龙 Wide-angle zoom lens

Also Published As

Publication number Publication date
JPH06331890A (en) 1994-12-02

Similar Documents

Publication Publication Date Title
JP3253405B2 (en) Two-group zoom lens
US4772106A (en) Compact zoom lens system
JPH083580B2 (en) Compact high-magnification zoom lens
JPH05113537A (en) Zoom lens using plastic lens
JP3365835B2 (en) Compact 3-group zoom lens
JP3140489B2 (en) Zoom lens
JP3352227B2 (en) Zoom lens
JP3162114B2 (en) Two-group zoom lens
US5483380A (en) Compact zoom lens system having high zoom ratio and wide view angle
JP3060117B2 (en) Compact 3-group zoom lens
JP3365837B2 (en) Focusing method of 3-group zoom lens
JP3302063B2 (en) Rear focus compact zoom lens
JP2808905B2 (en) Zoom lens
JP3429578B2 (en) Small rear focus zoom lens
JPH06294932A (en) Zoom lens
JP3678522B2 (en) Camera with zoom lens
JP3331223B2 (en) Small two-group zoom lens
JP3245452B2 (en) Small three-group zoom lens
JP3467086B2 (en) Camera with zoom lens
JP3432050B2 (en) High zoom 3 group zoom lens
JPH11142737A (en) Variable power lens system
US5589986A (en) Zoom lens
JP3392881B2 (en) Zoom lens
JP2579215B2 (en) Zoom lens
JP3008711B2 (en) Small zoom lens

Legal Events

Date Code Title Description
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20020724

LAPS Cancellation because of no payment of annual fees