JP2000097663A - Interferometer - Google Patents

Interferometer

Info

Publication number
JP2000097663A
JP2000097663A JP10266126A JP26612698A JP2000097663A JP 2000097663 A JP2000097663 A JP 2000097663A JP 10266126 A JP10266126 A JP 10266126A JP 26612698 A JP26612698 A JP 26612698A JP 2000097663 A JP2000097663 A JP 2000097663A
Authority
JP
Japan
Prior art keywords
interferometer
distortion
optical system
rotationally symmetric
measurement
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP10266126A
Other languages
Japanese (ja)
Inventor
Hajime Ichikawa
元 市川
Shigeo Mizoroke
茂男 御菩薩池
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nikon Corp
Original Assignee
Nikon Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nikon Corp filed Critical Nikon Corp
Priority to JP10266126A priority Critical patent/JP2000097663A/en
Publication of JP2000097663A publication Critical patent/JP2000097663A/en
Pending legal-status Critical Current

Links

Abstract

PROBLEM TO BE SOLVED: To measure the distortion of a measuring optical system with high accuracy by giving an alignment deviation from a reference surface to a test surface by an already known amount and correcting the alignment error of the differential data of interference measuring data obtained before and after the deviation is given by using the data obtained by calibrating the distortion of the optical system at the time of correcting the alignment error. SOLUTION: The planar wave 2 from an interferometer 1 is reflected by a Fizeau surface 3a formed on a Fizeau flat plate 3 and, at the same time, a measuring wavefront 4a which is obtained by transforming the planar wave 2 into a designed aspherical shape at the reference position of measurement by means of a null element 4 is also reflected by the test surface 5a of a specimen 5 set to the reference position and forms interference fringes in the interferometer 1 together with the planar wave 2 reflected from the Fizeau surface 3a. The interference fringes are detected by means of a detector and analyzed by means of an information processing system. The attitude of a tilt is monitored from the rear surface of the specimen 5 by means of an interference optical system and the shifting amount of the tilt is controlled by means of a shifting amount detecting means.

Description

【発明の詳細な説明】DETAILED DESCRIPTION OF THE INVENTION

【0001】[0001]

【発明の属する技術分野】本発明は干渉計の測定光学系
のディストーションを高精度に且つ簡便に測定するため
の干渉計に関する。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to an interferometer for measuring the distortion of a measuring optical system of an interferometer with high accuracy and ease.

【0002】[0002]

【従来の技術】従来から、球面の測定波面を用いた干渉
計測データには、測定光学系のサインコンディションが
満足されないことによる回転対称な横座標の歪み(ディ
ストーション)が誤差として乗っていることが指摘され
ていた。このサインコンディションとは、図1のよう
に、例えばフィゾーレンズを使用した干渉計測の場合
に、フィゾー面の入射側のXY投影座標上で等ピッチの
格子点が、被検面のXY投影座標上で等ピッチ性が満足
されない歪みである。
2. Description of the Related Art Conventionally, interferometric measurement data using a spherical measurement wavefront has a rotationally symmetric abscissa distortion (distortion) due to an unsatisfactory sine condition of a measurement optical system. It was pointed out. As shown in FIG. 1, for example, in the case of interferometric measurement using a Fizeau lens, the sine condition is such that grid points of equal pitch on the XY projection coordinates on the incident side of the Fizeau surface are on the XY projection coordinates of the test surface. Is a strain that does not satisfy the equal pitch property.

【0003】このディストーションを計測する干渉測定
装置として、特開平4−48201が知られている。こ
の装置は、測定波面に対して被検面が極力縞一色になる
ようにアライメントした後、被検面にティルトのアライ
メントずれを与え、本来平行な直線となるそれら干渉縞
の曲がりを、干渉縞の検知器であるCCDの各画素毎
に、相当する位相ずれとして、算出するものである。
[0003] Japanese Patent Laid-Open No. 4-48201 is known as an interference measuring device for measuring this distortion. This device aligns the test surface with the measurement wavefront so that the fringe is as close to one color as possible, gives the test surface a tilt misalignment, and corrects the bends of these interference fringes, which are essentially parallel straight lines, Is calculated as a corresponding phase shift for each pixel of the CCD which is the detector of the above.

【0004】また、ディストーションの算出精度を高め
るために、ディストーションを求める断面を、測定光軸
周りに細かく回転させて行くことも開示されている。
It is also disclosed that, in order to increase the calculation accuracy of the distortion, the section for obtaining the distortion is finely rotated around the measurement optical axis.

【0005】[0005]

【発明が解決しようとする課題】しかしながら、上記従
来例では、測定波面に大きな波面収差がある場合、たと
え理想的な被検面(平面、球面、非球面を問わず)を用
いて干渉縞を観測しても、大きな残存干渉縞が発生して
しまい、算出されるディストーションに誤差が乗ること
が避けられない。
However, in the above-mentioned conventional example, when the measured wavefront has a large wavefront aberration, the interference fringes can be formed using an ideal test surface (regardless of plane, spherical surface or aspherical surface). Even if it is observed, large residual interference fringes are generated, and it is inevitable that the calculated distortion has an error.

【0006】また、逆に測定波面が波面収差の無い理想
的な波面であっても、計測に用いる被検面の面精度誤差
が大きな場合、同様に大きな残存干渉縞が発生してしま
い、算出されるディストーションに誤差が乗ることが避
けられない。また、断面のディストーションを基準とし
た測定であるため、測定有効径で規定される回転対称な
ディストーション軸周りのディストーションの計測が複
雑となる問題点があった。
[0006] Conversely, even if the measured wavefront is an ideal wavefront having no wavefront aberration, if the surface accuracy error of the surface to be measured used for measurement is large, a large residual interference fringe similarly occurs, and the calculation is performed. It is inevitable that the distortion that is performed will have an error. In addition, since the measurement is based on the distortion of the cross section, there is a problem that the measurement of the distortion around the rotationally symmetric distortion axis defined by the effective diameter for measurement is complicated.

【0007】本発明は上記従来技術の欠点に鑑みなされ
たもので、干渉計の測定光学系のディストーションを高
精度に且つ簡便に測定することを目的とする。
The present invention has been made in view of the above-mentioned drawbacks of the prior art, and has as its object to measure the distortion of a measurement optical system of an interferometer with high accuracy and ease.

【0008】[0008]

【課題を解決する為の手段】本発明では、上記目的を達
成するために、被検面の面精度(設計幾何学形状を表わ
す関数式でフィッティングした後の残差形状)を測定す
るための干渉計において、該被検面に既知の量だけ、該
測定光学系の参照面に対するアライメントずれを与え、
該アライメントずれを与える前後の干渉計測データの差
分データにアライメント誤差補正を施す際に、該干渉計
の測定光学系のディストーションを校正し、得られた校
正データにより該面精度を補正する干渉計を用いること
とした。これにより、被検面、及び測定波面の面精度が
悪い条件下でも、測定波面の測定有効径で規定できるデ
ィストーションを簡便に校正することが可能になる。
According to the present invention, in order to achieve the above object, the surface accuracy of a test surface (residual shape after fitting with a functional expression representing a design geometric shape) is measured. In the interferometer, a known amount is given to the surface to be inspected, and an alignment deviation with respect to the reference surface of the measuring optical system is given.
An interferometer that corrects the distortion of the measurement optical system of the interferometer and corrects the surface accuracy based on the obtained calibration data when performing the alignment error correction on the difference data of the interference measurement data before and after giving the alignment deviation. It was decided to use it. This makes it possible to easily calibrate the distortion that can be defined by the measurement effective diameter of the measurement wavefront even under conditions where the surface accuracy of the test surface and the measurement wavefront is poor.

【0009】なお、本発明を分かり易くするために発明
の実施の形態の図を用いたが、これにより本発明が実施
の形態に限定されるものではない。
Although the drawings of the embodiments of the present invention are used to make the present invention easy to understand, the present invention is not limited to the embodiments.

【0010】[0010]

【発明の実施の形態】以下、図1を用いて本発明のディ
ストーション校正演算について説明する。図中のFはフ
ィゾーレンズのフィゾー面を、Wは被検面を表わしてい
る。先ず、サインコンディション歪みを与える式は、回
転対称な歪みを与える対称軸に関して R=C1・r+C3・r**3+C5・r**5+C7・r**7 (1) で表わされる。この式は、フィゾーの入射側で横座標の
1単位に対してr単位の位置にある点が、被検面上で横
座標の1単位に対して、R単位の位置に歪むことを表わ
している。精度を高めるために偶数項を入れても良い。
DETAILED DESCRIPTION OF THE PREFERRED EMBODIMENTS The distortion calibration calculation of the present invention will be described below with reference to FIG. In the figure, F represents a Fizeau surface of the Fizeau lens, and W represents a test surface. First, the equation for giving the sine condition distortion is expressed as follows: R = C1 ・ r + C3 ・ r ** 3 + C5 ・ r ** 5 + C7 ・ r ** 7 (1) with respect to the axis of symmetry giving the rotationally symmetric distortion. This equation indicates that a point located on the incident side of Fizeau at a position of r units with respect to one unit of the abscissa is distorted to a position of R units with respect to one unit of the abscissa on the test surface. I have. An even term may be included to increase the accuracy.

【0011】この時、フィゾーの入射側で中心を0とし
て、最外周でsg(=51)の区切りを設け、CCDの
サンプリング点に対応した半画素を補正した半径をhw
dとおくと、(1)式を関数化した次式 sc[C1,C3,C5,C7,p]≡ C1・p+C3・p**3+C5・p**5+C7・p**7 (2) を用いて定義された次式 g[pp]≡(sc[C1,C3,C5,C7,pp]/pp)/ (sc[C1,C3,C5,C7,sg]/sg) (3) が、干渉縞の外径を基準とした規格化された歪み関数と
なる。従って、干渉計測データの画素データの番地を
[i,j]とし、干渉計倍率をbun[mm/画素]と
すると、例えばX軸方向に既知のティルトのアライメン
トずれTxを与えた場合の差分データは、次式 Z=Tx・g[{(i・bun)**2+(j・bun)**2}**0.5 /hwd・sg]・i・bun (4) (式中および以下全て、a**bの表記はaのb乗を表
す。)で表わすことができる。ピストン成分は省略して
いる。この差分データにアライメント誤差補正を掛け
て、最適フィッティングされたティルト量Fxで定まる
誤差収差を除去した結果は、 ΔZ=Z−Fx・i・bun (5) となり、通常のフィゾーレンズではコマ収差に類似した
誤差となる。
At this time, the center is set to 0 on the incident side of the Fizeau, a break of sg (= 51) is provided at the outermost periphery, and the radius obtained by correcting a half pixel corresponding to the sampling point of the CCD is hw.
Assuming d, the following expression sc [C1, C3, C5, C7, p] which is a function of the expression (1)) C1 · p + C3 · p ** 3 + C5 · p ** 5 + C7 · p ** 7 (2) The following equation defined using g [pp] sc (sc [C1, C3, C5, C7, pp] / pp) / (sc [C1, C3, C5, C7, sg] / sg) (3) It is a normalized distortion function based on the outer diameter of the interference fringes. Therefore, if the address of the pixel data of the interference measurement data is [i, j] and the magnification of the interferometer is bun [mm / pixel], for example, the difference data when a known tilt alignment deviation Tx is given in the X-axis direction. Is given by the following equation: Z = Tx · g [{(i · bun) ** 2+ (j · bun) ** 2} ** 0.5 / hwd · sg] · i · bun (4) The notation of a ** b represents a raised to the power of b.). The piston component is omitted. The difference data obtained by multiplying the difference data by the alignment error correction and removing the error aberration determined by the tilt amount Fx optimally fitted becomes ΔZ = Z−Fx · i · bun (5). A similar error results.

【0012】このアライメント誤差補正済みの差分デー
タを、実際の測定データdata[i,j]に最適フィ
ッティングすることにより、係数Ciが求まる。具体的
には SUM=Σi,j(ΔZ−data[i,j])**2 (6) に対して、 ∂SUM/∂Ci=0 (7) で表わされる連立方程式を解けば良い。
The coefficient Ci is obtained by optimally fitting the difference data after the alignment error correction to the actual measurement data data [i, j]. Specifically, for SUM = Σi , j (ΔZ-data [i, j]) ** 2 (6), the simultaneous equations represented by ∂SUM / ∂Ci = 0 (7) may be solved.

【0013】但し、(4)式の分母に、(3)式の規格
化により、係数Ciが未知数として存在してしまうた
め、例えば、「C1=1,C3〜7=0」のように仮の
値を入れてフィッティングさせる必要がある。この仮の
値として、設計値を採用しても良い。この場合に係数C
iの真値を用いないために算出されるCiに混入する誤
差はオフセット誤差となり、(3)式の規格化により最
終的なサインコンディション歪み曲線の誤差とはならな
い性質を利用している。
However, since the coefficient Ci exists as an unknown number in the denominator of the equation (4) due to the normalization of the equation (3), a temporary value such as “C1 = 1, C3 to 7 = 0” is obtained. It is necessary to insert the value of and fit. A design value may be used as the temporary value. In this case, the coefficient C
An error mixed into Ci calculated because the true value of i is not used is an offset error, and a property that does not become an error of the final sine condition distortion curve by normalizing Expression (3) is used.

【0014】また、実際の測定データは、アライメント
誤差補正も含めた最適フィッティングの演算原点に対し
て、サインコンディション(回転対称なディストーショ
ン)軸が一致しないことが考えられる。この軸ずれも、
(4)式に偏心量Sx,Syを変数として導入し、 ∂SUM/∂Sx,y=0 (8) で表わされる連立方程式により偏心量を最適フィッティ
ングさせてから、このフィッティングされた偏心量を用
いて係数Ciを求めることが可能である。
In actual measurement data, it is conceivable that the sine condition (rotationally symmetric distortion) axis does not coincide with the calculation origin of the optimal fitting including the alignment error correction. This axis deviation also
The eccentricities Sx and Sy are introduced as variables in the equation (4), and the eccentricity is optimally fitted by a simultaneous equation expressed by ∂SUM / ∂Sx, y = 0 (8). Can be used to determine the coefficient Ci.

【0015】なお、説明の簡略化のため、与えるアライ
メント(ティルト)ずれの成分として、X軸方向のみの
値を仮定した式を用いたが、Y軸方向のティルト成分を
入れても良い。また、ティルト成分のモニタが無い場合
でも、誤差は乗るが実測で得られるアライメント誤差補
正値をティルト成分として採用しても良い。この時、与
えるティルト量の水準を振ることにより、この誤差を補
正しても良い。さらに、Sx,Ciの演算において、フ
ィッティング値をフィードバックさせる収束演算を適用
することにより精度向上が図れることが、シミュレーシ
ョン演算により確認されている。
For the sake of simplicity, an equation assuming only a value in the X-axis direction is used as a component of the alignment (tilt) deviation, but a tilt component in the Y-axis direction may be used. Further, even when there is no monitor for the tilt component, an error may occur, but an alignment error correction value obtained by actual measurement may be used as the tilt component. At this time, the error may be corrected by changing the level of the amount of tilt to be given. Further, it has been confirmed by simulation calculation that the accuracy can be improved by applying a convergence calculation for feeding back a fitting value in the calculation of Sx and Ci.

【0016】[0016]

【実施例1】従来例のような一方向のティルト縞では、
その縞方向に発生する回転対称では無いディストーショ
ンの評価が出来ないことが明らかである。考え方として
は、格子状のパターンの歪みによりディストーションが
規定できるため、直交する方向にティルトのアライメン
トずれを2回与えるのが、本実施例である。この格子点
のずれは、簡便には画像処理により、直交する干渉縞の
交差点として求めることも可能であるが、前述した演算
方法により、より高精度にCiの演算が可能である。即
ち、(6)式に直交するY方向の自乗和も加算すれば、
同様の手順が採用可能である。
[Embodiment 1] In a unidirectional tilt stripe as in the conventional example,
It is clear that distortion that is not rotationally symmetric and occurs in the stripe direction cannot be evaluated. The idea is that the distortion can be defined by the distortion of the lattice-like pattern, and therefore, in the present embodiment, the tilt is misaligned twice in the orthogonal direction. Although the displacement of the lattice point can be easily obtained as an intersection of orthogonal interference fringes by image processing, the calculation of Ci can be performed with higher accuracy by the above-described calculation method. That is, if the sum of squares in the Y direction orthogonal to equation (6) is also added,
A similar procedure can be employed.

【0017】また、得られたSx,yとCiで定まる回
転対称なディストーションを補正した後に、前記誤差補
正後のデータに残存する収差は、非回転対称なディスト
ーションであり、この残存収差から非対称なディストー
ション成分の算出が可能である。例えば、フィゾー干渉
計による測定の場合に、この非回転対称なディストーシ
ョンを与える誤差要因を、フィゾーレンズと、CCDも
含む干渉計の本体の光学系に分けるために、干渉計本体
を前記回転対称なディストーション軸周りに回転させて
から、同様の校正を行うことにより、誤差要因の特定を
図るものである。図2は、平面をフィゾー干渉計測する
際の測定配置である。
After correcting the obtained rotationally symmetric distortion determined by Sx, y and Ci, the aberration remaining in the data after the error correction is a non-rotationally symmetric distortion. The distortion component can be calculated. For example, in the case of the measurement by the Fizeau interferometer, in order to divide the error factor which gives this non-rotationally symmetric distortion into the Fizeau lens and the optical system of the interferometer main body including the CCD, the interferometer main body is rotated by the rotational symmetry. By rotating the lens about the distortion axis and performing the same calibration, the cause of the error is specified. FIG. 2 shows a measurement arrangement when performing Fizeau interference measurement on a plane.

【0018】[0018]

【実施例2】これまで説明したアライメントずれは、テ
ィルトずれに限って説明したが、鈍感なデフォーカスを
除き、シフトずれを利用することも考えられる。これ
は、平面では得策では無いものの、非球面の場合には、
頂点基準のティルトずれを与える関数式が複雑になり、
(4)の関数化が困難であるのに対して、シフトに関し
てはそれが可能であることによる。この場合、アパーチ
ャの変化が生じないように、極力小さなシフト量に止め
る必要がある。これは、非球面量が大きな非球面の場合
は、自動的に満足されることになる。
[Second Embodiment] The description has been given of the case where the alignment deviation described above is limited to the tilt deviation. However, it is conceivable to use the shift deviation except for insensitive defocusing. This is not a good idea for a plane, but for an aspheric surface,
The function formula that gives the tilt deviation based on the vertex becomes complicated,
This is because the function of (4) is difficult to realize, whereas the shift is possible. In this case, it is necessary to keep the shift amount as small as possible so that the aperture does not change. This is automatically satisfied when the amount of aspherical surface is large.

【0019】図3は、ヌルレンズを用いたヌル波面のデ
ィストーション測定の配置図であり、裏面に高精度な平
面を有する原器を利用している。即ち、干渉計1から射
出された平面波2は、フィゾー平面板3に形成された高
精度なフィゾー面3aから反射光され、該平面波がヌル
素子4により、測定の基準位置で所望の非球面設計形状
に変換された測定波面4aも、該基準位置にセットされ
た被検物5が有する被検面5aから反射され、それぞれ
の反射光が、干渉計1の内部に縞一色の干渉縞を形成
し、該干渉縞を図示しないCCDなどの検知器により検
知し、得られた信号を干渉計の情報を処理する情報処理
システムにより解析するものである。トワイマン・グリ
ーン干渉計を用いても、同様の計測が可能である。
FIG. 3 is a layout diagram of a distortion measurement of a null wavefront using a null lens, and uses a prototype having a highly accurate flat surface on the back surface. That is, the plane wave 2 emitted from the interferometer 1 is reflected from a high-precision Fizeau surface 3a formed on the Fizeau plane plate 3, and the plane wave is converted by the null element 4 into a desired aspherical surface at a reference position for measurement. The measurement wavefront 4a converted into the shape is also reflected from the test surface 5a of the test object 5 set at the reference position, and each reflected light forms a single-color interference fringe inside the interferometer 1. Then, the interference fringes are detected by a detector such as a CCD (not shown), and the obtained signal is analyzed by an information processing system that processes information of an interferometer. Similar measurements are possible using a Twyman-Green interferometer.

【0020】裏面から干渉光学系によりティルトの姿勢
をモニタし、そのシフト量は別途不図示のシフト量検出
手段により制御する。また、裏面からの干渉光学系を球
面波発生のヌル光学系とし、原器の裏面に球面部を設け
ることにより、周辺の平面波も利用した姿勢制御が可能
となる。
The tilt posture is monitored from the back side by an interference optical system, and the shift amount is separately controlled by a shift amount detecting means (not shown). Further, by providing the interference optical system from the back surface as a null optical system for generating a spherical wave and providing a spherical surface portion on the back surface of the prototype, it is possible to perform attitude control using peripheral plane waves.

【0021】[0021]

【発明の効果】以上のように、本発明に係る干渉計を採
用すれば、干渉計の測定光学系のディストーションを高
精度に且つ簡便に測定することが可能となる。
As described above, if the interferometer according to the present invention is employed, it is possible to measure the distortion of the measuring optical system of the interferometer with high accuracy and simply.

【図面の簡単な説明】[Brief description of the drawings]

【図1】本発明に係る干渉計の原理説明図である。FIG. 1 is a diagram illustrating the principle of an interferometer according to the present invention.

【図2】本発明に係る干渉計の第一の実施例の説明図で
ある。
FIG. 2 is an explanatory diagram of a first embodiment of the interferometer according to the present invention.

【図3】本発明に係る干渉計の第二の実施例の説明図で
ある。
FIG. 3 is an explanatory diagram of a second embodiment of the interferometer according to the present invention.

【符号の説明】[Explanation of symbols]

1 干渉計 2 平面波 3 フィゾー平面板 3a フィゾー面 4 ヌル素子 4a 測定波面 5 被検物 5a 被検面 DESCRIPTION OF SYMBOLS 1 Interferometer 2 Plane wave 3 Fizeau plane plate 3a Fizeau surface 4 Null element 4a Measurement wavefront 5 Test object 5a Test surface

フロントページの続き Fターム(参考) 2F064 AA09 BB03 DD09 EE02 EE05 HH03 HH08 2F065 AA45 BB05 CC21 CC22 EE00 FF01 FF04 FF51 JJ03 JJ26 MM06 QQ01 QQ13 QQ27 QQ42 SS02 SS12 Continued on the front page F term (reference) 2F064 AA09 BB03 DD09 EE02 EE05 HH03 HH08 2F065 AA45 BB05 CC21 CC22 EE00 FF01 FF04 FF51 JJ03 JJ26 MM06 QQ01 QQ13 QQ27 QQ42 SS02 SS12

Claims (4)

【特許請求の範囲】[Claims] 【請求項1】被検面の面精度(設計幾何学形状を表わす
関数式でフィッティングした後の残差形状)を測定する
ための干渉計において、 該被検面に既知の量だけ、該測定光学系の参照面に対す
るアライメントずれを与え、該アライメントずれを与え
る前後の干渉計測データの差分データにアライメント誤
差補正を施す際に、該干渉計の測定光学系のディストー
ションを校正し、得られた校正データにより該面精度を
補正することを特徴とする干渉計。
An interferometer for measuring surface accuracy of a surface to be inspected (residual shape after fitting with a functional expression representing a design geometric shape), wherein the measurement is performed by an amount known to the surface to be inspected. When an alignment error with respect to the reference surface of the optical system is given and the difference data of the interference measurement data before and after the alignment error is given is corrected for the alignment error, the distortion of the measuring optical system of the interferometer is calibrated, and the obtained calibration is performed. An interferometer, wherein the surface accuracy is corrected by data.
【請求項2】前記アライメントずれを、前記測定光学系
の光軸を中心とした直交する2方向に与えることにより
得られる、2個の差分データから、前記ディストーショ
ンを校正することを特徴とする、請求項1に記載の干渉
計。
2. The method according to claim 1, wherein the distortion is calibrated from two difference data obtained by giving the misalignment in two directions orthogonal to each other with the optical axis of the measuring optical system as a center. The interferometer according to claim 1.
【請求項3】前記差分データから、前記ディストーショ
ンの回転対称成分を規定する回転対称軸を検出し、該回
転対称軸を基準とした「回転対称ディストーション、及
び残差としての非回転対称ディストーション」を校正す
ることを特徴とする、請求項1乃至2に記載の干渉計。
3. A rotationally symmetric axis that defines a rotationally symmetric component of the distortion is detected from the difference data, and “a rotationally symmetric distortion and a non-rotationally symmetric distortion as a residual” based on the rotationally symmetric axis are detected. 3. The interferometer according to claim 1, wherein the interferometer is calibrated.
【請求項4】前記参照面と前記被検面の干渉状態を保っ
たまま、前記干渉計の本体に前記回転対称軸周りの回転
変位を相対的に与え、該回転変位を与える前後の差分デ
ータから、前記非回転対称ディストーションを、前記測
定光学系に起因する成分と、前記干渉計の本体に起因す
る成分に分離することを特徴とする、請求項3に記載の
干渉計。
4. A relative displacement about the rotational symmetry axis is relatively given to the main body of the interferometer while maintaining the interference state between the reference surface and the test surface, and difference data before and after the rotational displacement is given. 4. The interferometer according to claim 3, wherein the non-rotationally symmetric distortion is separated into a component caused by the measurement optical system and a component caused by the main body of the interferometer.
JP10266126A 1998-09-21 1998-09-21 Interferometer Pending JP2000097663A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP10266126A JP2000097663A (en) 1998-09-21 1998-09-21 Interferometer

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP10266126A JP2000097663A (en) 1998-09-21 1998-09-21 Interferometer

Publications (1)

Publication Number Publication Date
JP2000097663A true JP2000097663A (en) 2000-04-07

Family

ID=17426697

Family Applications (1)

Application Number Title Priority Date Filing Date
JP10266126A Pending JP2000097663A (en) 1998-09-21 1998-09-21 Interferometer

Country Status (1)

Country Link
JP (1) JP2000097663A (en)

Cited By (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2008249415A (en) * 2007-03-29 2008-10-16 Fujinon Corp Method and device for measuring surface displacement of aspheric lens
JP2010145184A (en) * 2008-12-17 2010-07-01 Canon Inc Measuring method and measuring device
US8314937B2 (en) 2009-01-14 2012-11-20 Canon Kabushiki Kaisha Measurement method and measurement apparatus that measure a surface figure of an aspheric surface based on an interference pattern
US8345263B2 (en) 2008-12-17 2013-01-01 Canon Kabushiki Kaisha Measurement method and measurement apparatus that measure a surface figure of an aspheric surface based on an interference pattern
JP2013024756A (en) * 2011-07-22 2013-02-04 Mitsutoyo Corp Abscissa calibration tool of laser interferometry measuring device and abscissa calibration method
US8472030B2 (en) 2009-12-16 2013-06-25 Canon Kabushiki Kaisha Surface profile measuring apparatus, method of measuring surface profile, and method of manufacturing optical element
DE102013203883A1 (en) 2012-03-09 2013-09-12 Canon Kabushiki Kaisha Method for measuring an aspherical surface, device for measuring an aspherical surface, device for producing an optical element and optical element
DE102013004043A1 (en) 2012-03-09 2013-09-12 Canon K.K. Aspheric surface measuring method, aspheric surface measuring device, optical element manufacturing device, and optical element
US9297646B2 (en) 2010-12-17 2016-03-29 Canon Kabushiki Kaisha Measurement method and measurement apparatus

Cited By (14)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2008249415A (en) * 2007-03-29 2008-10-16 Fujinon Corp Method and device for measuring surface displacement of aspheric lens
JP2010145184A (en) * 2008-12-17 2010-07-01 Canon Inc Measuring method and measuring device
US8345263B2 (en) 2008-12-17 2013-01-01 Canon Kabushiki Kaisha Measurement method and measurement apparatus that measure a surface figure of an aspheric surface based on an interference pattern
US8314937B2 (en) 2009-01-14 2012-11-20 Canon Kabushiki Kaisha Measurement method and measurement apparatus that measure a surface figure of an aspheric surface based on an interference pattern
US8472030B2 (en) 2009-12-16 2013-06-25 Canon Kabushiki Kaisha Surface profile measuring apparatus, method of measuring surface profile, and method of manufacturing optical element
US9297646B2 (en) 2010-12-17 2016-03-29 Canon Kabushiki Kaisha Measurement method and measurement apparatus
JP2013024756A (en) * 2011-07-22 2013-02-04 Mitsutoyo Corp Abscissa calibration tool of laser interferometry measuring device and abscissa calibration method
DE102013203883A1 (en) 2012-03-09 2013-09-12 Canon Kabushiki Kaisha Method for measuring an aspherical surface, device for measuring an aspherical surface, device for producing an optical element and optical element
JP2013186024A (en) * 2012-03-09 2013-09-19 Canon Inc Aspheric surface shape measurement method, aspheric surface shape measurement device, optical element processing device and optical element
US8947676B2 (en) 2012-03-09 2015-02-03 Canon Kabushiki Kaisha Aspheric surface measuring method, aspheric surface measuring apparatus, optical element producing apparatus and optical element
DE102013004043B4 (en) * 2012-03-09 2016-01-28 Canon K.K. Aspheric surface measuring method, aspheric surface measuring device, optical element manufacturing device, and optical element
DE102013203883B4 (en) * 2012-03-09 2016-02-04 Canon Kabushiki Kaisha Method for measuring an aspherical surface, device for measuring an aspherical surface, device for producing an optical element and optical element
US9279667B2 (en) 2012-03-09 2016-03-08 Canon Kabushiki Kaisha Aspheric surface measuring method, aspheric surface measuring apparatus, optical element producing apparatus and optical element
DE102013004043A1 (en) 2012-03-09 2013-09-12 Canon K.K. Aspheric surface measuring method, aspheric surface measuring device, optical element manufacturing device, and optical element

Similar Documents

Publication Publication Date Title
EP1869401B1 (en) Method for accurate high-resolution measurements of aspheric surfaces
KR100972571B1 (en) Aspheric lens surface-misalignment measuring method and apparatus
CN110188321B (en) Primary and secondary mirror calibration method based on neural network algorithm
US10323938B2 (en) Method for calibrating a measuring device
KR101930602B1 (en) Method for measuring a spherical-astigmatic optical area by fizeau interferometry
JPH1096679A (en) Apparatus for measuring wavefront aberration
JP2000097663A (en) Interferometer
JPH1163946A (en) Methods for measuring shape and manufacturing high-precision lens
KR20110065365A (en) Method and apparatus for measuring aspherical body
JPH0996589A (en) Method and apparatus for measuring performance of lens
JP2002206915A (en) Abscissa calibration method for facial shape measuring device and facial shape measuring device
JP4886372B2 (en) Interference measuring apparatus and interference measuring method
JP2007010609A (en) Method for manufacturing aspheric lens, eccentricity measuring method of aspheric lens, eccentricity measuring device, and aspheric lens manufactured by this method
JP3146590B2 (en) Shape measuring method and shape measuring system
JP2006133059A (en) Device for measuring interference
JP4802134B2 (en) Posture change measuring method and apparatus
JP6139950B2 (en) Measuring device, measuring method and original device
JP2003269952A (en) Three-dimensional shape measurement device and method
JPH10221007A (en) Method and apparatus for absolute wave front calibration
JPH10281737A (en) Method for synthesizing wave front
JP5618727B2 (en) Shape measuring method and shape measuring device
JPH09113237A (en) Folded null interferometer
JP2000088545A (en) Method of measuring nonspherical shape
CN108195309B (en) Method for measuring surface shape error of off-axis aspheric element
JP2000275021A (en) Apparatus for measuring shape of face