JP3336666B2 - Surface shape measuring method and its measuring device - Google Patents

Surface shape measuring method and its measuring device

Info

Publication number
JP3336666B2
JP3336666B2 JP07063293A JP7063293A JP3336666B2 JP 3336666 B2 JP3336666 B2 JP 3336666B2 JP 07063293 A JP07063293 A JP 07063293A JP 7063293 A JP7063293 A JP 7063293A JP 3336666 B2 JP3336666 B2 JP 3336666B2
Authority
JP
Japan
Prior art keywords
optical
surface shape
measurement
shape
measurement data
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
JP07063293A
Other languages
Japanese (ja)
Other versions
JPH06281427A (en
Inventor
元 市川
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nikon Corp
Original Assignee
Nikon Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nikon Corp filed Critical Nikon Corp
Priority to JP07063293A priority Critical patent/JP3336666B2/en
Publication of JPH06281427A publication Critical patent/JPH06281427A/en
Application granted granted Critical
Publication of JP3336666B2 publication Critical patent/JP3336666B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Description

【発明の詳細な説明】DETAILED DESCRIPTION OF THE INVENTION

【0001】[0001]

【産業上の利用分野】本発明は、光学面を絶対校正する
「3面合わせ」による表面形状測定方法及びその測定装
置に関するものである。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a method and apparatus for measuring a surface shape by "three-plane alignment" for absolutely calibrating an optical surface.

【0002】[0002]

【従来の技術】従来、光学面の面形状を絶対測定する手
法として、「3面合わせ」による方法が行われており、
図4に平面の場合の測定手法が示されている。測定原理
は、以下の方程式で表される。尚、3面の面形状をA
(ワーク1)、B(ワーク2)、F(フィゾー)で表す
こととする。 ・[測定データ1]=A+F ・[測定データ2]=B+F ・[測定データ3]=B+ (下線はワークの反転の
場合を意味する) 以上の方程式から、例えば、Aに関しては以下のように
求まる。 ・(A+)/2=([測定データ1]−[測定データ
2]+[測定データ3])/2
2. Description of the Related Art Conventionally, as a method for absolutely measuring the surface shape of an optical surface, a method using "three-plane alignment" has been used.
FIG. 4 shows a measurement method in the case of a plane. The measurement principle is represented by the following equation. Note that the three surface shapes are A
(Work 1), B (Work 2), and F (Fizeau). -[Measurement data 1] = A + F-[Measurement data 2] = B + F-[Measurement data 3] = B + A (The underline means the case of reversing the work) From the above equation, for example, A is as follows Is determined.・ (A + A ) / 2 = ([measured data 1] − [measured data 2] + [measured data 3]) / 2

【0003】[0003]

【発明が解決しようとする課題】しかしながら、前記従
来の「3面合わせ」において、測定データ1及び測定デ
ータ2は、A及びBがFと正対しているので、同じ座標
上で考えることができるが、測定データ3は、AとBが
正対しているので、正対させる為の反転軸と直交する座
標軸上の位置関係が反転してしまう。即ち、この反転軸
上(1ライン上)でのみ3面の面形状が測定できるだけ
である。
However, in the conventional "three-plane alignment", the measurement data 1 and the measurement data 2 can be considered on the same coordinates because A and B face F directly. However, in the measurement data 3, since A and B face each other, the positional relationship on the coordinate axis orthogonal to the inversion axis for facing the faces is reversed. In other words, only three surface shapes can be measured only on the inversion axis (on one line).

【0004】前記の下線はワークの反転を意味するの
で、「(A+)/2」は反転軸上のAの表面形状を表
している。また、反転軸を干渉計測定光軸回りに細かく
回転させて得られる測定データを繋ぎ合わせて、A全面
の表面形状を測定することも可能である。しかし、この
場合はAの回転時に、後述するデータの平均化を行わな
いので、全面データを得る為の測定回数が多くなると言
う問題点があった。
Since the underline of A means the reversal of the work, "(A + A ) / 2" indicates the surface shape of A on the reversal axis. It is also possible to measure the surface shape of the entire surface A by connecting measurement data obtained by finely rotating the inversion axis around the optical axis of the interferometer measurement. However, in this case, since the averaging of the data described later is not performed during the rotation of A, there is a problem that the number of measurements for obtaining the entire surface data increases.

【0005】一方、この「3面合わせ」を球面に対応さ
せた場合にも、同様の座標の反転が生じるので、同じく
1ライン上の表面形状が測定できるだけである。但し、
球面の場合には、A全面の表面形状を得る手法として、
上記手法以外にフィゾーレンズの結像点でのミラーによ
る反射を利用した発明が開示されている(特公平1−2
44306号)が、平面への対応が不可能である。
[0005] On the other hand, even when this "three-plane alignment" is made to correspond to a spherical surface, the same coordinates are inverted, so that only the surface shape on one line can be measured. However,
In the case of a spherical surface, as a method of obtaining the surface shape of the entire A surface,
In addition to the above-mentioned method, there is disclosed an invention utilizing reflection by a mirror at an image forming point of a Fizeau lens (Japanese Patent Publication No. Hei 1-2).
No. 44306), however, it is impossible to deal with a plane.

【0006】本発明は、前記従来技術の欠点に鑑みなさ
れたもので、光学平面の2次元面形状測定を極力少ない
測定回数にて高精度に測定することが可能な表面形状測
定方法及びその装置の提供を目的とする。
The present invention has been made in view of the above-mentioned drawbacks of the prior art, and has a surface shape measuring method and apparatus capable of measuring a two-dimensional surface shape of an optical plane with a minimum number of measurements with high accuracy. The purpose is to provide.

【0007】[0007]

【課題を解決する為の手段】そのため、本発明は第一に
「フィゾー干渉計の光束中に、3枚の光学面のうちの2
枚が互いに正対するように配置された状態で観測される
3個以上の干渉縞から各光学面の表面形状を求める、所
謂「3面合わせ」による表面形状測定を行う方法におい
て、前記干渉縞のうちの一つの干渉縞を形成する前記2
枚の光学面のうちの一方を前記干渉計の測定光軸まわり
に少しづつ回転させて得られる各形状測定データを平均
化させ、該一方の光学面に固有の、形状測定データの非
回転対称成分を緩和させることにより、前記各光学面の
2次元表面形状の測定を行うことを特徴とする表面形状
測定方法(請求項1)」を提供する。
For this purpose, the present invention firstly proposes "two or three of the three optical surfaces during the light beam of the Fizeau interferometer."
In a method of measuring the surface shape of each optical surface from three or more interference fringes observed in a state where the sheets are arranged so as to face each other, so-called “three-plane alignment”, The above-mentioned 2 which forms one interference fringe
The shape measurement data obtained by rotating one of the optical surfaces little by little around the measurement optical axis of the interferometer is averaged, and the non-rotational symmetry of the shape measurement data unique to the one optical surface is obtained. A surface shape measuring method (claim 1), characterized in that the two-dimensional surface shape of each optical surface is measured by relaxing the components.

【0008】また、本発明は第二に「前記3枚の光学面
に外力等に起因する一定の面形状変化が加わる場合に、
該面形状変化が少なくとも1枚の光学面に関して線対称
に保たれるようにすると共に、該1枚の光学面に関する
前記「3面合わせ」における、前記非回転対称成分の緩
和後の前記各光学面の反転を該線対称の対称軸回りにさ
せたことを特徴とする請求項1記載の表面形状測定方法
(請求項2)」を提供する。
[0008] The present invention also provides a second aspect of the present invention in which when a certain surface shape change due to an external force or the like is applied to the three optical surfaces,
The surface shape change is maintained to be line-symmetric with respect to at least one optical surface, and the respective optics after relaxation of the non-rotationally symmetric component in the “three-plane alignment” with respect to the one optical surface. A surface shape measuring method according to claim 1 (claim 2), characterized in that the surface is inverted around the axis of symmetry of the line symmetry.

【0009】また、本発明は第三に「フィゾー干渉計の
光束中に、3枚の光学面のうちの2枚が互いに正対する
ように配置された状態で観測される3個以上の干渉縞か
ら各光学面の表面形状を求める、所謂「3面合わせ」に
よる表面形状測定を行う装置において、前記干渉縞のう
ちの一つの干渉縞を形成する前記2枚の光学面のうちの
一方を前記干渉計の測定光軸まわりに回転させる回転手
段と、得られた形状測定データの平均化を行う演算処理
手段を設けたことを特徴とする表面形状測定装置(請求
項3)」を提供する。
The present invention also relates to a third aspect of the present invention in which "three or more interference fringes observed in a light beam of a Fizeau interferometer with two of the three optical surfaces arranged so as to face each other". In the apparatus for measuring the surface shape of each optical surface from the so-called "three-plane alignment", one of the two optical surfaces that form one of the interference fringes, A surface shape measuring apparatus (claim 3) comprising a rotating means for rotating the interferometer about a measurement optical axis and an arithmetic processing means for averaging the obtained shape measurement data.

【0010】[0010]

【作用】3面の面形状を従来技術の項で用いた記号A、
B、Fで表すこととする。3面のうちの1面(例えば
A)に対して、その非回転対称成分の緩和を行う。これ
は、「[測定データ1]=A+F」において、A上の1
点を中心にAを干渉計測定光軸回りにn等分ずつ1回転
させて、n等分毎の測定データAi (i=1〜n)を平
均化することにより、「ΣAi →ARS」とするものであ
る。ここで、ARSは回転対称成分を表し、AASは非回転
対称成分を表すものとする。
The symbols A and A, which have three surface shapes in the prior art section,
It is represented by B and F. The non-rotationally symmetric component is relaxed on one of the three surfaces (for example, A). This is because "[Measurement data 1] = A + F"
By rotating A once around the optical axis of the interferometer about the point by n equal divisions and averaging the measurement data A i (i = 1 to n) for every n equal divisions, “ΣA i → A RS ”. Here, A RS represents a rotationally symmetric component, and A AS represents a non-rotationally symmetric component.

【0011】この時、定義から「A=AAS+ARS」、
「ΣAAS(i)→0」となる。従って、従来技術の項で
述べた方程式は、以下の通りになる。 ・[測定データ1]=ARS+F ・[測定データ2]=B+F ・[測定データ3]=B+RS ここで、ARSは回転対称形状であり、「ARSRS 」が
成立するので、 ・ARS=([測定データ1]−[測定データ2]+[測
定データ3])/2 となり、この座標の反転の影響を受けない。
At this time, from the definition, "A = A AS + A RS ",
“ΣA AS (i) → 0”. Therefore, the equations described in the prior art section are as follows. [Measurement data 1] = A RS + F • [Measurement data 2] = B + F • [Measurement data 3] = B + A RS Here, A RS is a rotationally symmetric shape, and "A RS = A RS " holds. Therefore, ARS = ([measurement data 1]-[measurement data 2] + [measurement data 3]) / 2, which is not affected by the inversion of the coordinates.

【0012】尚、実際の測定手順としては、反転後のデ
ータの回転平均化は不要である。即ち、非回転対称成分
ASのみを演算器上で反転させて、測定データに補正を
加えればよい。さて、データの平均化の為の加算回数
(n等分の回数に相当)が、得られるAの表面形状誤差
に及ぼす影響は、図1のデータから判断可能である。
As an actual measurement procedure, it is unnecessary to perform rotation averaging of the inverted data. That is, only the non-rotationally symmetric element A AS is reversed on the calculator, it may be added to the correction to the measured data. The effect of the number of additions for data averaging (corresponding to the number of equal parts n) on the obtained surface shape error of A can be determined from the data in FIG.

【0013】図1、図2は、測定データである図1
(a)及びこの測定データをシミュレーション上で、n
=4だけ等分して平均化したものである図1(b)及
び、同様にn=8だけ等分して平均化したものである図
2(a)、同様にn=16だけ等分して平均化したもので
ある図2(b)をそれぞれ示している。RMS的には、
n=4の段階で、数値上、4×10-4λ以下の収束性を
有している。この収束性は、使用した元データ(a)の
面精度に依存するのは言うまでもない。
FIGS. 1 and 2 show measurement data of FIG.
(A) and this measurement data is converted into n
1 (b), which is obtained by equally dividing by n = 4, and FIG. 2 (a), which is similarly obtained by equally dividing by n = 8, similarly, by n = 16 FIG. 2B shows the averaged values. In terms of RMS,
At the stage of n = 4, it has a convergence of 4 × 10 −4 λ or less in numerical value. Needless to say, this convergence depends on the surface accuracy of the used original data (a).

【0014】尚、この元データ(a)を「特願平4−2
7111号公報」で開示した波面創成抽出法によりシミ
ュレーション上で絶対測定した結果は、RMS的にはn
=4の段階で、数値上、6×10-4λの形状再現性を実
現している。この場合、回転対称成分は、それを抽出す
る為に点対称性を必要としたが、本発明では、線対称性
のみで充分である為、より優れた形状再現性が期待でき
る。また、この程度の原理上の誤差は、通常の測定誤差
と比較して無視でき得る量であるので、充分実用に供し
得る測定回数である。nを無限大まで大きくしていけば
(より正確には測定装置の分解能以下に平均化された時
点で)、原理上の誤差は0に収束する。
The original data (a) is referred to as “Japanese Patent Application No. 4-2.
The absolute measurement result on the simulation by the wavefront creation extraction method disclosed in “No.
At the stage of = 4, a shape reproducibility of 6 × 10 −4 λ is realized numerically. In this case, the rotationally symmetric component needs point symmetry to extract it, but in the present invention, since only line symmetry is sufficient, more excellent shape reproducibility can be expected. In addition, since the error in principle of this degree is a negligible amount as compared with a normal measurement error, it is a sufficient number of times of measurement that can be practically used. If n is increased to infinity (more precisely, when it is averaged below the resolution of the measuring device), the error in principle converges to zero.

【0015】[0015]

【実施例】作用で述べた測定例は、本発明の第1の実施
例である。[測定データ3]における、Aの反転後の測
定に際しては、回転対称成分同士の加算になるので、反
転後のワークの軸ズレが生じても、波面創成抽出法にお
ける回転対称成分の抽出法を利用すれば、対処可能とな
る利点がある。
DESCRIPTION OF THE PREFERRED EMBODIMENTS The measurement example described in the operation is the first embodiment of the present invention. In the measurement after the inversion of A in [Measurement Data 3], the rotationally symmetric components are added to each other. Therefore, even if the axis deviation of the inverted workpiece occurs, the method of extracting the rotationally symmetric components in the wavefront creation extraction method must be used. If used, there is an advantage that can be dealt with.

【0016】図3は、本発明の第2の実施例であり、
「3面合わせ」を行う際の、重力がワークWに及ぼす変
形も考慮した場合である。尚、図3(c)は、図3
(a),(b)のMまたはM’の方向から見た図であ
る。各面の変形をDA,B,F で表す。この時、[測定
データ1〜3]は、以下の通りである。 ・[測定データ1]=(ARS+DA )+(F +DF ) ・[測定データ2]=(B +DB )+(F +DF ) ・[測定データ3]=(B +DB )+(RS+DA ) ここで、ARSは回転対称形状である為、必然的に線対称
性も存在する。従ってDA の線対称性を確保すれば、A
RS+DA は線対称性を有することになる。この時、「A
RS+DA RS+DA 」が成立するから、 ・ARS+DA =([測定データ1]−[測定データ2]
+[測定データ3])/2 となり、座標の反転の影響を受けない。但し、DA の線
対称軸と反転軸を必ず一致させる必要がある。
FIG. 3 shows a second embodiment of the present invention.
This is a case where the deformation that the gravity exerts on the workpiece W when performing the “three-plane alignment” is also considered. Incidentally, FIG.
It is the figure seen from the direction of M or M 'of (a) and (b). The deformation of each surface is represented by D A, D B, D F. At this time, [Measurement data 1 to 3] are as follows. · Measurement Data 1] = (A RS + D A) + (F + D F) · [ Measurement Data 2] = (B + D B ) + (F + D F) · [ Measurement Data 3] = (B + D B ) + ( A RS + D A ) Here, since A RS has a rotationally symmetric shape, there is necessarily a line symmetry. Therefore, if the line symmetry of D A is ensured, A
RS + D A will have a line symmetry. At this time, "A
Since RS + D A = A RS + D A "is satisfied, · A RS + D A = ([ Measurement Data 1] - [Measurement Data 2]
+ [Measurement data 3]) / 2, which is not affected by the inversion of the coordinates. However, it is necessary to always match the inversion axis line symmetry axis of D A.

【0017】具体的には、例えば丸もののワークWに対
しては、ワーク支持で生ずる歪みが線対称となるように
ベルトBL吊りを採用し、ワークWの重力方向G対称軸
回りに反転させればよい。また、回転データの平均化を
する際に、DA がオフセットとしてのって来るように、
吊り下げ方を一定にする必要があることは言うまでもな
い。
More specifically, for a round work W, for example, a belt BL suspension is adopted so that the distortion generated by the work support is axisymmetric, and the work W is turned around the axis of symmetry of gravity in the direction of gravity G of the work W. I just need. Further, when the average of the rotational data, as D A come riding as an offset,
Needless to say, it is necessary to keep the suspension constant.

【0018】図4は、本発明の第3の実施例であって、
1枚の高反射ミラー(ワーク)Wについて、他のダミー
平面板Dを用いてワーク面形状を高精度に測定するもの
である。ダミー平面板Dを図4(a),(b)の各状態
で測定すると、点Pを基準に考えて、ダミー平面板Dが
上下に反転してしまうので、ダミー平面板Dを測定光軸
回りに回転平均化させて、回転対称成分のみで形成すれ
ばよい。
FIG. 4 shows a third embodiment of the present invention.
With respect to one high-reflection mirror (work) W, the work surface shape is measured with high accuracy by using another dummy flat plate D. When the dummy plane plate D is measured in each of the states shown in FIGS. 4A and 4B, the dummy plane plate D is turned upside down based on the point P. What is necessary is just to perform rotation averaging around and form only the rotationally symmetric component.

【0019】また、ダミー平面板Dの吊り下げによる変
形が完全に解消できることは、第2実施例と同様であ
る。更にワーク自体のベルト吊りによる変形が線対称性
を有する必要がないという長所を有する。次に、アスペ
クト比補正及びパワー、チルト補正の必要性について言
及する。 アスペクト比の補正 フィゾーF、ワークW、ダミーDが共にφaのとき、干
渉計の測定有効径がφaであっても、ワークWを斜め
(光軸とのなす角度θ)に設定するので、測定結果は長
軸(重力方向)がa、短軸(水平方向)がa×sinθ
の楕円となる。
As in the second embodiment, the deformation due to the suspension of the dummy flat plate D can be completely eliminated. Further, there is an advantage that the deformation of the work itself due to the suspension of the belt does not need to have line symmetry. Next, the necessity of aspect ratio correction, power, and tilt correction will be described. Correction of aspect ratio When Fizeau F, work W, and dummy D are all φa, even if the effective diameter of the interferometer is φa, the work W is set at an angle (the angle θ with the optical axis). The result is that the major axis (gravity direction) is a and the minor axis (horizontal direction) is a × sin θ
Ellipse.

【0020】従って、水平方向のスケールを測定結果に
対して、逆に〔×1/sinθ〕だけ拡大する必要があ
る。 パワー、チルト補正 平面の測定時には、通常、パワー補正を行わず、チルト
補正のみで測定する。項で得られたデータを減算する
(必要があれば、更にチルト補正を行う)ことにより、
ワークWの形状が判断できる。ここで、ワークWの所謂
クセ(面精度からパワー成分を取り除いた形状誤差)
は、項で得られたデータをパワー補正することにより
求まる。項の補正を行う前にパワー補正を行うと正確
なクセは求まらない。 その他 ワークWがミラー面でないときには、ワークWの被検面
に反射膜を形成する必要があり、この反射膜をはがした
ときの変形がないように、ワークWの厚みを大きくする
か、反対面にも同時に反射膜を形成する必要がある。
Therefore, it is necessary to enlarge the horizontal scale by [× 1 / sin θ] with respect to the measurement result. Power and tilt correction Normally, when measuring a plane, power correction is not performed and measurement is performed only with tilt correction. By subtracting the data obtained in the term (if necessary, perform further tilt correction)
The shape of the work W can be determined. Here, the so-called habit of the work W (shape error obtained by removing the power component from the surface accuracy)
Is obtained by power-correcting the data obtained in the term. If power correction is performed before correcting the term, an accurate habit cannot be obtained. Others When the work W is not a mirror surface, it is necessary to form a reflection film on the surface to be measured of the work W. To prevent deformation when the reflection film is peeled off, increase the thickness of the work W or reversely. It is necessary to simultaneously form a reflection film on the surface.

【0021】[0021]

【発明の効果】以上の様に、本発明に係る表面形状測定
方法及びその装置は、少ない測定回数にて「3面合わ
せ」による光学面の全面測定が可能であり、しかも光学
レンズ等を吊り下げた時に生ずる面変形による面形状誤
差も含めた測定も可能である。また、測定対象の光学面
は平面に限定されるものではなく、球面でも同様に適用
可能である。
As described above, the surface shape measuring method and apparatus according to the present invention can measure the entire surface of the optical surface by "three-plane alignment" with a small number of measurements, and can also suspend an optical lens or the like. Measurement including surface shape errors due to surface deformation that occurs when lowered is also possible. Further, the optical surface to be measured is not limited to a flat surface, but may be similarly applied to a spherical surface.

【図面の簡単な説明】[Brief description of the drawings]

【図1】は、測定データ(a)及びそのデータをシミュ
レーション上で4等分して平均化したデータ(b)の各
データ図である。
FIG. 1 is a data diagram of measured data (a) and data (b) obtained by dividing the measured data into four equal parts and averaging them.

【図2】は、測定データをシミュレーション上で8等分
して平均化したデータ(a)、及び16等分して平均化し
たデータ(b)の各データ図である。
FIG. 2 is a data diagram of data (a) obtained by dividing measured data into eight equal parts on a simulation and averaged, and data (b) obtained by dividing sixteen equal parts and averaged.

【図3】は、本発明の第2実施例を示す側面図である。FIG. 3 is a side view showing a second embodiment of the present invention.

【図4】は、本発明の第3実施例を示す側面図である。FIG. 4 is a side view showing a third embodiment of the present invention.

【図5】は、従来例を示す側面図である。FIG. 5 is a side view showing a conventional example.

【符号の説明】[Explanation of symbols]

W・・・ワーク W1・・ワーク1 W2・・ワーク2 F・・・フィゾー BL・・ベルト G・・・重力方向 D・・・ダミー平面板 以 上 W ... Work W1 ... Work 1 W2 ... Work 2 F ... Fizeau BL ... Belt G ... Gravity direction D ... Dummy plane plate

Claims (3)

(57)【特許請求の範囲】(57) [Claims] 【請求項1】 フィゾー干渉計の光束中に、3枚の光学
面のうちの2枚が互いに正対するように配置された状態
で観測される3個以上の干渉縞から各光学面の表面形状
を求める、所謂「3面合わせ」による表面形状測定を行
う方法において、 前記干渉縞のうちの一つの干渉縞を形成する前記2枚の
光学面のうちの一方を前記干渉計の測定光軸まわりに少
しづつ回転させて得られる各形状測定データを平均化さ
せ、該一方の光学面に固有の、形状測定データの非回転
対称成分を緩和させることにより、前記各光学面の2次
元表面形状の測定を行うことを特徴とする表面形状測定
方法。
1. A surface shape of each optical surface from three or more interference fringes observed in a state where two of three optical surfaces are arranged to face each other in a light beam of a Fizeau interferometer. A method for performing surface shape measurement by so-called “three-plane alignment”, wherein one of the two optical surfaces forming one of the interference fringes is placed around the measurement optical axis of the interferometer. By averaging the respective shape measurement data obtained by rotating the optical surface little by little, and relaxing the non-rotationally symmetric component of the shape measurement data unique to the one optical surface, the two-dimensional surface shape of each of the optical surfaces is reduced. A method for measuring a surface shape, comprising measuring.
【請求項2】 前記3枚の光学面に外力等に起因する一
定の面形状変化が加わる場合に、該面形状変化が少なく
とも1枚の光学面に関して線対称に保たれるようにする
と共に、該1枚の光学面に関する前記「3面合わせ」に
おける、前記非回転対称成分の緩和後の前記各光学面の
反転を該線対称の対称軸回りにさせたことを特徴とする
請求項1記載の表面形状測定方法。
2. When a constant surface shape change due to an external force or the like is applied to the three optical surfaces, the surface shape changes are kept line-symmetric with respect to at least one optical surface, and 2. The optical system according to claim 1, wherein, in the "three-plane alignment" of the one optical surface, inversion of each of the optical surfaces after relaxation of the non-rotationally symmetric component is performed around the axis of symmetry of the line symmetry. Surface shape measurement method.
【請求項3】 フィゾー干渉計の光束中に、3枚の光学
面のうちの2枚が互いに正対するように配置された状態
で観測される3個以上の干渉縞から各光学面の表面形状
を求める、所謂「3面合わせ」による表面形状測定を行
う装置において、 前記干渉縞のうちの一つの干渉縞を形成する前記2枚の
光学面のうちの一方を前記干渉計の測定光軸まわりに回
転させる回転手段と、得られた形状測定データの平均化
を行う演算処理手段を設けたことを特徴とする表面形状
測定装置。
3. The surface shape of each optical surface from three or more interference fringes observed in a state where two of the three optical surfaces are arranged to face each other in the light beam of the Fizeau interferometer. In a device for performing surface shape measurement by so-called “three-plane alignment”, one of the two optical surfaces forming one of the interference fringes is rotated around the measurement optical axis of the interferometer. A surface shape measuring device, comprising: a rotating means for rotating the shape measuring means; and an arithmetic processing means for averaging the obtained shape measurement data.
JP07063293A 1993-03-30 1993-03-30 Surface shape measuring method and its measuring device Expired - Lifetime JP3336666B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP07063293A JP3336666B2 (en) 1993-03-30 1993-03-30 Surface shape measuring method and its measuring device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP07063293A JP3336666B2 (en) 1993-03-30 1993-03-30 Surface shape measuring method and its measuring device

Publications (2)

Publication Number Publication Date
JPH06281427A JPH06281427A (en) 1994-10-07
JP3336666B2 true JP3336666B2 (en) 2002-10-21

Family

ID=13437215

Family Applications (1)

Application Number Title Priority Date Filing Date
JP07063293A Expired - Lifetime JP3336666B2 (en) 1993-03-30 1993-03-30 Surface shape measuring method and its measuring device

Country Status (1)

Country Link
JP (1) JP3336666B2 (en)

Also Published As

Publication number Publication date
JPH06281427A (en) 1994-10-07

Similar Documents

Publication Publication Date Title
US7221461B2 (en) Method and apparatus for interferometric measurement of components with large aspect ratios
Geckeler et al. New frontiers in angle metrology at the PTB
RU2561018C1 (en) Interferometric method of adjusting two-mirror lens with aspherical elements
CN103439085A (en) Contact type method and device for measuring parameters of curve face prism
JP2008008879A (en) Measuring instrument, measuring reference, and precision machine tool
JPH10325710A (en) Shape of plane measuring analysis method
JP3336666B2 (en) Surface shape measuring method and its measuring device
JP2002213930A (en) Method of measuring shape, and method of manufacturing highly precise lens
CN108917662B (en) Optimization method for reference surface flatness inspection
JP2000097663A (en) Interferometer
JP2008102051A (en) Interferometer angle sensitivity calibration method
JPH0996589A (en) Method and apparatus for measuring performance of lens
JP3772444B2 (en) Stage device, coordinate measuring device, and position measuring method
CN108195309B (en) Method for measuring surface shape error of off-axis aspheric element
JP3146590B2 (en) Shape measuring method and shape measuring system
JP4802134B2 (en) Posture change measuring method and apparatus
JP3146591B2 (en) Reference surface shape measurement method and shape measurement system
JP2002131035A (en) Absolute calibration method, information processor, computer readable storage medium, instrumentation measuring method and optical member
JP2003035529A (en) Systematic error measuring method in flatness measuring system on object surface to be inspected, flatness measuring method and apparatus using the same
JP2000275021A (en) Apparatus for measuring shape of face
JPH10221053A (en) Method for measuring radius of curvature of spherical face
JPH1137742A (en) Method for measuring absolute flatness
JPH10221007A (en) Method and apparatus for absolute wave front calibration
JP2001165807A (en) Aspherical eccentricity measuring device
JPH11325818A (en) Apparatus and method for absolute correction

Legal Events

Date Code Title Description
FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110809

Year of fee payment: 9

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110809

Year of fee payment: 9

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130809

Year of fee payment: 11