JP3335749B2 - Method for producing thermoelectric conversion element material - Google Patents
Method for producing thermoelectric conversion element materialInfo
- Publication number
- JP3335749B2 JP3335749B2 JP02370394A JP2370394A JP3335749B2 JP 3335749 B2 JP3335749 B2 JP 3335749B2 JP 02370394 A JP02370394 A JP 02370394A JP 2370394 A JP2370394 A JP 2370394A JP 3335749 B2 JP3335749 B2 JP 3335749B2
- Authority
- JP
- Japan
- Prior art keywords
- thermoelectric conversion
- phase
- conversion element
- fesi
- producing
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Expired - Fee Related
Links
- 238000006243 chemical reaction Methods 0.000 title claims description 19
- 239000000463 material Substances 0.000 title claims description 18
- 238000004519 manufacturing process Methods 0.000 title claims description 12
- XEEYBQQBJWHFJM-UHFFFAOYSA-N Iron Chemical compound [Fe] XEEYBQQBJWHFJM-UHFFFAOYSA-N 0.000 claims description 19
- 239000000843 powder Substances 0.000 claims description 17
- QVGXLLKOCUKJST-UHFFFAOYSA-N atomic oxygen Chemical compound [O] QVGXLLKOCUKJST-UHFFFAOYSA-N 0.000 claims description 16
- 239000001301 oxygen Substances 0.000 claims description 16
- 229910052760 oxygen Inorganic materials 0.000 claims description 16
- 239000004065 semiconductor Substances 0.000 claims description 15
- 229910045601 alloy Inorganic materials 0.000 claims description 14
- 239000000956 alloy Substances 0.000 claims description 14
- 229910005329 FeSi 2 Inorganic materials 0.000 claims description 13
- 238000000034 method Methods 0.000 claims description 13
- 229910052742 iron Inorganic materials 0.000 claims description 9
- 229910021332 silicide Inorganic materials 0.000 claims description 9
- FVBUAEGBCNSCDD-UHFFFAOYSA-N silicide(4-) Chemical compound [Si-4] FVBUAEGBCNSCDD-UHFFFAOYSA-N 0.000 claims description 9
- 238000007712 rapid solidification Methods 0.000 claims description 5
- 238000000227 grinding Methods 0.000 claims description 2
- 238000010438 heat treatment Methods 0.000 description 9
- 239000002245 particle Substances 0.000 description 6
- 238000005204 segregation Methods 0.000 description 4
- 229910005347 FeSi Inorganic materials 0.000 description 2
- 230000000694 effects Effects 0.000 description 2
- 239000007788 liquid Substances 0.000 description 2
- 238000010791 quenching Methods 0.000 description 2
- 230000000171 quenching effect Effects 0.000 description 2
- 238000005266 casting Methods 0.000 description 1
- 239000004020 conductor Substances 0.000 description 1
- 238000007796 conventional method Methods 0.000 description 1
- 239000013078 crystal Substances 0.000 description 1
- 238000009689 gas atomisation Methods 0.000 description 1
- 239000002184 metal Substances 0.000 description 1
- 229910052751 metal Inorganic materials 0.000 description 1
- 239000000203 mixture Substances 0.000 description 1
- 238000009832 plasma treatment Methods 0.000 description 1
- 238000010298 pulverizing process Methods 0.000 description 1
- 239000002994 raw material Substances 0.000 description 1
- 238000005245 sintering Methods 0.000 description 1
- 238000007711 solidification Methods 0.000 description 1
- 230000008023 solidification Effects 0.000 description 1
Landscapes
- Manufacture Of Metal Powder And Suspensions Thereof (AREA)
- Powder Metallurgy (AREA)
- Compounds Of Iron (AREA)
Description
【0001】[0001]
【産業上の利用分野】本発明は、主として半導体相(β
相FeSi 2 )よりなる高特性熱電変換素子用材料の製造方
法に関する。The present invention mainly relates to a semiconductor phase (β
The present invention relates to a method for producing a material for a high-performance thermoelectric conversion element comprising FeSi 2 ) .
【0002】熱電変換材料は熱エネルギーを電気エネル
ギーに直接変換することができる材料として一般によく
知られている。中でも鉄シリサイド合金は高温条件にも
使用できる材料として注目されている。[0002] Thermoelectric conversion materials are generally well known as materials capable of directly converting heat energy into electric energy. Above all, iron silicide alloys are attracting attention as materials that can be used even at high temperatures.
【0003】通常の鋳造法によって製造された鉄シリサ
イド合金はゼーベック係数で示される熱起電力が400 μ
V/K以下であり、実用化には不十分である。これは合金
の内部偏析による熱起電力の低下が原因であると考えら
れている。従って、熱電変換材料を実用化するために
は、熱起電力をさらに高めることが望まれる。[0003] An iron silicide alloy produced by a normal casting method has a thermoelectromotive force represented by a Seebeck coefficient of 400 µm.
V / K or less, which is insufficient for practical use. This is considered to be due to a decrease in thermoelectromotive force due to internal segregation of the alloy. Therefore, in order to put the thermoelectric conversion material into practical use, it is desired to further increase the thermoelectromotive force.
【0004】そこで、熱電変換効率を向上させるため、
様々な試みがなされている。例えば、プラズマ処理によ
って酸素を均一に添加することを特徴とする熱電変換材
料の製造方法は、これら特性面での欠点を解決し、非常
に大きな熱起電力を有する熱電変換材料の製造に成功し
ている。しかし、プラズマ処理に高エネルギーが必要で
ある等の問題を持っており、必ずしも実用的な製造方法
であるとはいえない。Therefore, in order to improve the thermoelectric conversion efficiency,
Various attempts have been made. For example, a method for producing a thermoelectric conversion material characterized by uniformly adding oxygen by plasma treatment solves these disadvantages in terms of characteristics and succeeds in producing a thermoelectric conversion material having a very large thermoelectromotive force. ing. However, it has problems such as the necessity of high energy for plasma processing, and is not necessarily a practical manufacturing method.
【0005】[0005]
【発明が解決使用とする課題】本発明は、熱起電力の増
大および熱伝導率の低減によって高い熱電特性を有する
主として半導体相(β相FeSi 2 )よりなる高特性熱電変
換素子用材料を製造するにあたり、より簡単でより実用
的な製造方法を提供することである。SUMMARY OF THE INVENTION The present invention has high thermoelectric characteristics due to an increase in thermoelectromotive force and a reduction in thermal conductivity.
High-performance thermoelectric conversion mainly composed of semiconductor phase (β-phase FeSi 2 )
An object of the present invention is to provide a simpler and more practical method for producing a replacement element material .
【0006】[0006]
【課題を解決するための手段】上記の課題を解決するた
めの手段は、FeSi2系鉄シリサイド合金の小片或いは粉
粒を15%以上の酸素含有雰囲気中でメカニカルグライ
ディング(以下「MG」という。)することによって酸
素を添加することを特徴とする主として半導体相(β相
FeSi 2 )よりなる高特性熱電変換素子用粉末の製造方法
である。A means for solving the above-mentioned problems is a method for mechanically grinding small pieces or particles of FeSi 2 -based iron silicide alloy in an atmosphere containing 15% or more of oxygen (hereinafter referred to as “MG”). ) By adding oxygen mainly to the semiconductor phase (β phase
This is a method for producing a high-performance thermoelectric conversion element powder composed of FeSi 2 ) .
【0007】また、上記方法における原料のFeSi2系鉄
シリサイド合金として急冷凝固法により製造したものを
使用することを特徴とする主として半導体相(β相FeSi
2 )よりなる高特性熱電変換素子用粉末の製造方法であ
る。[0007] Further, as the FeSi 2 -based iron silicide alloy used as the raw material in the above method, an alloy produced by a rapid solidification method is used, and mainly a semiconductor phase (β-phase FeSi
2 ) A method for producing a powder for a high-performance thermoelectric conversion element, comprising:
【0008】さらに、上記の方法で得られた主として半
導体相(β相FeSi 2 )よりなる高特性熱電変換素子用粉
末を固化成形し、加熱保持することを特徴とする高い起
電力を有する主として半導体相(β相FeSi 2 )よりなる
高特性熱電変換素子用材料の製造方法である。[0008] Further, mainly the half obtained by the above-mentioned method.
High performance thermoelectric conversion element powder consisting of conductor phase (β-phase FeSi 2 ) is solidified and molded and held by heating Mainly composed of semiconductor phase (β-phase FeSi 2 ) with high electromotive force
This is a method for producing a material for a high-performance thermoelectric conversion element .
【0009】[0009]
【作用】すなわち、液体急冷法によって得た薄帯や線の
小片やアトマイズ法等の急冷凝固法によって製造した粉
末等、結晶粒が細かく内部偏析の非常に少ないFeSi2 系
鉄シリサイド合金を、15%以上の酸素含有雰囲気中で
MGすることによって、粉砕すると同時に合金内に酸素
を均一に侵入させる。得られた粉末を固化成形した後、
870K以上1250K 以下の温度で加熱保持することにより、
主として半導体相(β相)よりなる高性能熱電変換素子
用材料となる。この際、加熱保持後の焼結体中に含まれ
る半導体相の割合が高い程好ましく、全てが半導体相に
なるのが理想的である。MGを行う雰囲気中の酸素濃度
に制限はないが、大気中の酸素濃度で効果があり、これ
以下にするのは非実用的である。また、酸素濃度が大き
いほどより短時間で効果が現れる。また、加熱保持温度
を上記の温度範囲に限定した理由は、金属相よりなるFe
Si2 系鉄シリサイド合金から半導体相を得るためには12
50K 以下の温度で加熱保持することが必要であるが、87
0K未満の温度では半導体相を得るために長時間の加熱保
持が必要になり、非現実的であることによる。[Features] An FeSi 2 -based iron silicide alloy having fine crystal grains and very little internal segregation, such as a ribbon or a small piece of wire obtained by a liquid quenching method, or a powder produced by a rapid solidification method such as an atomizing method, is used for 15 times. By performing MG in an atmosphere containing oxygen of not less than%, oxygen is uniformly penetrated into the alloy while being pulverized. After solidifying the obtained powder,
By heating and holding at a temperature of 870K to 1250K,
It is a high-performance thermoelectric conversion element material mainly composed of a semiconductor phase (β phase). At this time, it is preferable that the ratio of the semiconductor phase contained in the sintered body after the heating and holding is higher, and it is ideal that all of the semiconductor phase is the semiconductor phase. There is no limitation on the oxygen concentration in the atmosphere in which the MG is performed, but the effect is effective in the oxygen concentration in the atmosphere, and it is impractical to lower the oxygen concentration in the atmosphere. In addition, the effect appears in a shorter time as the oxygen concentration is higher. Further, the reason why the heating holding temperature is limited to the above temperature range is that the metal phase is made of Fe
In order to obtain a semiconductor phase from an Si 2 -based iron silicide alloy, 12
It is necessary to heat and maintain at a temperature of 50K or less, but 87
At a temperature lower than 0K, a long-time heating and holding is required to obtain a semiconductor phase, which is unrealistic.
【0010】本発明に関する熱電変換素子用材料の製造
方法においては、急冷凝固法を用いて製造した鉄シリサ
イド合金を酸素含有雰囲気中でMGして、粉砕と同時に
酸素を添加する工程を含み、また、得られた粉末を焼結
させ、さらに加熱保持する工程を有する。[0010] The method for producing a thermoelectric conversion element material according to the present invention includes a step of MG-treating an iron silicide alloy produced by a rapid solidification method in an oxygen-containing atmosphere and adding oxygen simultaneously with pulverization. And a step of sintering the obtained powder and further heating and holding.
【0011】[0011]
実施例1.単ロール式液体急冷凝固装置を用い、FeSi
2.0 の急冷薄帯を製造する。製造した急冷薄帯は厚さ約
30μm、幅約2mm、長さは脆いため数cmに折れてい
る。この急冷薄帯の200gを遊星形ボールミルにより
表1の条件下でMGした。得られた粉末の平均粒径は約
10μmであった。これを表2の条件でホットプレスし
た。Embodiment 1 FIG. Using a single-roll liquid quenching solidification device,
Produce 2.0 quenched ribbons. The quenched ribbon produced is about 30 μm thick, about 2 mm wide, and broken to several cm because of its brittle length. 200 g of the quenched ribbon was subjected to MG by a planetary ball mill under the conditions shown in Table 1. The average particle size of the obtained powder was about 10 μm. This was hot-pressed under the conditions shown in Table 2.
【0012】[0012]
【表1】 [Table 1]
【0013】得られた焼結体から試験片を切りだし、1
113Kで50時間加熱保持した後、343Kにおいて
熱起電力(ゼーベック係数)を測定した。その結果、5
00μV/Kという非常に大きな熱起電力を示した。A test piece was cut out from the obtained sintered body, and 1
After heating and holding at 113K for 50 hours, the thermoelectromotive force (Seebeck coefficient) was measured at 343K. As a result, 5
It showed a very large thermoelectromotive force of 00 μV / K.
【0014】[0014]
【表2】 [Table 2]
【0015】実施例2.実施例1と同様の方法にて製造
したFeSi2.0 の急冷薄帯200g を遊星型ボールミルに
より表3の条件下でMGした。得られた粉末の平均粒径
は約10μmであった。これを表2の条件でホットプレ
スした。得られた焼結体から試験片を切り出し、111
3Kで50時間加熱保持した後、343Kにおいて熱起
電力(ゼーベック係数)を測定した。その結果、510
μV/Kという非常に大きな熱起電力を示した。Embodiment 2 FIG. 200 g of the quenched thin ribbon of FeSi 2.0 produced in the same manner as in Example 1 was subjected to MG using a planetary ball mill under the conditions shown in Table 3. The average particle size of the obtained powder was about 10 μm. This was hot-pressed under the conditions shown in Table 2. A test piece was cut out from the obtained sintered body, and 111
After heating and holding at 3K for 50 hours, the thermoelectromotive force (Seebeck coefficient) was measured at 343K. As a result, 510
It showed a very large thermoelectromotive force of μV / K.
【0016】[0016]
【表3】 [Table 3]
【0017】実施例3.実施例1と同組成の材料をガス
アトマイズ法によって粉末化した。粉末の平均粒径は6
0μmであった。この粉末を表1の条件下でMGした。
得られた粉末の平均粒径は約10μmであった。これを
表2の条件でホットプレスした。得られた焼結体から試
験片を切り出し、1113Kで50時間加熱ほじした
後、343Kにおいて熱起電力(ゼーベック係数)を測
定した。その結果、490μV/Kという非常に大きな熱
起電力を示した。Embodiment 3 FIG. A material having the same composition as in Example 1 was powdered by a gas atomizing method. The average particle size of the powder is 6
It was 0 μm. This powder was MG under the conditions shown in Table 1.
The average particle size of the obtained powder was about 10 μm. This was hot-pressed under the conditions shown in Table 2. A test piece was cut out from the obtained sintered body, heated at 1113K for 50 hours, and then measured at 343K for a thermoelectromotive force (Seebeck coefficient). As a result, a very large thermoelectromotive force of 490 μV / K was shown.
【0018】実施例4.実施例1と同様の方法にて製造
したFeSi2.0 の急冷薄帯200g を遊星型ボールミルに
より表4の条件下でMGした。得られた粉末の平均粒径
は約10μmであった。これを表2の条件でホットプレ
スした。得られた焼結体から試験片を切り出し、111
3Kで50時間加熱保持した後、343Kにおいて熱起
電力(ゼーベック係数)を測定した。その結果、510
μV/Kという非常に大きな熱起電力を示した。Embodiment 4 FIG. 200 g of a rapidly quenched thin ribbon of FeSi 2.0 produced in the same manner as in Example 1 was subjected to MG using a planetary ball mill under the conditions shown in Table 4. The average particle size of the obtained powder was about 10 μm. This was hot-pressed under the conditions shown in Table 2. A test piece was cut out from the obtained sintered body, and 111
After heating and holding at 3K for 50 hours, the thermoelectromotive force (Seebeck coefficient) was measured at 343K. As a result, 510
It showed a very large thermoelectromotive force of μV / K.
【0019】[0019]
【表4】 [Table 4]
【0020】本発明によれば、急冷凝固法によって製造
した内部偏析の少ない合金を酸素雰囲気中でMGするこ
とにより、従来のプラズマ処理によって酸素を添加する
方法に比して、プラズマ処理による高エネルギーを要す
ることもなく、合金粉末中に酸素が均一に添加できる。
その結果この粉末を固化成形し、さらに加熱保持するこ
とによって内部偏析による熱起電力の低下のない非常に
大きな熱起電力を有する主として半導体相(β相FeS
i 2 )よりなる高特性熱電変換素子用材料が得られる。According to the present invention, an alloy having a low internal segregation manufactured by the rapid solidification method is subjected to MG in an oxygen atmosphere, so that high energy by the plasma processing is obtained as compared with the conventional method of adding oxygen by the plasma processing. And oxygen can be uniformly added to the alloy powder.
As a result, this powder is solidified and formed, and is further heated and maintained. The semiconductor phase (β-phase FeS) having a very large thermoelectromotive force without a decrease in thermoelectromotive force due to internal segregation
A material for a high-performance thermoelectric conversion element comprising i 2 ) is obtained.
───────────────────────────────────────────────────── フロントページの続き (56)参考文献 特開 平4−165042(JP,A) 特開 昭61−52329(JP,A) 特開 昭64−2379(JP,A) 特開 平2−27779(JP,A) 特開 平2−205603(JP,A) 特開 昭62−192544(JP,A) (58)調査した分野(Int.Cl.7,DB名) B22F 1/00 - 9/04 H01L 35/14 ──────────────────────────────────────────────────続 き Continuation of the front page (56) References JP-A-4-165504 (JP, A) JP-A-61-2529 (JP, A) JP-A-64-2379 (JP, A) JP-A-2- 27779 (JP, A) JP-A-2-205603 (JP, A) JP-A-62-192544 (JP, A) (58) Fields investigated (Int. Cl. 7 , DB name) B22F 1/00-9 / 04 H01L 35/14
Claims (3)
の酸素含有雰囲気中でメカニカルグライディングするこ
とにより酸素を添加することを特徴とする主として半導
体相(β相FeSi 2 )よりなる高特性熱電変換素子用粉末
材料の製造方法。A semiconductor device characterized in that oxygen is added by mechanically grinding an FeSi 2 -based iron silicide alloy in an oxygen-containing atmosphere of 15% or more.
A method for producing a powder material for a high-performance thermoelectric conversion element comprising a body phase (β-phase FeSi 2 ) .
により製造したものであることを特徴とする請求項1記
載の主として半導体相(β相FeSi 2 )よりなる高特性熱
電変換素子用粉末材料の製造方法。2. The powder material for a high-performance thermoelectric conversion element mainly comprising a semiconductor phase (β-phase FeSi 2 ) according to claim 1, wherein the FeSi 2 -based iron silicide alloy is manufactured by a rapid solidification method. Manufacturing method.
り製造した高特性熱電変換素子用粉末材料を固化成形
し、さらに870K以上1250K以下の温度で加熱保
持することを特徴とする主として半導体相(β相FeS
i 2 )よりなる高特性熱電変換素子用材料の製造方法。3. A semiconductor, wherein the powder material for a high-performance thermoelectric conversion element manufactured by the method according to claim 1 is solidified and molded, and further heated and maintained at a temperature of 870K to 1250K. Phase (β-phase FeS
i 2 ) A method for producing a material for a high-performance thermoelectric conversion element comprising:
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP02370394A JP3335749B2 (en) | 1994-01-26 | 1994-01-26 | Method for producing thermoelectric conversion element material |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP02370394A JP3335749B2 (en) | 1994-01-26 | 1994-01-26 | Method for producing thermoelectric conversion element material |
Publications (2)
Publication Number | Publication Date |
---|---|
JPH07216401A JPH07216401A (en) | 1995-08-15 |
JP3335749B2 true JP3335749B2 (en) | 2002-10-21 |
Family
ID=12117738
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP02370394A Expired - Fee Related JP3335749B2 (en) | 1994-01-26 | 1994-01-26 | Method for producing thermoelectric conversion element material |
Country Status (1)
Country | Link |
---|---|
JP (1) | JP3335749B2 (en) |
Families Citing this family (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP5201691B2 (en) * | 2009-12-04 | 2013-06-05 | 独立行政法人産業技術総合研究所 | Oxygen-containing intermetallic compound thermoelectric conversion material and thermoelectric conversion element to thermoelectric conversion module |
-
1994
- 1994-01-26 JP JP02370394A patent/JP3335749B2/en not_active Expired - Fee Related
Also Published As
Publication number | Publication date |
---|---|
JPH07216401A (en) | 1995-08-15 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
JP3092463B2 (en) | Thermoelectric material and thermoelectric conversion element | |
JP5329423B2 (en) | A method for high explicit numbers in thermoelectric materials with nanostructures | |
Okamura et al. | Preparation of single-phase ZnSb thermoelectric materials using a mechanical grinding process | |
Umemoto | Preparation of thermoelectric β-FeSi2 doped with Al and Mn by mechanical alloying (Overview) | |
Mohebali et al. | Thermoelectric figure of merit of bulk FeSi2–Si0. 8Ge0. 2 nanocomposite and a comparison with β-FeSi2 | |
JP3458587B2 (en) | Thermoelectric conversion material and its manufacturing method | |
Cook et al. | Parasitic effects of oxygen on the thermoelectric properties of Si80Ge20 doped with GaP and P | |
JP3335749B2 (en) | Method for producing thermoelectric conversion element material | |
Ur et al. | Phase transformation and thermoelectric properties of n-type Fe0. 98Co0. 02Si2 processed by mechanical alloying | |
JPH06144825A (en) | Production of thermoelectric element | |
Hwang et al. | Effects of excess Te on the thermoelectric properties of p-type 25% Bi2Te3-75% Sb2Te3 single crystal and hot-pressed sinter | |
JP3002378B2 (en) | Method for producing material for high-performance thermoelectric conversion element | |
JPH01196104A (en) | Manufacture of rare earth alloy magnet | |
Cook et al. | The preparation of SiGe thermoelectric materials by mechanical alloying | |
JP3750156B2 (en) | Manufacturing method of iron disilicide | |
JP2533356B2 (en) | Thermoelectric element and manufacturing method thereof | |
JPH1012933A (en) | Manufacture of material powder for fesi2 thermoelectric conversion element | |
JP3404804B2 (en) | Manufacturing method of thermoelectric material | |
Ur et al. | Properties of Co-doped N-type FeSi 2 processed by mechanical alloying | |
JP2665014B2 (en) | Manufacturing method of thermoelectric conversion element material | |
Ha et al. | Thermoelectric properties of n-type bismuth telluride based alloys prepared by hot pressing and zone melting method | |
Cook et al. | Oxygen Effects in Mechanically Alloyed Si80 Ge20 Doped with GaP and P | |
JPH06204571A (en) | Manufacture of composite thermoelectric material | |
Ito et al. | Effects of Y2O3 and Y Addition on Thermoelectric Properties of β-FeSi2 Synthesized by Mechanical Alloying and Hot Pressing | |
Lee et al. | Thermoelectric properties of the hot-pressed Bi 2 (Te 0.85 Se 0.15) 3 alloy with addition of BN powders |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20080802 Year of fee payment: 6 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20090802 Year of fee payment: 7 |
|
LAPS | Cancellation because of no payment of annual fees |