JP3334996B2 - Reduction-suppressed cathode and method for producing the same - Google Patents

Reduction-suppressed cathode and method for producing the same

Info

Publication number
JP3334996B2
JP3334996B2 JP04072594A JP4072594A JP3334996B2 JP 3334996 B2 JP3334996 B2 JP 3334996B2 JP 04072594 A JP04072594 A JP 04072594A JP 4072594 A JP4072594 A JP 4072594A JP 3334996 B2 JP3334996 B2 JP 3334996B2
Authority
JP
Japan
Prior art keywords
cathode
ion exchanger
electrolysis
ion
reduction
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP04072594A
Other languages
Japanese (ja)
Other versions
JPH07252683A (en
Inventor
修 有元
眞二 片山
Original Assignee
クロリンエンジニアズ株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by クロリンエンジニアズ株式会社 filed Critical クロリンエンジニアズ株式会社
Priority to JP04072594A priority Critical patent/JP3334996B2/en
Publication of JPH07252683A publication Critical patent/JPH07252683A/en
Application granted granted Critical
Publication of JP3334996B2 publication Critical patent/JP3334996B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Landscapes

  • Electrodes For Compound Or Non-Metal Manufacture (AREA)
  • Electrolytic Production Of Non-Metals, Compounds, Apparatuses Therefor (AREA)

Description

【発明の詳細な説明】DETAILED DESCRIPTION OF THE INVENTION

【0001】[0001]

【産業上の利用分野】本発明は、無機塩水溶液を電気分
解する際に使用する陰極とその製法に関し、特に次亜塩
素酸塩、塩素酸塩、過塩素酸塩、過硫酸塩等を電気分解
によって製造する際に使用する陰極とその製造方法に関
する。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a cathode used for electrolyzing an aqueous solution of an inorganic salt and a method for producing the same, and particularly to a method for converting hypochlorite, chlorate, perchlorate, persulfate, etc. The present invention relates to a cathode used for production by decomposition and a production method thereof.

【0002】[0002]

【従来の技術】アルカリ金属塩化物等の水溶液を電気分
解し、有用な次亜塩素酸塩、塩素酸塩、過塩素酸塩等の
酸化性物質を製造することがおこなわれている。酸化性
物質の製造においては、酸化性物質が副反応、温度によ
る分解、陰極との接触による還元等によって酸化性物質
の収率が低下することが知られており、酸化性物質の収
率を向上させるため種々の方法がとられている。次亜塩
素酸塩は、工業的には塩素とアルカリ金属水酸化物の化
学反応によって製造することが行われているが、上下水
道等の殺菌、水中構造物や配管内等の生物付着防止等に
利用される次亜塩素酸塩を消費場所において電気分解に
よって製造されている。電気分解で製造する場合は、数
パーセントの比較的低濃度の塩水を原料として、貴金属
または貴金属酸化物を電極触媒とする金属電極を陽極と
し、ステンレス、チタン等の金属を陰極として無隔膜で
電気分解している。
2. Description of the Related Art An aqueous solution of an alkali metal chloride or the like is electrolyzed to produce useful oxidizing substances such as hypochlorite, chlorate and perchlorate. In the production of oxidizing substances, it is known that the yield of oxidizing substances decreases due to side reactions, decomposition by temperature, reduction by contact with the cathode, etc. Various methods have been adopted to improve the performance. Hypochlorite is industrially produced by the chemical reaction of chlorine and alkali metal hydroxide, but it is used to sterilize water and sewage systems and to prevent biofouling of underwater structures and pipes. The hypochlorite used for is manufactured by electrolysis at the point of consumption. In the case of production by electrolysis, a relatively low-concentration salt water of a few percent is used as a raw material, a metal electrode using a noble metal or a noble metal oxide as an electrode catalyst is used as an anode, and a metal such as stainless steel or titanium is used as a cathode. Has been disassembled.

【0003】電気分解で得られる次亜塩素酸塩の生成効
率を高め、陰極による次亜塩素酸塩の還元防止、温度上
昇による分解の防止等の目的で、陽極/陰極の面積比を
増大させる方法(特開昭63−110575号公報)、
液流速を上げる方法(特公昭46−4450号公報)、
電解槽構造を改善する方法(特開平4−74879号公
報)などがある。しかし、これらの方法では、次亜塩素
酸塩の還元抑制が不十分であり、食塩の次亜塩素酸塩へ
の転化率を下げ、次亜塩素酸塩濃度を低く維持すること
で対応するのが主流となっている。
The area ratio of anode / cathode is increased for the purpose of increasing the production efficiency of hypochlorite obtained by electrolysis, preventing reduction of hypochlorite by a cathode, and preventing decomposition due to temperature rise. Method (JP-A-63-110575),
A method of increasing the liquid flow velocity (Japanese Patent Publication No. 46-4450),
There is a method (JP-A-4-74879) for improving the structure of the electrolytic cell. However, these methods do not sufficiently control the reduction of hypochlorite, and can reduce the conversion rate of sodium chloride to hypochlorite by keeping the hypochlorite concentration low. Is the mainstream.

【0004】また、塩素酸塩の製造は、塩水を貴金属ま
たは貴金属酸化物と電極触媒とする金属電極を陽極と
し、鉄やチタン等を陰極とし無隔膜で電気分解する方法
が一般的である。この場合、製品である塩素酸塩の陰極
による還元を減少させる方法として、電解液にクロム酸
塩や重クロム酸塩を添加することが知られている。この
方法は、陰極での塩素酸塩の還元を抑制するのは効果的
であるが、クロム酸塩の添加により電解電圧が上昇し電
力原単位が悪化し、製品中に有害なクロム酸塩が混入す
るといった問題があった。クロム酸塩を添加せずに塩素
酸塩の収率を上げる方法として、陽イオン交換膜で区画
した電解槽の陽極室に、陰極室で発生したアルカリ金属
水酸化物の水溶液を加えながら電気分解を行い陽極室か
ら塩素酸塩を得る方法が特開平3−199387号公報
に記載されている。この方法は、食塩のイオン交換膜法
電気分解設備を塩素酸塩の製造に使用するものであり、
高価な陽イオン交換膜を使用する必要があり、さらに塩
水もイオン交換膜法食塩電解と同等の品質が要求される
などの問題がある。
[0004] The production of chlorate is generally carried out by electrolysis using a noble metal or a noble metal oxide and an electrode catalyst as an anode, iron or titanium or the like as a cathode, and a diaphragm without a diaphragm. In this case, as a method of reducing the reduction of the product chlorate by the cathode, it is known to add a chromate or a bichromate to the electrolytic solution. This method is effective in suppressing the reduction of chlorate at the cathode, but the addition of chromate increases the electrolysis voltage, deteriorating the power consumption, and causing harmful chromate in the product. There was a problem of mixing. As a method of increasing the chlorate yield without adding chromate, electrolysis is performed while adding an aqueous solution of alkali metal hydroxide generated in the cathode compartment to the anode compartment of the electrolytic cell partitioned by a cation exchange membrane. And a method for obtaining chlorate from the anode chamber is described in JP-A-3-199387. This method uses a salt ion exchange membrane electrolysis facility for the production of chlorate,
It is necessary to use an expensive cation exchange membrane, and there is a problem that salt water is required to have the same quality as that of the salt electrolysis by the ion exchange membrane method.

【0005】過塩素酸塩を電気分解で製造する場合は、
塩素酸塩水溶液を白金または白金・イリジウム合金を陽
極とし、鉄を陰極とし無隔膜で電気分解する方法が一般
的である。この場合、製品である過塩素酸塩の陰極によ
る還元を減少させる方法として、電解液にクロム酸塩や
重クロム酸塩を添加することが知られている。しかし、
この方法も塩素酸塩の製造と同様にクロム酸塩の添加に
より電解電圧が上昇し電力原単位が悪化するとか、製品
の過塩素酸塩に有害なクロム酸塩が混入するといった問
題がある。過硫酸塩を電気分解で製造する場合は、硫酸
塩水溶液を白金を陽極とし、鉛等を陰極とし電気分解す
る方法が一般的である。この場合、製品である過硫酸塩
の陰極による還元を減少させる方法としてイオン交換膜
を使用することが知られている。しかし、この方法は膜
の使用による電解電圧の上昇とか隔膜が高価であり経済
的でないといった問題がある。
When producing perchlorate by electrolysis,
A common method is to use a chlorate aqueous solution with platinum or a platinum-iridium alloy as an anode and iron as a cathode to perform electrolysis without a diaphragm. In this case, it is known to add a chromate or a dichromate to the electrolytic solution as a method of reducing the reduction of the product perchlorate by the cathode. But,
This method also has a problem in that the addition of chromate increases the electrolysis voltage and deteriorates the power consumption unit, as in the production of chlorate, and harmful chromate is mixed into the perchlorate of the product. When a persulfate is produced by electrolysis, it is common to electrolyze a sulfate aqueous solution using platinum as an anode and lead or the like as a cathode. In this case, it is known to use an ion exchange membrane as a method for reducing the reduction of the product persulfate by the cathode. However, this method has problems such as an increase in the electrolysis voltage due to the use of the membrane and an expensive and uneconomical diaphragm.

【0006】[0006]

【発明が解決しようとする課題】次亜塩素酸塩を電気分
解で製造する場合は、食塩の分解率を上げ効率よく有効
塩素濃度1万数千ppmの溶液を得ることができること
を課題とするものであり、塩素酸塩や過塩素酸塩を電気
分解で製造する場合は、クロム酸塩を使用せずに高電流
効率が得られることを課題とし、さらに、過硫酸塩を電
気分解で製造する場合は隔膜を使用せずに高電流効率が
得られることを課題とするものである。
When hypochlorite is produced by electrolysis, it is an object of the present invention to increase the decomposition rate of sodium chloride and to efficiently obtain a solution having an effective chlorine concentration of 10,000 ppm. In the case of producing chlorate or perchlorate by electrolysis, the problem is to obtain high current efficiency without using chromate.In addition, persulfate is produced by electrolysis. In this case, it is an object to obtain high current efficiency without using a diaphragm.

【0007】[0007]

【課題を解決するための手段】本発明によれば、無機塩
水溶液を電気分解する電解槽において、イオン交換体で
電極表面を覆うことにより電極表面で起こるイオンの還
元を抑制する陰極が提供される。更に、本発明は、イオ
ン交換体で電極表面を覆う方法がイオン交換体の塗布で
あることを特徴とする還元抑制陰極の製法を提供する。
According to the present invention, there is provided a cathode for suppressing the reduction of ions occurring on an electrode surface by covering the electrode surface with an ion exchanger in an electrolytic cell for electrolyzing an aqueous solution of an inorganic salt. You. Further, the present invention provides a method for producing a reduction-suppressing cathode, wherein the method of covering the electrode surface with the ion exchanger is coating of the ion exchanger.

【0008】以下、本発明について詳細に説明する。本
発明者らは、無機塩水溶液の電気分解において電流効率
が低下する機構を解明し、それをもとに本発明に到達し
た。次亜塩素酸塩を電気分解で製造する場合は、電流効
率が低下する機構として次の3つがある。それは食塩濃
度が低いことによる酸素発生、次亜塩素酸イオンの陽極
による塩素酸イオンへの酸化、次亜塩素酸イオンの陰極
による塩化物イオンへの還元である。発明者らは上記3
つの機構のうち3番目の次亜塩素酸イオンの陰極による
塩化物イオンへの還元が電流効率低下の主因であること
を実験で確認した。
Hereinafter, the present invention will be described in detail. The present inventors have clarified the mechanism by which the current efficiency is reduced in the electrolysis of an inorganic salt aqueous solution, and have reached the present invention based on the mechanism. When hypochlorite is produced by electrolysis, there are the following three mechanisms for reducing current efficiency. These are oxygen generation due to low salt concentration, oxidation of hypochlorite ion to chlorite ion by anode, and reduction of hypochlorite ion to chloride ion by cathode. The inventors have considered the above 3
Experiments have confirmed that the reduction of hypochlorite ion to chloride ion by the cathode, which is the third of the three mechanisms, is the main cause of the decrease in current efficiency.

【0009】塩素酸塩を電気分解で製造する場合は、電
流効率が低下する機構には次の3つがある。それは水電
解による酸素発生、次亜塩素酸イオンの陰極による塩化
物イオンへの還元、塩素酸イオンの塩化物イオンへの還
元である。水電解による酸素発生は陽極反応であり、こ
れを決定する因子には食塩濃度、電解温度、電流密度、
電解液pH等があるが、電解性能が最大になる値が設定
されている。次亜塩素酸イオンの陰極による塩化物イオ
ンへの還元と塩素酸イオンの塩化物イオンへの還元を抑
制する方法として、電解液にクロム酸塩や重クロム酸塩
を添加することが知られている。この方法の機構はクロ
ム酸イオンや重クロム酸イオンが陰極表面で還元され、
水酸化クロムを主体とする被膜が形成され、この被膜は
次亜塩素酸イオンや塩素酸イオンのようなイオンが陰極
に接触するのを抑える働きがあり、その結果として塩化
物イオンへの還元が抑制できると考えられている。
When chlorate is produced by electrolysis, there are the following three mechanisms for reducing the current efficiency. They are oxygen generation by water electrolysis, reduction of hypochlorite ion to chloride ion by cathode, and reduction of chlorite ion to chloride ion. Oxygen generation by water electrolysis is an anodic reaction. Factors that determine this are salt concentration, electrolysis temperature, current density,
There is an electrolyte pH and the like, but a value that maximizes the electrolytic performance is set. As a method of suppressing the reduction of hypochlorite ion to chloride ion by the cathode and the reduction of chlorate ion to chloride ion, it is known to add chromate or dichromate to the electrolyte. I have. The mechanism of this method is that chromate and dichromate ions are reduced on the cathode surface,
A coating mainly composed of chromium hydroxide is formed, and this coating has a function of suppressing ions such as hypochlorite ion and chlorate ion from coming into contact with the cathode, and as a result, reduction to chloride ion is performed. It is believed that it can be suppressed.

【0010】過硫酸塩を無隔膜法電気分解で製造する場
合は、電流効率が低下する機構にはつぎの3つがある。
水電解による酸素発生、過硫酸イオンの加水分解による
カロー酸の生成、過硫酸イオンの陰極による硫酸イオン
への還元である。水電解による酸素発生は陽極反応であ
り、これを決定する因子には硫酸塩濃度、電解濃度、電
流密度、電解液酸性度等があるが、電解性能が最大にな
る値が設定されている。過硫酸イオンの加水分解による
カロー酸の生成は電解液の酸性度を管理することにより
抑制できる。過硫酸イオンの陰極による還元防止は電解
液を隔膜で仕切ることにより実施されている。
When a persulfate is produced by a diaphragmless electrolysis, there are three mechanisms for reducing the current efficiency.
These are oxygen generation by water electrolysis, generation of caloic acid by hydrolysis of persulfate ions, and reduction of persulfate ions to sulfate ions at the cathode. Oxygen generation by water electrolysis is an anodic reaction, and factors that determine this include sulfate concentration, electrolytic concentration, current density, and acidity of the electrolytic solution. The value that maximizes electrolytic performance is set. The production of caloic acid by hydrolysis of persulfate ions can be suppressed by controlling the acidity of the electrolytic solution. Prevention of reduction of persulfate ions by the cathode is implemented by partitioning the electrolytic solution with a diaphragm.

【0011】発明者らは、上記課題を解決する方法とし
て次のように考えた。イオンが陰極により還元されるの
は、酸化性イオンが陰極に接触するか極く近傍に近づく
からであり、この酸化性イオンの陰極への接触又は接近
を防げば酸化性イオンの陰極による還元を抑制できる筈
である。イオンの陰極への接触又は接近を抑制している
例が電解液へのクロム酸又は重クロム酸イオンの添加で
あるが、この方法は既に説明した問題がある。水酸化ク
ロム主体の被膜と同等の作用のある物質を陰極に付着さ
せればよいと考え種々検討の結果、本発明に到達した。
The inventors have considered the following as a method for solving the above-mentioned problem. The ions are reduced by the cathode because the oxidizing ions come into contact with or come very close to the cathode.If the oxidizing ions are prevented from coming into contact with or approaching the cathode, the reduction of the oxidizing ions by the cathode will occur. It should be able to suppress. An example of suppressing the contact or approach of ions to the cathode is the addition of chromate or dichromate ions to the electrolyte, but this method has the problems already described. The present inventors arrived at the present invention as a result of various studies, considering that a substance having the same function as a chromium hydroxide-based coating should be attached to the cathode.

【0012】本発明は上記課題を解決するイオン交換体
で表面を覆った電極を開示する。本発明でいうイオン交
換体とは有機イオン交換体、無機イオン交換体の総てを
いい、さらにイオン交換体と非イオン交換体の混合物も
包含する。イオン交換体には陰イオン交換体と陽イオン
交換体があるが、陰極での還元を防止したいイオンが陰
イオンの場合は陽イオン交換体を使用するのがよく、陰
極での還元を防止したいイオンが陽イオンの場合は陰イ
オン交換体を使用するのがよい。
The present invention discloses an electrode whose surface is covered with an ion exchanger which solves the above problems. The ion exchanger referred to in the present invention refers to all organic ion exchangers and inorganic ion exchangers, and further includes a mixture of an ion exchanger and a non-ion exchanger. There are two types of ion exchangers: anion exchanger and cation exchanger.If the ion to be prevented at the cathode is an anion, it is better to use a cation exchanger to prevent reduction at the cathode. When the ion is a cation, an anion exchanger is preferably used.

【0013】有機イオン交換体の例としてはスチレンと
ジビニルレンゼンとを共重合した樹脂にスルホン酸基、
4級アンモニウム基、ポリメタクリル酸やポリアクリル
酸のようにカルボン酸基の結合したもの、メタクリル酸
とジビニルベンゼンとを共重合した樹脂に1〜3級アミ
ンの交換基が結合したもの、セルロースにスルホエチル
基、ホスホメチイル基、リン酸基、カルボキシメチル
基、2−ヒドロキシプロピルアミノ基、トリエチルアミ
ノ基、ポリエチレンイミノ基、ジエチルアミノエチル
基、エピクロロヒドリントリエタノールアミン、p−ア
ミノベンジル基などの交換基がついたもの、スルホン酸
基、カルボン酸基、4級アンモニウム基、1〜3級アミ
ンの交換基を有するフッ素樹脂系イオン交換体等が挙げ
られ、これらの溶液、固体粉末あるいはディスパージョ
ンを用いることができる。無機イオン交換体の例として
は鉄、マンガン、チタン、ジルコニウム、セリウムの含
水酸化物、リン酸チタン、リン酸ジルコニウム、モリブ
デン酸ジルコニウム、ゼオライト等の化合物が挙げられ
る。本発明において、イオン交換体は有機イオン交換体
単独、無機イオン交換体単独、有機イオン交換体と無機
イオン交換体混合物のいずれでも良い。本発明におい
て、陰極表面へのイオン交換体付着は塗布法を採用す
る。イオン交換体を溶液またはスラリー状としたものを
陰極に塗布し、乾燥してから電解に使用する。
Examples of the organic ion exchanger include sulfonic acid groups, a resin obtained by copolymerizing styrene and divinyllenzene,
Quaternary ammonium groups, those in which carboxylic acid groups are bonded like polymethacrylic acid or polyacrylic acid, those in which methacrylic acid and divinylbenzene are copolymerized, and those in which primary to tertiary amine exchange groups are bonded, those in cellulose Exchange groups such as a sulfoethyl group, a phosphomethyl group, a phosphoric acid group, a carboxymethyl group, a 2-hydroxypropylamino group, a triethylamino group, a polyethyleneimino group, a diethylaminoethyl group, an epichlorohydrin triethanolamine, and a p-aminobenzyl group are included. Examples thereof include fluorinated resin ion exchangers having sulfonic acid groups, carboxylic acid groups, quaternary ammonium groups, and tertiary amine exchange groups. Use of a solution, solid powder, or dispersion thereof Can be. Examples of the inorganic ion exchanger include compounds such as hydrated oxides of iron, manganese, titanium, zirconium and cerium, titanium phosphate, zirconium phosphate, zirconium molybdate and zeolite. In the present invention, the ion exchanger may be any of an organic ion exchanger alone, an inorganic ion exchanger alone, and a mixture of an organic ion exchanger and an inorganic ion exchanger. In the present invention, a coating method is employed for attaching the ion exchanger to the cathode surface. A solution or slurry of the ion exchanger is applied to the cathode, dried, and used for electrolysis.

【0014】本発明におけるイオン交換体は、使用時に
イオン交換性があるものをいい塗布時にイオン交換性が
ある必要はない。例えば、フッ素樹脂系イオン交換体の
場合スルホニルフルオライド基やカルボン酸メチルエス
テル基が結合した樹脂が重合工程で得られるが、このよ
うなものを塗布液して使用した場合は、乾燥後加水分解
をしてから電解に使用する。イオン交換体の溶液は有機
イオン交換体を溶剤に溶解して製造できる。またイオン
交換体のスラリーは有機イオン交換体又は無機イオン交
換体を微細な粉に粉砕したものを付着マトリックスが溶
解または分散または溶融している液体(以下塗布液とい
う)に分散させて製造する。付着マトリックスとはイオ
ン交換体を陰極表面に付着固定させるものをいい、非イ
オン交換体の合成樹脂、有機イオン交換体が使用でき
る。
The ion exchanger used in the present invention has ion exchange properties when used, and does not need to have ion exchange properties when applied. For example, in the case of a fluororesin-based ion exchanger, a resin to which a sulfonyl fluoride group or a carboxylic acid methyl ester group is bonded can be obtained in the polymerization step.If such a resin is used as a coating solution, it is dried and hydrolyzed. And then use for electrolysis. The solution of the ion exchanger can be produced by dissolving the organic ion exchanger in a solvent. Further, the slurry of the ion exchanger is prepared by pulverizing an organic ion exchanger or an inorganic ion exchanger into fine powder and dispersing the powder in a liquid in which an adhesion matrix is dissolved, dispersed or melted (hereinafter referred to as a coating liquid). The attachment matrix refers to a substance that adheres and fixes the ion exchanger on the surface of the cathode, and non-ion exchanger synthetic resins and organic ion exchangers can be used.

【0015】また、本発明の陰極では、陰極にイオン交
換体を付着させても陰極の性能は損なわれず、かつ付着
させたイオン交換体が容易に剥離しないことが重要であ
る。すなわち、陰極表面で水素イオンの還元が起こり、
発生した水素の陰極からすみやかな離脱である。この目
的を達成するためには、イオン交換体塗布前の陰極表面
は多孔状または粗面になっており、さらに付着したイオ
ン交換体は水素が容易に通過するようにイオン交換体に
は微細な孔または亀裂等が形成されていることが重要で
ある。陰極表面を多孔状または粗面にするためには、陰
極基材をサンドブラストによって粗面化し、さらに酸等
によってエッチングすることによって達成することがで
きる。またイオン交換体を多孔状とするためには、塗布
液の溶媒の気化速度を早くしたり、乾燥時に微細な裂け
目が入るような組成の塗布液を使用したり、使用前また
は使用時に溶出によって多孔化する物質を混合したり、
さらには多孔質の固体を混入させる方法によって達成す
ることができる。
Further, in the cathode of the present invention, it is important that the performance of the cathode is not impaired even if the ion exchanger is attached to the cathode, and that the attached ion exchanger is not easily separated. That is, reduction of hydrogen ions occurs on the cathode surface,
This is a quick separation of the generated hydrogen from the cathode. In order to achieve this object, the surface of the cathode before the application of the ion exchanger is porous or rough, and the attached ion exchanger is finely divided so that hydrogen can easily pass therethrough. It is important that holes or cracks are formed. In order to make the surface of the cathode porous or rough, the surface of the cathode substrate can be roughened by sandblasting and further etched by an acid or the like. Also, in order to make the ion exchanger porous, it is necessary to increase the vaporization rate of the solvent of the coating solution, use a coating solution with a composition that causes fine cracks when drying, or elute before or during use. Mixing substances that make it porous,
Further, it can be achieved by a method of mixing a porous solid.

【0016】陰極表面に塗布する方法は、塗布液を刷
毛、ブラシ、ロール等で塗る方法、塗布液をスプレーす
る方法、陰極を塗布液に浸漬する方法が採用できる。イ
オン交換体の陰極表面への塗布量は、イオン交換体種
類、塗布物の多孔度、塗布液中のイオン交換体濃度、還
元抑制対象イオンの濃度・種類等によりかわるので一概
にはいえないが、陰極表面のイオン交換体液が1.0ミ
リ当量/m2以上になるよう塗布するのがよい。陰極表
面のイオン交換体量が1.0ミリ当量/m2未満の場合
は、陰極でのイオン還元抑制が不十分となり好ましくな
い。本発明において使用するイオン交換体と付着マトリ
ックスは使用条件で溶解や劣化しないものを選択すべき
であり電解液のpH、酸化性、温度等を考慮しそれらの
条件でも長期間耐えられるものを使用する。例えば、次
亜塩素酸塩の電解製造においては炭化水素系の有機イオ
ン交換体の使用は好ましくなく、パーフルオロ系有機イ
オン交換体や無機イオン交換体を使用するのがよい。本
発明で使用する陰極の材料は、鉄、ステンレス、ニッケ
ル、鉛、チタン、黒鉛、フェライト、貴金属や貴金属で
被覆したチタンやタンタルが使用できる。また、本発明
で使用する陰極の形状は平板、穿孔板、エキスパンデッ
ドメタル、網、簾状棒等が使用できる。
As a method of applying the coating solution on the cathode surface, a method of applying the coating solution with a brush, a brush, a roll, or the like, a method of spraying the coating solution, or a method of dipping the cathode in the coating solution can be adopted. The amount of the ion exchanger applied to the cathode surface depends on the type of ion exchanger, the porosity of the applied material, the concentration of the ion exchanger in the coating solution, and the concentration and type of the ion to be reduced. It is preferable to apply the solution so that the ion exchange liquid on the surface of the cathode becomes 1.0 meq / m 2 or more. When the amount of the ion exchanger on the cathode surface is less than 1.0 meq / m 2 , the suppression of ion reduction at the cathode is insufficient, which is not preferable. The ion exchanger and the attachment matrix used in the present invention should be selected so that they do not dissolve or deteriorate under the use conditions. I do. For example, in the electrolytic production of hypochlorite, the use of a hydrocarbon-based organic ion exchanger is not preferred, and a perfluoro-based organic ion exchanger or an inorganic ion exchanger is preferably used. As the material of the cathode used in the present invention, iron, stainless steel, nickel, lead, titanium, graphite, ferrite, titanium or tantalum coated with a noble metal or a noble metal can be used. Further, as the shape of the cathode used in the present invention, a flat plate, a perforated plate, an expanded metal, a net, a reed-shaped bar and the like can be used.

【0017】本発明で使用する塗布液中のイオン交換体
濃度は、イオン交換体の種類、塗布したいイオン交換体
量、塗布方法等により変わるので一概にはいえないが、
0.01%以上10%以下より好ましくは0.05%以
上5%以下である。塗布液中のイオン交換体量が0.0
1%未満の場合は、必要なイオン交換体の塗布量を得る
のに10回以上塗布を繰り返さなければならず、陰極加
工に人手がかかりすぎるという欠点があるので好ましく
ない。また、塗布液中のイオン交換体量が10%より多
い場合は、一度の塗布で必要以上のイオン交換体が付着
するとか、塗布液の粘度が上がるため均一に塗布するの
が難しくなるとか、被膜に大きいクラックが入り還元抑
制効果が減少するといった問題が起こり好ましくない。
Although the concentration of the ion exchanger in the coating solution used in the present invention varies depending on the type of the ion exchanger, the amount of the ion exchanger to be coated, the coating method, etc., it cannot be said unconditionally.
It is 0.01% or more and 10% or less, more preferably 0.05% or more and 5% or less. The amount of ion exchanger in the coating solution is 0.0
If it is less than 1%, the application must be repeated 10 times or more in order to obtain the required application amount of the ion exchanger, and there is a disadvantage that the cathode processing requires too much labor, which is not preferable. When the amount of the ion exchanger in the coating solution is more than 10%, it is difficult to apply the ion exchanger more than necessary in a single application, or it becomes difficult to apply uniformly because the viscosity of the coating solution increases. The problem that large cracks enter the coating to reduce the reduction suppressing effect occurs, which is not preferable.

【0018】塗布液にイオン交換体をスラリー化したも
のを使用する場合は、イオン交換体の粒径は0.01μ
m以上10μm以下がよい。イオン交換体の粒径が0.
01μm未満の場合は、イオン交換体が凝集する傾向が
増え、単一分散させるのが困難になるので好ましくな
い。また、イオン交換体の粒径が10μmより大きい場
合は陰極表面にまばらにイオン交換体が付着したり、被
膜の強度が弱く陰極表面から剥離しやすいといった問題
があり、あまり好ましくない。塗布液にイオン交換体を
スラリー化したものを使用する場合は、スラリーを超音
波分散装置、シェーカー、ボールミル等の攪拌装置で混
合し、イオン交換体を均一に分散させるのがよい。塗布
液を塗った陰極を乾燥させ、イオン交換体が付着マトリ
ックスに固定された被膜をつくる。陰極の乾燥は加圧、
常圧、減圧のいずれの条件でも実施できる。また、加熱
乾燥する場合は加熱炉、温風吹きつけ、赤外線照射等が
使用できる。 塗布液塗りを複数回実施する場合は塗布
・乾燥を繰り返せばよく、同じ被膜厚みを得る場合、塗
布回数が多い程被膜の強度は上がる。
When a slurry of an ion exchanger is used as a coating solution, the particle size of the ion exchanger is 0.01 μm.
m and 10 μm or less. When the particle size of the ion exchanger is 0.
When the thickness is less than 01 μm, the tendency of the ion exchanger to agglomerate increases, and it becomes difficult to perform monodispersion, which is not preferable. On the other hand, when the particle size of the ion exchanger is larger than 10 μm, there is a problem that the ion exchanger is sparsely attached to the cathode surface, and the strength of the coating film is weak, and the film easily peels off from the cathode surface. When using a slurry of an ion exchanger as the coating liquid, the slurry is preferably mixed with a stirring device such as an ultrasonic dispersing device, a shaker, a ball mill, or the like to uniformly disperse the ion exchanger. The cathode coated with the coating solution is dried to form a film in which the ion exchanger is fixed to the adhesion matrix. The drying of the cathode is pressurized,
It can be carried out under any of normal pressure and reduced pressure conditions. In the case of drying by heating, a heating furnace, hot air blowing, infrared irradiation or the like can be used. When the coating liquid is applied a plurality of times, the coating and drying may be repeated, and when the same coating thickness is obtained, the strength of the coating increases as the number of coatings increases.

【0019】[0019]

【作用】イオン交換体を表面に塗布した陰極を使用した
ので、酸化性物質の陰極での還元を防止することがで
き、次亜塩素酸塩を製造に使用する場合には、高い電流
効率で有効塩素濃度1万数千ppmの溶液を得ることが
でき、塩素酸塩や過塩素酸塩を製造する場合は、クロム
酸塩の使用なしで高い電流効率を達成でき、さらに過硫
酸塩を製造する場合は、隔膜なしで高い電流効率が得ら
れる。
[Function] Since a cathode coated with an ion exchanger is used, reduction of oxidizing substances at the cathode can be prevented. When hypochlorite is used for production, high current efficiency can be obtained. A solution with an effective chlorine concentration of 10,000 or more ppm can be obtained, and when producing chlorate or perchlorate, high current efficiency can be achieved without the use of chromate, and further, persulfate is produced. In this case, high current efficiency can be obtained without a diaphragm.

【0020】[0020]

【実施例】以下本発明を実施例で説明する。 実施例1 縦10cm、横10cmの平板状チタン陰極の表面をサ
ンドブラストの後に脱脂、5%シュウ酸に沸騰下2時間
浸漬して前処理を行った。水洗後乾燥した陰極の表面に
フッ素樹脂系イオン交換体溶液(アルドリッチケミカル
社製 ナフィオン(デュポン社商品名)の5%スルホン
酸系樹脂溶液、当量重量1100)(以下パーフルオロ
スルホン酸樹脂と称す)をそのまま、あるいはn−ブタ
ノールで希釈した液を塗布回数を変えてはけ塗りし、イ
オン交換体を塗布した陰極を130℃で5分間加熱乾燥
した。複数回の塗布を行ったものは塗布と加熱乾燥を交
互に行った。このようにして表1に記載のように製造条
件、イオン交換体付着量を変えた試料番号1〜6の陰極
を製造し、得られた陰極を使用し、下記条件で次亜塩素
酸ナトリウムを電気分解で製造し、陰極評価は有効塩素
濃度が10g/lになった時の平均電流効率を表1に示
す。また、イオン交換体を形成していない場合の平均電
流効率を比較1として表1に示した。
DESCRIPTION OF THE PREFERRED EMBODIMENTS The present invention will be described below with reference to embodiments. Example 1 The surface of a flat titanium cathode having a length of 10 cm and a width of 10 cm was degreased after sandblasting and immersed in 5% oxalic acid under boiling for 2 hours to perform a pretreatment. A fluorine resin-based ion exchanger solution (a 5% sulfonic acid-based resin solution of Nafion (trade name, manufactured by Aldrich Chemical Co., Ltd.), equivalent weight: 1100) (hereinafter referred to as perfluorosulfonic acid resin) Was applied as it was, or a solution diluted with n-butanol was brushed at different application times, and the cathode coated with the ion exchanger was heated and dried at 130 ° C. for 5 minutes. The coating and the heating and drying were alternately performed for those that had been applied a plurality of times. In this way, the cathodes of Sample Nos. 1 to 6 were prepared in which the production conditions and the ion-exchanger attached amount were changed as shown in Table 1, and the obtained cathode was used to produce sodium hypochlorite under the following conditions. Table 1 shows the average current efficiency when the effective chlorine concentration was 10 g / l when the cathode was evaluated by the electrolysis. Table 1 shows the average current efficiency when no ion exchanger was formed.

【0021】電解方法:以下の条件で300mlの電解
液を使用し、一定時間毎に次亜塩素酸ナトリウムの濃度
を測定した 陽極 :チタン基体に貴金属酸化物を被覆したもの 隔膜 :なし 陽極−陰極間距離:2.5mm 電解温度:38℃ 電流密度:30A/dm2 原料塩水の食塩濃度:30g/l 実施例2 以下の無機イオン交換体を実施例1で使用したフッ素樹
脂系イオン交換体溶液に添加して分散して塗布液とし、
実施例1と同様にして陰極に塗布し表1に記載の試料番
号7〜10の陰極を作製し、さらに無機イオン交換体を
ポリテトラフルオロエチレン(三井デュポンフロロケミ
カル製)を純水で1/100に希釈した液に添加して塗
布液とし、イオン交換体を塗布した陰極を風乾後200
℃で10分間加熱して試料番号11〜14の陰極を作製
し、実施例1と同様の条件で次亜塩素酸ナトリウムを電
気分解で製造し、同様に試験をし、その結果を表1に示
す。
Electrolysis method: The concentration of sodium hypochlorite was measured at regular intervals using 300 ml of electrolyte under the following conditions: Anode: titanium substrate coated with noble metal oxide Separator: none Anode-cathode Distance: 2.5 mm Electrolysis temperature: 38 ° C. Current density: 30 A / dm 2 Salt concentration of raw salt water: 30 g / l Example 2 Fluororesin-based ion exchanger solution using the following inorganic ion exchanger in Example 1 And disperse it into a coating solution,
The coating was applied to the cathode in the same manner as in Example 1 to prepare the cathodes of Sample Nos. 7 to 10 shown in Table 1, and the inorganic ion exchanger was mixed with polytetrafluoroethylene (manufactured by DuPont-Mitsui Fluorochemicals) in pure water at 1/100. It was added to the solution diluted to 100 to make a coating solution, and the cathode coated with the ion exchanger was air-dried and then dried.
C. for 10 minutes to produce cathodes of Sample Nos. 11 to 14, produced sodium hypochlorite by electrolysis under the same conditions as in Example 1, and conducted the same tests. The results are shown in Table 1. Show.

【0022】水酸化チタン:石原産業製水酸化チタン
(商品名MC−90) 平均粒径0.018μmを使用
し、水酸化チタン23mgを10mlのフッ素樹脂系イ
オン交換体溶液またはポリテトラフルオロエチレンディ
スパージョン希釈液に分散したものを塗布液とした。
Titanium hydroxide: Titanium hydroxide manufactured by Ishihara Sangyo (trade name: MC-90) Using an average particle size of 0.018 μm, 23 mg of titanium hydroxide is added to 10 ml of a fluororesin-based ion exchanger solution or polytetrafluoroethylene disperser. The solution dispersed in the John diluent was used as a coating solution.

【0023】水酸化ジルコニウム:水酸化ジルコニウム
(第一希元素化学工業製)商品名R−2D(平均粒径
7.5μm)の3gをめのう乳鉢で粉砕し、さらに粉砕
物をコロイドミル(APV GAULIN社製)に純水
50mlとともに加えて、回転数1000rpmで30
分ずつ2回粉砕した。粉砕スラリーを遠心分離機によっ
て固形物と水分とを分離し、濃縮スラリーを乾燥器によ
って100℃で水分が無くなるまで乾燥した。得られた
水酸化ジルコニウムの平均粒径は0.2μmであった。
この水酸化ジルコニウム33mgを10mlのフッ素樹
脂系イオン交換体溶液またはポリテトラフルオロエチレ
ンディスパージョン希釈液に分散したものを塗布液とし
た。
Zirconium hydroxide: 3 g of zirconium hydroxide (manufactured by Daiichi Kagaku Kagaku Kogyo Co., Ltd., trade name: R-2D (average particle size: 7.5 μm)) is pulverized in an agate mortar, and the pulverized product is further colloid milled (APV GAULIN). Of pure water together with 50 ml of pure water and 30 rpm at 1000 rpm.
Milled twice for each minute. The pulverized slurry was subjected to centrifugal separation to separate solid matter and moisture, and the concentrated slurry was dried at 100 ° C. by a drier until the moisture disappeared. The average particle size of the obtained zirconium hydroxide was 0.2 μm.
A coating liquid was obtained by dispersing 33 mg of this zirconium hydroxide in 10 ml of a fluororesin-based ion exchanger solution or a polytetrafluoroethylene dispersion diluent.

【0024】水酸化セリウム:水酸化セリウム(第一希
元素化学工業製)の平均粒径10μmの3gをめのう乳
鉢で粉砕し、さらに粉砕物をコロイドミル(APV G
AULIN社製)に純水50mlとともに加えて、回転
数1000rpmで30分ずつ2回粉砕した。粉砕スラ
リーを遠心分離機によって固形物と水分とを分離し、濃
縮スラリーを乾燥器によって100℃で水分が無くなる
まで乾燥した。得られた水酸化セリウムの平均粒径は
0.2μmであった。得られた水酸化セリウム44mg
を10mlのフッ素樹脂系イオン交換体溶液またはポリ
テトラフルオロエチレンディスパージョン希釈液に分散
したものを塗布液とした。
Cerium hydroxide: 3 g of cerium hydroxide (manufactured by Daiichi Kagaku Kagaku Kogyo Co., Ltd.) having an average particle size of 10 μm is pulverized in an agate mortar, and the pulverized product is colloid milled (APVG G).
(Aulin) together with 50 ml of pure water, and pulverized twice at a rotation speed of 1000 rpm for 30 minutes. The pulverized slurry was subjected to centrifugal separation to separate solid matter and moisture, and the concentrated slurry was dried at 100 ° C. by a drier until the moisture disappeared. The average particle size of the obtained cerium hydroxide was 0.2 μm. 44 mg of the obtained cerium hydroxide
Was dispersed in 10 ml of a fluororesin-based ion exchanger solution or a polytetrafluoroethylene dispersion diluent to obtain a coating solution.

【0025】水酸化第2鉄:塩化第2鉄六水塩(和光純
薬製 試薬特級)を純水に溶解し32重量%の溶液を調
製した。沸騰する250mlの純水中に塩化第二鉄溶液
4mlを滴下し、沸騰下で24時間処理した。冷却後の
スラリーを遠心分離器において100℃で水分が無くな
るまで乾燥し、平均粒径は0.24μmの水酸化第2鉄
を得た。得られた水酸化第2鉄79mgを10mlのフ
ッ素樹脂系イオン交換体またはポリテトラフルオロエチ
レンディスパージョン希釈液に分散したものを塗布液と
した。
Ferric hydroxide: Ferric chloride hexahydrate (special grade reagent, manufactured by Wako Pure Chemical Industries) was dissolved in pure water to prepare a 32% by weight solution. 4 ml of a ferric chloride solution was dropped into 250 ml of boiling pure water, and the mixture was treated under boiling for 24 hours. The cooled slurry was dried in a centrifuge at 100 ° C. until there was no more water, to obtain ferric hydroxide having an average particle size of 0.24 μm. A coating liquid was prepared by dispersing 79 mg of the obtained ferric hydroxide in 10 ml of a fluororesin-based ion exchanger or a polytetrafluoroethylene dispersion diluent.

【0026】[0026]

【表1】 [Table 1]

【0027】実施例3 縦10cm、横10cmの平板状チタン陰極の表面にパ
ーフルオロ系有機イオン交換体溶液(官能基がスルホン
酸のもの)を刷毛で塗布し、イオン交換体溶液を塗布し
た陰極を加熱器に入れ乾燥し溶媒を完全に揮散させた。
このようにして表2に記載のようにイオン交換体付着量
を変えた試料番号15〜20の陰極を製造し、得られた
陰極を使用し、下記条件で塩素酸ナトリウムを電気分解
で製造し、塩素酸ナトリウムの生成量から平均電流効率
を求め、その結果を表2に示す。また、イオン交換体を
形成していない場合の平均電流効率を比2とし、またイ
オン交換体を形成していない陰極を使用して重クロム酸
ナトリウムを4g/lの濃度として電気分解した場合を
比3として表2に示す。電解方法:500mlの電解液
を下記の条件で電解し、3時間後に生成した塩素酸ナト
リウムの量を測定した。
Example 3 A perfluoro organic ion exchanger solution (functional group having sulfonic acid) was applied to the surface of a flat titanium cathode 10 cm long and 10 cm wide with a brush, and the ion exchange solution was applied to the cathode. Was placed in a heater and dried to completely evaporate the solvent.
Thus, the cathodes of Sample Nos. 15 to 20 having different amounts of ion exchanger attached as shown in Table 2 were produced, and sodium chlorate was produced by electrolysis under the following conditions using the obtained cathodes. The average current efficiency was determined from the amount of sodium chlorate produced, and the results are shown in Table 2. The average current efficiency in the case where the ion exchanger was not formed was set to the ratio of 2, and the case where the electrolysis was performed using sodium dichromate at a concentration of 4 g / l using the cathode in which the ion exchanger was not formed. The ratio 3 is shown in Table 2. Electrolysis method: 500 ml of the electrolytic solution was electrolyzed under the following conditions, and the amount of sodium chlorate generated after 3 hours was measured.

【0028】 陽極 :チタン基体に貴金属を被覆したもの 隔膜 :なし 陽極−陰極間距離:4.0mm 電解温度:80℃ 電流密度:30A/dm2 電解液の組成:NaClO3 450g/l,NaCl
14g/l 電解液pH:6.5±0.2 実施例4 実施例2と同様に無機イオン交換体を調製し、イオン交
換体の塗布量の異なる表2に記載の試料番号21〜28
の陰極を作製し、実施例3と同様の条件で塩素酸ナトリ
ウムを電気分解で製造し、同様に試験をし、その結果を
表2に示す。
Anode: titanium substrate coated with a noble metal Separator: none Anode-cathode distance: 4.0 mm Electrolysis temperature: 80 ° C. Current density: 30 A / dm 2 Composition of electrolyte: 450 g / l of NaClO 3 , NaCl
14 g / l Electrolyte pH: 6.5 ± 0.2 Example 4 Inorganic ion exchangers were prepared in the same manner as in Example 2, and the sample numbers 21 to 28 described in Table 2 differing in the application amount of the ion exchanger.
Was prepared, sodium chlorate was produced by electrolysis under the same conditions as in Example 3, and the same test was conducted. The results are shown in Table 2.

【0029】[0029]

【表2】 [Table 2]

【0030】実施例5 実施例1と同様に表3に記載のようにイオン交換体付着
量を変えた試料番号29〜34の陰極を製造し、得られ
た陰極を使用し、下記条件で過塩素酸ナトリウムを電気
分解で製造し、過塩素酸ナトリウムの生成量から平均電
流効率を求め、その結果を表3に示す。また、イオン交
換体を形成していない場合の平均電流効率を比較5と
し、またイオン交換体を形成していない陰極を使用し、
重クロム酸ナトリウムを電解液中での濃度が0.2g/
lとなるように加えて電気分解した場合を比6として表
3に示す。電解方法:電解液500mlを使用して3時
間通電し、生成した過塩素酸ナトリウム量を測定する。
Example 5 In the same manner as in Example 1, the cathodes of Sample Nos. 29 to 34 having different amounts of the ion exchanger attached as shown in Table 3 were produced, and the obtained cathodes were used under the following conditions. Sodium chlorate was produced by electrolysis, and the average current efficiency was determined from the amount of sodium perchlorate produced. The results are shown in Table 3. In addition, the average current efficiency in the case where the ion exchanger was not formed was set to Comparative 5, and the cathode in which the ion exchanger was not formed was used.
The concentration of sodium dichromate in the electrolyte is 0.2 g /
Table 3 shows the ratio 6 when the electrolysis was carried out in addition to l. Electrolysis method: Electric current is applied for 3 hours using 500 ml of the electrolytic solution, and the amount of generated sodium perchlorate is measured.

【0031】 陽極 :チタン基体に貴金属を被覆したもの 隔膜 :なし 陽極−陰極間距離:2.0mm 電解温度:50℃ 電流密度:60A/dm2 電解液の組成:NaClO3 550g/l、NaCl
4 550g/l、NaF 2g/1 実施例6 実施例2と同様にイオン交換体の塗布量の異なる表3に
記載の試料番号35〜42の陰極を作製し、実施例3と
同様の条件で過塩素酸ナトリウムを電気分解で製造し同
様に試験をし、その結果を表3に示す。
Anode: titanium substrate coated with noble metal Diaphragm: none Anode-cathode distance: 2.0 mm Electrolysis temperature: 50 ° C. Current density: 60 A / dm 2 Composition of electrolyte solution: NaClO 3 550 g / l, NaCl
O 4 550 g / l, NaF 2 g / l Example 6 Similar to Example 2, cathodes of Sample Nos. 35 to 42 described in Table 3 having different coating amounts of the ion exchanger were produced, and the same conditions as in Example 3 were used. And sodium perchlorate was produced by electrolysis, and the same test was conducted. The results are shown in Table 3.

【0032】[0032]

【表3】 [Table 3]

【0033】実施例7 実施例1と同様に表4に記載のようにイオン交換体付着
量を変えた試料番号43〜48の陰極を製造し、得られ
た陰極を使用して下記条件で過硫酸アンモニウムを電気
分解で製造し、過硫酸アンモニウムの生成量から平均電
流効率を求め、その結果を表4に示す。イオン交換体を
形成していない陰極を使用した場合の平均電流効率を比
6として表4に示す。また、陽イオン交換膜(デュポン
社製 ナフィオン)を隔膜とし、陽極液は下記の電解液
と同様として、陰極液には、硫酸150g/l、過硫酸
アンモニウム290g/lとして電気分解をした場合の
平均電流効率を比7として、表4に示す。 電解法:電解液500mlを使用し、3時間通電し、生
成した過硫酸アンモニウム量を測定した。
Example 7 In the same manner as in Example 1, the cathodes of Sample Nos. 43 to 48 were prepared as shown in Table 4 with different amounts of ion exchanger attached, and the obtained cathodes were used under the following conditions. Ammonium sulfate was produced by electrolysis, and the average current efficiency was determined from the amount of produced ammonium persulfate. The results are shown in Table 4. Table 4 shows the average current efficiency as a ratio 6 when a cathode having no ion exchanger was used. In addition, a cation exchange membrane (Nafion manufactured by DuPont) was used as a diaphragm, the anolyte was the same as the electrolyte described below, and the catholyte was 150 g / l sulfuric acid and 290 g / l ammonium persulfate. Table 4 shows the current efficiency as a ratio of 7. Electrolysis method: 500 ml of the electrolytic solution was used, and electricity was supplied for 3 hours, and the amount of generated ammonium persulfate was measured.

【0034】 陽極 :チタン基体に貴金属を被覆したもの 隔膜 :なし 陽極−陰極間距離:2.0mm 電解温度:35℃ 電流密度:60A/dm2 電解液の組成:(NH42SO4 370g/l,(N
4228 210g/l、H2SO4 10g/l,
NH4SCN 0.2g/l 実施例8 実施例2と同様にして、試料番号49〜56の陰極を製
造し、実施例7と同様の条件で過硫酸アンモニウムを電
気分解で製造し、同様に試験をし、その結果を表4に示
す。
Anode: titanium substrate coated with a noble metal Separator: none Anode-cathode distance: 2.0 mm Electrolysis temperature: 35 ° C. Current density: 60 A / dm 2 Electrolyte composition: (NH 4 ) 2 SO 4 370 g / L, (N
H 4 ) 2 S 2 O 8 210 g / l, H 2 SO 4 10 g / l,
NH 4 SCN 0.2 g / l Example 8 The cathodes of sample numbers 49 to 56 were produced in the same manner as in Example 2, and ammonium persulfate was produced by electrolysis under the same conditions as in Example 7, and the test was carried out in the same manner. And the results are shown in Table 4.

【0035】[0035]

【表4】 [Table 4]

【0036】比較例 実施例1と同様の処理をした金属基体の表面にポリテト
ラフルオロエチレンディスパージョン(三井デュポンフ
ロロケミカル製)を純水で1/100と1/200に希
釈したものを1回塗布し、200℃で10分間加熱乾燥
した。この陰極のポリテトラフルオロエチレンの厚さは
それぞれ、4μmと2μmであった。
Comparative Example A polytetrafluoroethylene dispersion (manufactured by DuPont-Mitsui Fluorochemicals) was diluted 1/100 and 1/200 with pure water on the surface of a metal substrate treated in the same manner as in Example 1 once. It was applied and dried by heating at 200 ° C. for 10 minutes. The thickness of the polytetrafluoroethylene of this cathode was 4 μm and 2 μm, respectively.

【0037】作製した陰極を実施例1と同様に次亜塩素
酸ナトリウムを電気分解で製造する実験を行ったところ
ポリテトラフルオロエチレンの厚みが4μmものは、平
均電流効率は75%とやや改善されたが電圧は試料番号
4より0.8V高く、またポリテトラフルオロエチレン
厚みが2μmのものは電圧は試料番号4と同等であった
が、平均電流は63%と低かった。
An experiment was conducted to produce the prepared cathode by electrolysis of sodium hypochlorite in the same manner as in Example 1. As a result, the average current efficiency was slightly improved to 75% when the thickness of polytetrafluoroethylene was 4 μm. However, the voltage was 0.8 V higher than that of Sample No. 4, and the voltage of the sample having a polytetrafluoroethylene thickness of 2 μm was equivalent to that of Sample No. 4, but the average current was as low as 63%.

【0038】[0038]

【発明の効果】本発明の陰極は、イオン交換体を表面に
有するので、生成した酸化性物質の還元を防止でき、次
亜塩素酸塩を製造する場合は、高い電流効率で有効塩素
濃度1万数千ppmの溶液を得ることができ、塩素酸塩
や過塩素酸塩を製造する場合は、クロム酸塩の使用なし
で高い電流効率を達成でき、さらに過硫酸塩を製造する
場合は、隔膜なしで高い電流効率がえられる。
Since the cathode of the present invention has an ion exchanger on its surface, it is possible to prevent the reduction of the generated oxidizing substance, and when producing hypochlorite, the effective chlorine concentration is 1 with high current efficiency. It is possible to obtain a solution of tens of thousands ppm, and when producing chlorate or perchlorate, it is possible to achieve high current efficiency without using chromate, and when producing persulfate, High current efficiency can be obtained without a diaphragm.

Claims (2)

(57)【特許請求の範囲】(57) [Claims] 【請求項1】 酸化性物質の陰極での還元を抑制する還
元抑制陰極において、電極表面に多孔状または亀裂が形
成されたイオン交換体の含有層を設けたことを特徴とす
る還元抑制陰極。
1. A reduction-suppressing cathode for suppressing reduction of an oxidizing substance at a cathode, comprising a porous or cracked ion exchanger-containing layer on the electrode surface.
【請求項2】 還元抑制陰極の製造方法において、表面
を多孔化もしくは粗面化した陰極表面にイオン交換体を
含有する塗布液を塗布し多孔状または亀裂が形成された
イオン交換体の含有層を形成することを特徴とする還元
抑制陰極の製造方法。
2. A method for producing a reduction-suppressed cathode, wherein a coating solution containing an ion exchanger is applied to the surface of the cathode having a porous or roughened surface, and a porous or crack-containing layer of the ion exchanger is formed. A method for producing a reduction-suppressing cathode, characterized by forming:
JP04072594A 1994-03-11 1994-03-11 Reduction-suppressed cathode and method for producing the same Expired - Fee Related JP3334996B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP04072594A JP3334996B2 (en) 1994-03-11 1994-03-11 Reduction-suppressed cathode and method for producing the same

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP04072594A JP3334996B2 (en) 1994-03-11 1994-03-11 Reduction-suppressed cathode and method for producing the same

Publications (2)

Publication Number Publication Date
JPH07252683A JPH07252683A (en) 1995-10-03
JP3334996B2 true JP3334996B2 (en) 2002-10-15

Family

ID=12588597

Family Applications (1)

Application Number Title Priority Date Filing Date
JP04072594A Expired - Fee Related JP3334996B2 (en) 1994-03-11 1994-03-11 Reduction-suppressed cathode and method for producing the same

Country Status (1)

Country Link
JP (1) JP3334996B2 (en)

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP4778320B2 (en) * 2006-01-24 2011-09-21 ペルメレック電極株式会社 Electrosynthesis of perchloric acid compounds
FR3053363B1 (en) * 2016-06-30 2021-04-09 Herakles ELECTROLYTIC SYSTEM FOR THE SYNTHESIS OF SODIUM PERCHLORATE WITH ANODE WITH EXTERNAL SURFACE IN DIAMOND DOPED WITH BORON
BR112021006240A2 (en) 2018-10-02 2021-07-06 Nouryon Chemicals Int Bv alkali metal chlorate production process

Also Published As

Publication number Publication date
JPH07252683A (en) 1995-10-03

Similar Documents

Publication Publication Date Title
US3976549A (en) Electrolysis method
JP2648313B2 (en) Electrolysis method
US4457823A (en) Thermally stabilized reduced platinum oxide electrocatalyst
JPH05504170A (en) Electrochemical production method of chloric acid/alkali metal chlorate mixture
CN105821436B (en) A kind of double electrolytic cell two-step method chloric alkali electrolysis method and devices based on three-electrode system
JP3319887B2 (en) Method for producing hypochlorite
JPH04500097A (en) Improved method for producing quaternary ammonium hydroxide
JP2007302927A (en) Electrode for oxygen generation
KR950000713B1 (en) Method of producing alkali metal hydroxide
JP3334996B2 (en) Reduction-suppressed cathode and method for producing the same
US5242552A (en) System for electrolytically generating strong solutions by halogen oxyacids
JPH0586971B2 (en)
US4707226A (en) Process for the dehalogenation of chloroacetic and bromoacetic acid
JPH03199387A (en) Manufacture of alkali metal chlorate or perchlorate
CN111074297A (en) Electrolytic cell diaphragm for chlor-alkali industry and preparation method thereof
JP3264535B2 (en) Gas electrode structure and electrolysis method using the gas electrode structure
CA1117895A (en) Method of reducing chlorate formation in a chlor-alkali electrolytic cell
CN111074296B (en) Air bubble dispersing coating with ion conduction function and preparation method thereof
JP3538271B2 (en) Hydrochloric acid electrolyzer
CN111041513A (en) Perfluoro ion membrane for chlor-alkali industry and preparation method thereof
US3951766A (en) Electrolytic cell and method of using same
JP4447081B2 (en) Method for producing polysulfide
JPS58181879A (en) Halogen electrolysis manufacture
JPS622036B2 (en)
SU1584752A3 (en) Method of producing chlorine and sodium hydroxide

Legal Events

Date Code Title Description
R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20080802

Year of fee payment: 6

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20080802

Year of fee payment: 6

S531 Written request for registration of change of domicile

Free format text: JAPANESE INTERMEDIATE CODE: R313531

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20080802

Year of fee payment: 6

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20080802

Year of fee payment: 6

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090802

Year of fee payment: 7

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090802

Year of fee payment: 7

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100802

Year of fee payment: 8

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110802

Year of fee payment: 9

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110802

Year of fee payment: 9

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120802

Year of fee payment: 10

LAPS Cancellation because of no payment of annual fees