JP3331389B2 - Perpendicular magnetic head - Google Patents

Perpendicular magnetic head

Info

Publication number
JP3331389B2
JP3331389B2 JP22001094A JP22001094A JP3331389B2 JP 3331389 B2 JP3331389 B2 JP 3331389B2 JP 22001094 A JP22001094 A JP 22001094A JP 22001094 A JP22001094 A JP 22001094A JP 3331389 B2 JP3331389 B2 JP 3331389B2
Authority
JP
Japan
Prior art keywords
magnetic
magnetic field
film
layer
upper yoke
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP22001094A
Other languages
Japanese (ja)
Other versions
JPH0887715A (en
Inventor
治 篠浦
悟 荒木
大助 宮内
雄一 佐藤
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
TDK Corp
Original Assignee
TDK Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by TDK Corp filed Critical TDK Corp
Priority to JP22001094A priority Critical patent/JP3331389B2/en
Publication of JPH0887715A publication Critical patent/JPH0887715A/en
Application granted granted Critical
Publication of JP3331389B2 publication Critical patent/JP3331389B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Description

【発明の詳細な説明】DETAILED DESCRIPTION OF THE INVENTION

【0001】[0001]

【産業上の利用分野】本発明は、ディジタル情報を記録
再生する磁気ディスク装置に装備される垂直磁化方式の
磁気ヘッドに関する。特に従来のインダクティブヘッド
に比べて格段に大きな再生信号を得ることが出来ること
から高密度記録に対応できる垂直磁気ヘッドに関する。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a perpendicular magnetization type magnetic head provided in a magnetic disk drive for recording and reproducing digital information. In particular, the present invention relates to a perpendicular magnetic head capable of responding to high-density recording because a reproducible signal can be obtained much larger than a conventional inductive head.

【0002】[0002]

【従来の技術】IEEE Trans.Magn, MAG−13(197
7),1272ページに記載されているように垂直磁気
記録は磁気記録媒体の面内垂直方向に磁化する記録方式
で高い記録密度に対応している。
2. Description of the Related Art IEEE Trans. Magn, MAG-13 (197
7) As described on page 1272, perpendicular magnetic recording is a recording method in which magnetization is performed in the in-plane perpendicular direction of a magnetic recording medium, and corresponds to a high recording density.

【0003】この垂直磁気記録のためには従来とは異な
る磁気ヘッドが要求されており日本応用磁気学会誌 Vo
l.13(1989)、113ページ、特開平6−18
0810号公報などに記載されている。しかし、これら
の垂直磁気ヘッドは再生に記録と同じインダクティブヘ
ッドを用いており出力信号の強度は十分ではなかった。
For this perpendicular magnetic recording, a magnetic head different from the conventional one is required.
l. 13 (1989), page 113, JP-A-6-18
No. 0810, etc. However, these perpendicular magnetic heads use the same inductive head as for recording for reproduction, and the intensity of the output signal is not sufficient.

【0004】一方、現在広く使用されている水平磁気記
録においては信学技報MR92−61(1992)、7
ページのように、高密度記録でより高い再生出力を得る
ために磁気抵抗効果再生ヘッド(MRヘッド)が使用さ
れ始めている。
On the other hand, in horizontal magnetic recording widely used at present, IEICE Technical Report MR92-61 (1992),
As in the case of a page, a magnetoresistive read head (MR head) has begun to be used to obtain a higher read output in high-density recording.

【0005】垂直磁気ヘッドにMR素子を用いて再生信
号を得ることは特開平4−278210号公報に開示さ
れているが主磁極はMR素子により分断されている構造
となっているために書き込みのための大きな磁界を発生
されることは出来ず再生専用であった。
Japanese Patent Application Laid-Open No. 4-278210 discloses that a reproduction signal is obtained by using an MR element in a perpendicular magnetic head. However, since the main magnetic pole has a structure separated by an MR element, writing is not possible. Therefore, a large magnetic field could not be generated, and it was only for reproduction.

【0006】磁気ヘッドのMR素子は特開平4−182
913号公報のように、膜面に垂直に磁束が流れるよう
に設置する構造も提案されている。しかし該明細書にも
記載されているように磁気抵抗効果素子としてNiFe
を用いた場合では、膜面方向に磁束が流れる構造よりも
不利であることは明白である。また通常の水平記録ヘッ
ドであり、その効果は小さい。これに対して同じように
膜面に垂直に磁束が流れるように設置する構造はHall
素子を用いた磁気ヘッドで提案されている。この場合は
ホール効果のため膜面に垂直に磁束が流れても高い効率
で磁束の検出が可能である。
The MR element of a magnetic head is disclosed in Japanese Patent Laid-Open No. 4-182.
As disclosed in Japanese Patent Application Laid-Open No. 913, a structure in which a magnetic flux flows perpendicular to the film surface has been proposed. However, as described in the specification, NiFe
Obviously, the use of the above is disadvantageous over the structure in which the magnetic flux flows in the film surface direction. In addition, it is a normal horizontal recording head, and its effect is small. On the other hand, in the same way, the structure installed so that magnetic flux flows perpendicular to the film surface is Hall
A magnetic head using an element has been proposed. In this case, even if the magnetic flux flows perpendicular to the film surface due to the Hall effect, the magnetic flux can be detected with high efficiency.

【0007】このように各種の磁気ヘッド構造に関する
報告があるが垂直磁気ヘッドの再生効率をより高める1
つの主磁極を再生書き込みに共用するMR磁気ヘッドに
関しては大きな課題を残していた。
As described above, there are reports on various magnetic head structures, but the reproduction efficiency of the perpendicular magnetic head is further improved.
A major problem remains with respect to an MR magnetic head that uses one main pole for read / write.

【0008】[0008]

【発明が解決しようとする課題】垂直磁気ヘッドの再生
効率をより高めるMR複合磁気ヘッドは、通常の水平記
録MRヘッドとは異なる構造が要求される。すなわち極
めて高密度のため書き込み主磁極の膜厚が0.5μm以
下と薄く、再生時に別の位置に形成された再生専用磁極
で読み込むには位置決めが極めて困難である。このため
書き込み磁極と再生磁極を兼用することが重要である。
しかしMR素子には電流を流すために磁極とスペースを
設けている通常ヨーク型MRヘッドでは、書き込み時の
磁界が不十分となってしまう。
An MR composite magnetic head that further improves the reproduction efficiency of a perpendicular magnetic head requires a structure different from a normal horizontal recording MR head. That is, because of the extremely high density, the thickness of the write main magnetic pole is as thin as 0.5 μm or less, and it is extremely difficult to perform positioning by using a read-only magnetic pole formed at another position during reproduction. Therefore, it is important to use both the write magnetic pole and the read magnetic pole.
However, in a normal yoke type MR head in which a magnetic pole and a space are provided to allow a current to flow in the MR element, the magnetic field at the time of writing becomes insufficient.

【0009】[0009]

【課題を解決するための手段】このような垂直磁気MR
ヘッドの諸問題を解決し高い再生信号を得ることは以下
の本発明により可能となる。
SUMMARY OF THE INVENTION Such a perpendicular magnetic MR
It is possible to solve the problems of the head and obtain a high reproduction signal by the following present invention.

【0010】(1)主磁極と主磁極部に磁気的に結合し
ているヨーク磁性層の間に磁界検出層を形成したことを
特徴とする垂直磁気ヘッド。
(1) A perpendicular magnetic head wherein a magnetic field detecting layer is formed between a main magnetic pole and a yoke magnetic layer magnetically coupled to the main magnetic pole portion.

【0011】(2)主磁極磁性膜の磁界検出層と電気的
に接触する部分の比抵抗をρ1、ヨーク磁性層の磁界検
出層と電気的に接触する部分の比抵抗をρ2、磁界検出
層の比抵抗をρ3とした時、ρ1および/またはρ2が
ρ3の3倍以上あることを特徴とする上記(1)の垂直
磁気ヘッド。
(2) The specific resistance of the portion of the main magnetic pole magnetic film that is in electrical contact with the magnetic field detection layer is ρ1, the specific resistance of the portion of the yoke magnetic layer that is in electrical contact with the magnetic field detection layer is ρ2, and the magnetic field detection layer is The perpendicular magnetic head according to the above (1), wherein, when the specific resistance of ρ3 is ρ3, ρ1 and / or ρ2 is three times or more of ρ3.

【0012】(3)上部ヨーク磁性層が電気めっき法に
より成膜された合金膜であり、該合金膜表面層の膜の比
抵抗が、それよりも内側の部分よりも高いことを特徴と
する上記(1)または(2)の垂直磁気ヘッド。
(3) The upper yoke magnetic layer is an alloy film formed by an electroplating method, and the specific resistance of the film on the surface layer of the alloy film is higher than that of an inner portion thereof. The perpendicular magnetic head according to (1) or (2).

【0013】(4)ヨーク磁性層が電気めっき法により
成膜されたNiFeMoを主成分とする合金膜であり、
上部ヨーク最表面部の膜のMo含有量が、それよりも下
側の部分よりも高いことを特徴とする上記(1)ないし
(3)のいずれかの垂直磁気ヘッド。
(4) The yoke magnetic layer is a NiFeMo-based alloy film formed by electroplating,
The perpendicular magnetic head according to any one of the above (1) to (3), wherein the Mo content of the film on the uppermost surface of the upper yoke is higher than that of the lower portion.

【0014】(5)ヨーク磁性層が電気めっき法により
成膜された合金膜であり、上部ヨーク最表面部の膜が、
逆電解により作製されたことを特徴とする上記(1)な
いし(3)のいずれかの垂直磁気ヘッド。
(5) The yoke magnetic layer is an alloy film formed by electroplating, and the film on the outermost surface of the upper yoke is
The perpendicular magnetic head according to any one of the above (1) to (3), which is manufactured by reverse electrolysis.

【0015】(6)磁界検出層が巨大磁気抵抗効果膜で
ある上記(1)ないし(5)のいずれかの垂直磁気ヘッ
ド。
(6) The perpendicular magnetic head according to any one of (1) to (5), wherein the magnetic field detecting layer is a giant magnetoresistive film.

【0016】(7)磁界検出層がホール素子である上記
(1)ないし(5)のいずれかの垂直磁気ヘッド。
(7) The perpendicular magnetic head according to any one of (1) to (5), wherein the magnetic field detecting layer is a Hall element.

【0017】[0017]

【作用】本発明においては垂直ヘッドの主磁極を再生と
書き込みに併用することで位置決めが容易となる。さら
に主磁極部分と上部ヨーク部分の間に磁界検出部を挿入
し、かつ磁界検出部への磁束流入をすみやかに行うため
に磁界検出部の磁束流入部分の少なくとも片面を、好ま
しくは両面を磁界検出層の比抵抗の3倍以上好ましくは
5倍以上の十分大きな比抵抗を有する磁性膜にて絶縁し
たことにより、高い書き込み能力、大きな再生出力を得
ることができる。
In the present invention, positioning is facilitated by using the main magnetic pole of the vertical head for both reproduction and writing. Further, a magnetic field detecting section is inserted between the main magnetic pole section and the upper yoke section, and at least one side of the magnetic flux inflow section of the magnetic field detecting section is detected in order to promptly introduce a magnetic flux into the magnetic field detecting section. Since the insulating layer is insulated by a magnetic film having a sufficiently large specific resistance of at least three times, preferably at least five times the specific resistance of the layer, a high writing capability and a large reproduction output can be obtained.

【0018】[0018]

【具体的構成】図3は、従来の垂直磁気ヘッドの断面図
を示す。図1、図2は、本発明の垂直磁気ヘッドの断面
図を示す。両図中、6は主磁極で3は上部ヨーク膜、2
はリターンヨーク下部膜である。主磁極部分はパーマロ
イ、NiFeMo、FeN、FeYO、FeHfO、C
oZr等の軟磁性材料を用いることが好ましい。
FIG. 3 is a sectional view of a conventional perpendicular magnetic head. 1 and 2 are sectional views of a perpendicular magnetic head according to the present invention. In both figures, 6 is the main pole, 3 is the upper yoke film, 2
Is a lower yoke film. The main magnetic pole part is permalloy, NiFeMo, FeN, FeYO, FeHfO, C
It is preferable to use a soft magnetic material such as oZr.

【0019】また特開平5−101930号公報に開示
されているような多層膜高抵抗軟磁性材料も使用可能で
ある。前述のようにこの主磁極材料自体の比抵抗が磁界
検出層の比抵抗に比べて十分大きい場合には主磁極と磁
界検出層の間に、絶縁だけを目的とする絶縁層は不要と
なる。パーマロイ等の比抵抗の小さな材料を使用した場
合は、磁界検出層との間に比抵抗の大きな絶縁層を設け
る必要がある。絶縁層としてはアルミナ等の非磁性材料
も可能であるがNiFeMo、FeN、FeYO、Fe
HfO、CoZr、フェライト等の比抵抗の高い軟磁性
材料を用いることが好ましい。
A multi-layer high-resistance soft magnetic material as disclosed in Japanese Patent Application Laid-Open No. 5-101930 can also be used. As described above, when the specific resistance of the main magnetic pole material itself is sufficiently higher than the specific resistance of the magnetic field detection layer, an insulating layer for insulation only between the main magnetic pole and the magnetic field detection layer becomes unnecessary. When a material having a small specific resistance such as permalloy is used, it is necessary to provide an insulating layer having a large specific resistance between the material and the magnetic field detecting layer. As the insulating layer, a nonmagnetic material such as alumina can be used, but NiFeMo, FeN, FeYO, Fe
It is preferable to use a soft magnetic material having a high specific resistance, such as HfO, CoZr, and ferrite.

【0020】上部ヨーク、リターンヨークは厚さが厚い
ことから生産性を考慮して電気めっき法によるモリブデ
ンパーマロイ膜等が用いられる。これはパーマロイ膜に
比べて透磁率が高いのみならず成膜時の電流密度を変化
することで膜中のモリブデン含有量を増減することが容
易なためである。膜中のモリブデン含有量が多くなると
軟磁気特性はやや劣化するが膜の比抵抗は図5に示すよ
うに飛躍的に大きくなり300μΩcm以上の値が得られ
る。このため後述するように磁界検出層と上部ヨークの
間の電気絶縁層の成膜が不要となり、ヘッド構造の簡略
化に大きく寄与する。またパーマロイ膜を用いた場合に
も、逆電解を行い表面部のパーマロイめっき層を溶解し
硫黄酸素の含有量の高い比抵抗の大きな層を形成するこ
とで同様の絶縁効果をえることが可能である。
Since the upper yoke and the return yoke are thick, a molybdenum permalloy film or the like formed by electroplating is used in consideration of productivity. This is because not only is the magnetic permeability higher than that of a permalloy film, but also it is easy to increase or decrease the molybdenum content in the film by changing the current density during film formation. As the molybdenum content in the film increases, the soft magnetic properties slightly deteriorate, but the specific resistance of the film dramatically increases as shown in FIG. 5, and a value of 300 μΩcm or more is obtained. Therefore, as described later, it is not necessary to form an electric insulating layer between the magnetic field detecting layer and the upper yoke, which greatly contributes to simplification of the head structure. When a permalloy film is used, the same insulation effect can be obtained by performing reverse electrolysis and dissolving the permalloy plating layer on the surface to form a layer having a high specific resistance with a high sulfur-oxygen content. is there.

【0021】5のコイルに電流を印加することで主磁極
6の先端から磁束が外部にある記録媒体に入り、磁化す
ることで記録が行われる。この際に主磁極が途中で分断
されていると強い磁界を発生することが出来ず媒体を十
分に磁化できずオーバーライト特性等が劣化してしま
う。このため主磁極を磁界検出層に磁束を導くために分
断することは好ましくない。
When a current is applied to the coil 5, magnetic flux enters the external recording medium from the tip of the main magnetic pole 6 and is magnetized to perform recording. At this time, if the main magnetic pole is disconnected in the middle, a strong magnetic field cannot be generated, the medium cannot be sufficiently magnetized, and the overwrite characteristics and the like deteriorate. For this reason, it is not preferable to divide the main magnetic pole to guide the magnetic flux to the magnetic field detection layer.

【0022】本発明の磁界検出層では、巨大磁気抵抗効
果膜あるいはホール素子が使用される。 巨大磁気抵抗
効果膜は従来のパーマロイ等の異方性磁気抵抗効果にく
らべて遥かに大きな磁界に対する感度を有していること
から面内に磁束が流れる場合でも十分な再生出力を得る
ことができる。このような巨大磁気抵抗効果膜は人工格
子膜で実現している、これは金属の原子径オーダーの厚
さの薄膜が周期的に積層された構造をもち、バルク状の
金属とは異なった特性を示すために、近年注目されてき
ている。人工格子の1種として、基板上に強磁性金属薄
膜と非磁性金属薄膜とを交互に積層した磁性多層膜があ
り、これまで、鉄−クロム型、コバルト−銅型等の磁性
多層膜が知られている。このうち、鉄−クロム型(Fe
/Cr)については、超低温(4.2K)において40
%を超える磁気抵抗変化を示すという報告がある(Phy
s. Rev. Lett 第61巻、2472頁、1988
年)。
In the magnetic field detecting layer of the present invention, a giant magnetoresistive film or a Hall element is used. The giant magnetoresistive film has a much higher sensitivity to magnetic fields than conventional anisotropic magnetoresistive effects such as permalloy, so that sufficient reproduction output can be obtained even when magnetic flux flows in the plane. . Such a giant magnetoresistive film is realized by an artificial lattice film, which has a structure in which thin films having a thickness on the order of the atomic diameter of metal are periodically laminated, and has different characteristics from bulk metal. In recent years, attention has been paid to show As one type of artificial lattice, there is a magnetic multilayer film in which ferromagnetic metal thin films and non-magnetic metal thin films are alternately laminated on a substrate, and magnetic multilayer films such as iron-chromium type and cobalt-copper type have been known. Have been. Among them, iron-chromium type (Fe
/ Cr) is 40 at ultra-low temperature (4.2K).
% Of the magnetoresistive change (Phy
s. Rev. Lett 61, 2472, 1988
Year).

【0023】しかし、この人工格子磁性多層膜では最大
抵抗変化の起きる外部磁場(動作磁束強度)が十数kOe
〜数十kOe と大きく、このままでは実用性がない。この
他、Co/Ag等の人工格子磁性多層膜も提案されてい
るが、これらでも動作磁場強度が大きすぎる。
However, in this artificial lattice magnetic multilayer film, the external magnetic field (operating magnetic flux intensity) at which the maximum resistance change occurs is more than ten kOe
Large, up to several tens of kOe, which is not practical. In addition, an artificial lattice magnetic multilayer film of Co / Ag or the like has been proposed, but even in these, the operating magnetic field intensity is too large.

【0024】そこで、このような事情から、非磁性層を
介して保磁力の異なる2つの磁性層を積層した誘導フェ
リ磁性による巨大MR変化を示す3元系人工格子磁性多
層膜が提案されている。例えば、非磁性層を介して隣合
う磁性薄膜のHcが異なっており、各層の厚さが200
A以下であるもの(特開平4−218982号公報)な
どがある。また、スピンバルブ膜という新しい構造も提
案されている。
Under such circumstances, a ternary artificial lattice magnetic multilayer film exhibiting a giant MR change due to induced ferrimagnetism in which two magnetic layers having different coercive forces are stacked via a nonmagnetic layer has been proposed. . For example, the magnetic thin films adjacent via the non-magnetic layer have different Hc, and the thickness of each layer is 200 μm.
A or less (Japanese Patent Laid-Open No. 4-218982). Also, a new structure called a spin valve film has been proposed.

【0025】これは非磁性層を介してNiFe層が2層
形成されており、一方のNiFe層に隣接してFeMn
層が配置されている構成を持つ。ここではFeMn層と
隣接するNiFe層とが直接交換結合力で結合している
ため、このNiFe層の磁気スピンは数10〜数100
Oeの磁場強度まで、その向きを固着される。一方のNi
Fe層のスピンは外部磁場によって自由にその向きを変
えうる。その結果、NiFe層の保磁力程度という、小
さな磁場範囲で2〜5%の磁気抵抗変化率(MR変化
率)が実現されている。
This is because two NiFe layers are formed via a non-magnetic layer, and a FeMn layer is formed adjacent to one NiFe layer.
It has a configuration in which layers are arranged. Here, since the FeMn layer and the adjacent NiFe layer are directly coupled by an exchange coupling force, the magnetic spin of the NiFe layer is several tens to several hundreds.
The direction is fixed up to the Oe magnetic field strength. One Ni
The spin of the Fe layer can change its direction freely by an external magnetic field. As a result, a magnetoresistance change rate (MR change rate) of 2 to 5% is realized in a small magnetic field range of about the coercive force of the NiFe layer.

【0026】またホール素子は面内垂直の磁束成分を有
効に検出可能なために本構造の磁気ヘッドにおいても高
い再生信号が得られる。ホール素子としてはInSb、
InAs、GaSs等の材料が使用可能である。
Further, since the Hall element can effectively detect the in-plane perpendicular magnetic flux component, a high reproduction signal can be obtained even with the magnetic head having this structure. InSb as a Hall element,
Materials such as InAs and GaAs can be used.

【0027】電気絶縁層は磁界検出層に流したセンス電
流が分流され再生効率低下を防ぐ。
In the electric insulating layer, the sense current flowing to the magnetic field detecting layer is shunted to prevent a reduction in reproduction efficiency.

【0028】電気絶縁層の比抵抗は磁界検出層の比抵抗
の3倍以上特に好ましくは5倍以上あれば分流による検
出感度の低下が防止される。3倍未満の比抵抗では分流
の影響が大きく、結果として磁界検出感度が低下し出力
が小さくなる。上限は材料により制限を受ける。たとえ
ばNiFeMoめっき膜では軟磁気特性があまり劣化し
ないためには膜の比抵抗は350μΩcm程度であり、こ
れは磁界検出層の10倍から15倍である。電流の分流
は膜の比抵抗だけでなく膜厚も影響を及ぼす。しかし薄
膜を積層した場合には膜と膜の界面での抵抗の影響が大
きく、この界面抵抗に膜そのものの比抵抗が大きな影響
を及ぼすために膜の比抵抗を規定することで所望の効果
が得られる。
If the specific resistance of the electrical insulating layer is at least three times the specific resistance of the magnetic field detecting layer, and particularly preferably at least five times, a decrease in the detection sensitivity due to shunting can be prevented. If the specific resistance is less than three times, the influence of the shunt is large, and as a result, the magnetic field detection sensitivity is reduced and the output is reduced. The upper limit is limited by the material. For example, in the case of a NiFeMo plated film, the specific resistance of the film is about 350 μΩcm so that the soft magnetic characteristics do not deteriorate so much, which is 10 to 15 times that of the magnetic field detecting layer. The current shunt affects not only the specific resistance of the film but also the film thickness. However, when thin films are stacked, the resistance at the interface between the films is greatly affected, and the specific resistance of the film itself has a large effect on the interface resistance. can get.

【0029】層間の界面での抵抗が重電気絶縁層電気絶
縁層は磁界検出層の両側に設ける必要がある。しかし主
磁極そのものに電気絶縁層と同じ効果を持たせることも
可能であり、この場合は図1に示すように上部ヨーク側
にのみ形成すれば良い。また図2に示すように上部ヨー
ク材料としてモリブデンパーマロイ膜等を用い、最上層
の比抵抗を磁界検出層の比抵抗の3倍以上特に好ましく
は5倍以上とした場合にはこの最上層が実質的に電気絶
縁層の働きをするために同一装置同一めっき浴からで連
続してめっき成膜可能である。このように本発明での電
気絶縁層とは比抵抗が磁界検出層の3倍以上の磁性膜で
あれば、磁界検出層の上部下部の絶縁に有効に利用さ
れ、絶縁のみならず磁束誘導効果も期待できる材料を少
なくとも片側に用いることが好ましい。
The electric insulation layer must be provided on both sides of the magnetic field detecting layer. However, the main magnetic pole itself can have the same effect as the electric insulating layer. In this case, the main magnetic pole may be formed only on the upper yoke side as shown in FIG. As shown in FIG. 2, when a molybdenum permalloy film or the like is used as an upper yoke material and the specific resistance of the uppermost layer is set to three times or more, particularly preferably five times or more, the specific resistance of the magnetic field detecting layer, the uppermost layer is substantially In order to effectively function as an electrical insulating layer, plating can be continuously formed from the same apparatus and the same plating bath. As described above, the electric insulating layer according to the present invention is a magnetic film having a specific resistance of three times or more that of the magnetic field detecting layer, and is effectively used for insulating the upper and lower portions of the magnetic field detecting layer. It is preferable to use a material that can also be expected on at least one side.

【0030】モリブデンパーマロイめっき膜は通常のパ
ーマロイめっき浴に酒石酸またはその塩を0.1モル/
リットルから1モル/リットルとモリブデン酸アンモニ
ウムイオンを適量添加することで成膜可能である。成膜
時の浴温は常温から60℃の範囲で、電流密度は0.1
A/dm2から3 A/dm2の範囲が好ましい。膜中のモリブ
デン含有量は浴中モリブデンイオンの含有率が一定の場
合、成膜時の電流密度が低いほど、高くなる。すなわち
上部ヨーク成膜工程において通常の2から5wt%のモリ
ブデン含有量の高透磁率モリブデンパーマロイ膜を数μ
m成膜した後に、電流密度を小さくして短時間の電析を
行いモリブデン含有量が5wt%以上の高比抵抗薄膜を成
膜することが可能である。電気絶縁層としての高比抵抗
モリブデンパーマロイ層の厚さは500 A以上あれば問
題はない。
The molybdenum permalloy plating film is prepared by adding tartaric acid or a salt thereof to a usual permalloy plating bath at 0.1 mol / mol.
A film can be formed by adding an appropriate amount of ammonium molybdate ion from 1 to 1 mol / liter. The bath temperature during film formation is in the range of room temperature to 60 ° C., and the current density is 0.1
A range of A / dm 2 to 3 A / dm 2 is preferred. When the content of molybdenum ions in the bath is constant, the molybdenum content in the film increases as the current density during film formation decreases. That is, a high permeability molybdenum permalloy film having a molybdenum content of 2 to 5 wt% in the upper yoke film forming step is formed by several μm.
After forming the m film, it is possible to form a high resistivity thin film having a molybdenum content of 5 wt% or more by performing a short-time electrodeposition while reducing the current density. There is no problem if the thickness of the high specific resistance molybdenum permalloy layer as the electric insulating layer is 500 A or more.

【0031】パーマロイめっき膜を逆電解して高比抵抗
層を得るには通常の成膜の最終段階において逆電解を印
加する。逆電解量は0.01アンペア時から0.2アン
ペア時で電流密度は0.01A/dm2から1A/dm2であ
る。逆電圧を印加しはじめると浴電圧が上昇するので、
その浴電圧を見ながら決定することが好ましい。
In order to obtain a high specific resistance layer by reverse electrolysis of the permalloy plating film, reverse electrolysis is applied in the final stage of ordinary film formation. Reverse electrolysis amounts current density at the time of 0.2 Amps from the time of 0.01 amps is 1A / dm 2 from 0.01 A / dm 2. When the reverse voltage starts to be applied, the bath voltage rises,
It is preferable to determine while looking at the bath voltage.

【0032】[0032]

【実施例】以下、本発明の実施例、比較例について詳細
に説明する。 〈実施例1〉実施例1として本発明のヘッド構造の一例
を示す。図2の構造とし主磁極6はスパッタ法で成膜し
た比抵抗150μΩcm、透磁率1500のFeYO膜を
用い厚さ0.1μm幅10μm、3の上部ヨークからの突
き出し量は5μmとした。上部ヨーク3は厚さ15μm幅
20μmで、リターンヨーク2は厚さ8μm幅150μm
とし、いずれも電気めっき法で成膜したモリブデンパー
マロイ膜でモリブデン含有量4wt%で比抵抗ρは60μ
Ωcmであった。そして上部ヨークの最上層部分の0.1
μmはモリブデン含有量は18wt%で比抵抗は300μ
Ωcmであった。磁界検出層としてはMBE法にて成膜し
た誘導フェリ型磁性人工格子膜で比抵抗30μΩcmの膜
を用いた。
EXAMPLES Examples of the present invention and comparative examples will be described below in detail. <Embodiment 1> An example of the head structure of the present invention is shown as Embodiment 1. 2, the main magnetic pole 6 was formed of a FeYO film having a specific resistance of 150 μΩcm and a magnetic permeability of 1500 formed by a sputtering method. The thickness of the main magnetic pole 6 was 0.1 μm, the width was 10 μm, and the amount of protrusion from the upper yoke was 5 μm. The upper yoke 3 is 15 μm thick and 20 μm wide, and the return yoke 2 is 8 μm thick and 150 μm wide.
Each of them is a molybdenum permalloy film formed by an electroplating method and has a specific resistance ρ of 60 μm with a molybdenum content of 4 wt%.
Ωcm. And 0.1 of the uppermost layer of the upper yoke
μm has a molybdenum content of 18 wt% and a specific resistance of 300 μm
Ωcm. As the magnetic field detection layer, an induction ferrimagnetic artificial lattice film formed by MBE and having a specific resistance of 30 μΩcm was used.

【0033】基板には0.5mm厚の3インチのアルティ
ク(ALTIC)の上にスパッタ法でアルミナ膜を10
μm成膜したものを用いた。リターンヨーク部は以下の
組成の浴を用い電気めっき法により電流密度1A/dm2
浴温40℃、pH4.5で30分間成膜した。
On a substrate, an alumina film was formed on a 3-inch ALTIC (0.5 mm thick) by sputtering.
A film having a thickness of μm was used. The return yoke portion has a current density of 1 A / dm 2 by electroplating using a bath having the following composition.
A film was formed at a bath temperature of 40 ° C. and a pH of 4.5 for 30 minutes.

【0034】硫酸ニッケル 1.25モル/リットル 硫酸鉄 0.015モル/リットル ホウ酸 0.4モル/リットル 塩化アンモニウム 0.25モル/リットル サッカリン2g/リットル 酒石酸カリウムナトリウム0.5モル/リットル 膜組成は79wt%Ni−17wt%Fe−4wt%Moであ
った。ノボラック系フォトレジストを磁気コアの絶縁材
料として用い、コイルは電気めっき法により硫酸浴から
60分間成膜した。上部ヨークもリターンヨーク部と同
じ条件で成膜を行い、ただし最後の5分間のみ電流密度
を0.1A/dm2に減じた。
Nickel sulfate 1.25 mol / l Iron sulfate 0.015 mol / l Boric acid 0.4 mol / l Ammonium chloride 0.25 mol / l Saccharin 2 g / l Potassium sodium sodium tartrate 0.5 mol / l Membrane composition Was 79 wt% Ni-17 wt% Fe-4 wt% Mo. A novolak-based photoresist was used as an insulating material for the magnetic core, and the coil was formed by electroplating from a sulfuric acid bath for 60 minutes. The upper yoke was also formed under the same conditions as the return yoke, except that the current density was reduced to 0.1 A / dm 2 only for the last 5 minutes.

【0035】磁磁界検出部はCrを50 A成膜し、下地
層とした上にNiFe(50)−Cu(50)−Co
(50)−Cu(50)−NiFe(50)を順に2回
繰り返し積層し、磁性多層膜を成膜した。成膜条件は、
到達圧力1.3×10-10 Torr、成膜時圧力1.2×1
-9 Torr、基板温度35℃程度とし、各材料を0.2
〜0.3 A /sec の成膜速度で、成膜中に磁場を基板
の面内かつ測定電流と平行方向に印加しながら超高真空
下における蒸着法(MBE法)による成膜である。その
後20μm ×6μmのパターンを形成、その上にトラッ
ク幅3μm の電極を形成した後、主磁極の成膜をrfス
パッタ法にてアルゴン雰囲気中に酸素を0.2から0.
5体積%程度含有させ成膜した。78at%Fe−9at
%Y−13at%Oの膜組成となるように行った。最後
にフォトレジスト絶縁層、コイル層、アルミナ保護膜等
を形成した後、ヘッドピースに機械加工し、組立を行い
垂直磁気ヘッドとした。
The magnetic field detecting portion is formed by depositing 50 A of Cr to form an underlayer, and then NiFe (50) -Cu (50) -Co
(50) -Cu (50) -NiFe (50) were repeatedly laminated in order twice to form a magnetic multilayer film. The deposition conditions are
Ultimate pressure 1.3 × 10 -10 Torr, deposition pressure 1.2 × 1
0 -9 Torr, the substrate temperature is about 35 ° C, and each material is 0.2
Film formation is performed by a vapor deposition method (MBE method) under ultra-high vacuum while applying a magnetic field in the plane of the substrate and in a direction parallel to the measurement current at a film formation rate of about 0.3 A / sec. Thereafter, a pattern of 20 μm × 6 μm is formed, and an electrode having a track width of 3 μm is formed thereon. Then, the main magnetic pole is formed by rf sputtering using oxygen in an atmosphere of 0.2 to 0.1 μm in an argon atmosphere.
A film was formed containing about 5% by volume. 78 at% Fe-9 at
% Y-13 at% O. Finally, after forming a photoresist insulating layer, a coil layer, an alumina protective film, and the like, the head piece was machined and assembled to obtain a perpendicular magnetic head.

【0036】本垂直磁気ヘッドは測定電流を12mA、記
録媒体として8000 ANiFe/1000 ACoCr
Pt/100 Aカーボンの1.8インチ径垂直ディスク
を用い記録密度100kFCI(4kbit/mm)、相対速度3
m/secにおいて200μVの再生出力、マイナス30d
Bのオーバーライト特性が得られた。なお本実施例にお
いてρ1/ρ3=5、ρ2/ρ1=10である。
This perpendicular magnetic head has a measuring current of 12 mA and a recording medium of 8000 ANiFe / 1000 ACoCr.
Pt / 100 A carbon 1.8 inch diameter vertical disk, recording density 100 kFCI (4 kbit / mm), relative speed 3
Reproduction output of 200μV at m / sec, minus 30d
The overwriting characteristics of B were obtained. In this embodiment, ρ1 / ρ3 = 5 and ρ2 / ρ1 = 10.

【0037】〈比較例1〉図3の構造の従来型垂直磁気
インダクティブ再生ヘッドを比較例1とする。実施例1
から磁界検出層、リード層を省いた工程で他は同じ条件
で試作した。コイルのターン数は36ターンと実施例1
の3倍のターン数形成した。実施例1と同じ条件にて測
定したところ再生出力50μVと低い値しか得られなか
った。
Comparative Example 1 A conventional perpendicular magnetic inductive reproducing head having the structure shown in FIG. Example 1
The process was performed under the same conditions except that the magnetic field detection layer and the lead layer were omitted. Example 1 with 36 turns of coil
3 times the number of turns was formed. When measured under the same conditions as in Example 1, only a low output value of 50 μV was obtained.

【0038】(参考例)実施例1において主磁極磁性材
料として比抵抗20μΩcmのNiFe薄膜を用いたヘ
ッドを参考例とする。この場合には磁界検出層である磁
性人工格子膜よりも主磁極の比抵抗が低いために絶縁を
目的とした層が必要である。磁界検出層との電気絶縁層
には0.1μmのアルミナ膜を用いた。上部ヨーク等は
実施例1と全く同じである。実施例1と同様の測定で出
力195μVが得られた。(比較例2)実施例1において上部ヨーク成膜の最後の
2分間を0.7A/dm 2 としたヘッドを比較例2とす
る。上部ヨークの磁界検出層と電気的に接触している部
分の比抵抗ρ2は75μΩcmで磁界検出層の比抵抗ρ
3の2.5倍であった。実施例1と同じ条件にて測定し
たところ比較例2では10μV以下の低い値しか得られ
なかった。
( Reference Example ) A head using a NiFe thin film having a specific resistance of 20 μΩcm as a main magnetic pole magnetic material in the first embodiment is used as a reference example . In this case, since the specific resistance of the main magnetic pole is lower than that of the magnetic artificial lattice film serving as the magnetic field detecting layer, a layer for the purpose of insulation is required. A 0.1 μm alumina film was used as an electric insulating layer with the magnetic field detecting layer. The upper yoke and the like are exactly the same as in the first embodiment. An output of 195 μV was obtained by the same measurement as in Example 1. (Comparative Example 2)
A head having 0.7 A / dm 2 for 2 minutes is referred to as Comparative Example 2.
You. The part of the upper yoke that is in electrical contact with the magnetic field detection layer
The specific resistance ρ2 of the magnetic field detection layer is 75 μΩcm
3 times 2.5. Measured under the same conditions as in Example 1.
In Comparative Example 2, only a low value of 10 μV or less was obtained.
Did not.

【0039】[0039]

【0040】[0040]

【0041】[0041]

【0042】〈実施例4〉リターンヨーク及び上部ヨー
クをパーマロイめっき膜(比抵抗ρ2=20μΩcm)で
作成したヘッドを実施例4とする。めっき浴は実施例1
の浴から酒石酸とモリブデン酸アンモニウムを除いた通
常のパーマロイめっき浴を用いた。そしてただし上部ヨ
ーク成膜の最後を電流値を減ずるかわりに、5分間、電
流密度を−0.1A/dm2の逆電解を印加した。他はすべ
て実施例1と同様である。なお、逆電解層の比抵抗測定
は困難であったが逆電解なしの試料等との比較から20
0μΩcm程度と推定された。本ヘッドは140μVの再
生出力、マイナス30dBのオーバーライト特性が得られ
た。
Fourth Embodiment A head in which a return yoke and an upper yoke are made of a permalloy plating film (specific resistance ρ2 = 20 μΩcm) will be referred to as a fourth embodiment. Plating bath is Example 1
An ordinary permalloy plating bath was used except that tartaric acid and ammonium molybdate were removed from the bath. However, instead of reducing the current value at the end of the upper yoke film formation, reverse electrolysis with a current density of -0.1 A / dm 2 was applied for 5 minutes. Everything else is the same as in the first embodiment. Although it was difficult to measure the specific resistance of the reverse electrolysis layer, it was 20
It was estimated to be about 0 μΩcm. This head has a reproduction output of 140 μV and an overwrite characteristic of minus 30 dB.

【0043】このように本発明の実施例では高い再生出
力と書き込み特性が得られ本発明の効果が確認された。
As described above, in the embodiment of the present invention, high reproduction output and writing characteristics were obtained, and the effect of the present invention was confirmed.

【図面の簡単な説明】[Brief description of the drawings]

【図1】本発明の垂直磁気ヘッドの一例の断面図を示
す。
FIG. 1 is a sectional view showing an example of a perpendicular magnetic head according to the present invention.

【図2】本発明の垂直磁気ヘッドの他の例の断面図を示
す。
FIG. 2 shows a sectional view of another example of the perpendicular magnetic head of the present invention.

【図3】従来の垂直磁気ヘッドの断面図を示す。FIG. 3 is a sectional view of a conventional perpendicular magnetic head.

【図4】本発明の垂直磁気ヘッドの断面図の主磁極近傍
の拡大図を示す。
FIG. 4 is an enlarged view of the vicinity of a main magnetic pole in a cross-sectional view of the perpendicular magnetic head of the present invention.

【図5】電気めっき法により膜中モリブデン含有量と比
抵抗の関係を示す。
FIG. 5 shows a relationship between molybdenum content in a film and specific resistance by an electroplating method.

【符号の説明】[Explanation of symbols]

1 下地膜 2 リターンヨーク下部膜 3 上部ヨーク膜 3’上部ヨーク膜最上層 4 絶縁層 5 コイル 6 主磁極 7 磁界検出層 8 絶縁層 a1 主磁極における媒体からの磁束の流れを概念的に
示したもの a2 磁界検出層を貫く磁束の流れを概念的に示したも
の a3 磁界検出層を通らないで上部ヨークに流れる磁束
を概念的に示したもの
Reference Signs List 1 Base film 2 Return yoke lower film 3 Upper yoke film 3 'Upper yoke film uppermost layer 4 Insulating layer 5 Coil 6 Main pole 7 Magnetic field detecting layer 8 Insulating layer a1 Flow of magnetic flux from the medium in the main pole is conceptually shown. A2 Conceptually showing the flow of magnetic flux through the magnetic field detection layer a3 Conceptually showing the magnetic flux flowing through the upper yoke without passing through the magnetic field detection layer

───────────────────────────────────────────────────── フロントページの続き 審査官 馬場 慎 (56)参考文献 特開 昭60−115014(JP,A) 特開 昭62−262213(JP,A) 特開 平6−236526(JP,A) (58)調査した分野(Int.Cl.7,DB名) G11B 5/31 G11B 5/39 G11B 5/129 ────────────────────────────────────────────────── ─── Continuation of the front page Examiner Shin Baba (56) References JP-A-60-115014 (JP, A) JP-A-62-262213 (JP, A) JP-A-6-236526 (JP, A) ( 58) Field surveyed (Int.Cl. 7 , DB name) G11B 5/31 G11B 5/39 G11B 5/129

Claims (6)

(57)【特許請求の範囲】(57) [Claims] 【請求項1】 主磁極と前記主磁極に磁気的に結合して
いる上部ヨークの間に磁界検出層を形成してなる垂直磁
気ヘッドであって、 前記主磁極の前記磁界検出層と電気的に接触する部分の
比抵抗をρ1、前記上部ヨークの前記磁界検出層と電気
的に接触する部分の比抵抗をρ2、前記磁界検出層の比
抵抗をρ3としたとき、ρ1およびρ2がそれぞれ、ρ
3の3倍以上、15倍以下であることを特徴とする垂直
磁気ヘッド。
1. A perpendicular magnetic head having a magnetic field detection layer formed between a main pole and an upper yoke magnetically coupled to the main pole, wherein the magnetic field detection layer is electrically connected to the main pole. Ρ1, the specific resistance of the portion of the upper yoke that is in electrical contact with the magnetic field detection layer is ρ2, and the specific resistance of the magnetic field detection layer is ρ3 . ρ
3. A perpendicular magnetic head, wherein the length is 3 times or more and 15 times or less.
【請求項2】 前記上部ヨークが電気めっき法により成
膜された合金膜であり、前記上部ヨークの前記磁界検出
層に電気的に接触する表面部の比抵抗が、それよりも内
側の部分よりも高いことを特徴とする請求項1に記載の
垂直磁気ヘッド。
2. The method according to claim 1, wherein the upper yoke is an alloy film formed by an electroplating method, and a specific resistance of a surface portion of the upper yoke that is in electrical contact with the magnetic field detection layer is higher than that of an inner portion. 2. The perpendicular magnetic head according to claim 1, wherein the height is also higher.
【請求項3】 前記上部ヨークが電気めっき法により成
膜されたNiFeMoを主成分とする合金膜であり、前
記上部ヨークの前記磁界検出層に電気的に接触する表面
部のMo含有量が、それよりも下側の部分よりも高いこ
とを特徴とする請求項1または請求項2に記載の垂直磁
気ヘッド。
3. The upper yoke is an alloy film containing NiFeMo as a main component formed by an electroplating method, and the Mo content of a surface portion of the upper yoke that is in electrical contact with the magnetic field detection layer is: 3. The perpendicular magnetic head according to claim 1, wherein the vertical magnetic head is higher than a lower portion.
【請求項4】 前記上部ヨークが電気めっき法により成
膜された合金膜であり、前記上部ヨークの前記磁界検出
層に電気的に接触する表面部の膜が、逆電解により作製
されてなることを特徴とする請求項1または請求項2に
記載の垂直磁気ヘッド。
4. The upper yoke is an alloy film formed by an electroplating method, and a film of a surface portion of the upper yoke that is in electrical contact with the magnetic field detection layer is formed by reverse electrolysis. The perpendicular magnetic head according to claim 1 or 2, wherein:
【請求項5】 前記磁界検出層が巨大磁気抵抗効果膜で
あることを特徴とする請求項1ないし請求項4のいずれ
かに記載の垂直磁気ヘッド。
5. The perpendicular magnetic head according to claim 1, wherein the magnetic field detecting layer is a giant magnetoresistive film.
【請求項6】 前記磁界検出層がホール素子であること
を特徴とする請求項1ないし請求項4のいずれかに記載
の垂直磁気ヘッド。
6. The perpendicular magnetic head according to claim 1, wherein the magnetic field detecting layer is a Hall element.
JP22001094A 1994-09-14 1994-09-14 Perpendicular magnetic head Expired - Fee Related JP3331389B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP22001094A JP3331389B2 (en) 1994-09-14 1994-09-14 Perpendicular magnetic head

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP22001094A JP3331389B2 (en) 1994-09-14 1994-09-14 Perpendicular magnetic head

Publications (2)

Publication Number Publication Date
JPH0887715A JPH0887715A (en) 1996-04-02
JP3331389B2 true JP3331389B2 (en) 2002-10-07

Family

ID=16744522

Family Applications (1)

Application Number Title Priority Date Filing Date
JP22001094A Expired - Fee Related JP3331389B2 (en) 1994-09-14 1994-09-14 Perpendicular magnetic head

Country Status (1)

Country Link
JP (1) JP3331389B2 (en)

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6223420B1 (en) 1998-12-04 2001-05-01 International Business Machines Corporation Method of making a read head with high resistance soft magnetic flux guide layer for enhancing read sensor efficiency
JP2000235911A (en) * 1998-12-14 2000-08-29 Fujitsu Ltd Magnetic material, magnetic head using the same and magnetic recording device
JP2006127640A (en) 2004-10-28 2006-05-18 Hitachi Global Storage Technologies Netherlands Bv Magnetic head and its manufacturing method

Also Published As

Publication number Publication date
JPH0887715A (en) 1996-04-02

Similar Documents

Publication Publication Date Title
JP3462832B2 (en) Magnetic resistance sensor, magnetic head and magnetic recording / reproducing apparatus using the same
JP3473684B2 (en) Magnetic head, method of manufacturing the same, and magnetic recording / reproducing apparatus using the same
US6351357B1 (en) Laminated hard magnet in MR sensor
US6721147B2 (en) Longitudinally biased magnetoresistance effect magnetic head and magnetic reproducing apparatus
JPH104012A (en) Magnetoresistance effect element, manufacture thereof and magnetic head manufactured thereby
US6778357B2 (en) Electrodeposited high-magnetic-moment material at writer gap pole
JPH10312513A (en) Thin film magnetic head
US20230274761A1 (en) Magnetic recording head with stable magnetization of shields
JP3263018B2 (en) Magnetoresistive element and method of manufacturing the same
JP2000322707A (en) Co-Fe-Ni MAGNETIC FILM HAVING HIGHLY SATURATED MAGNETIC FLUX DENSITY, COMPLEX THIN FILM MAGNETIC HEAD USING THE SAME AS MAGNETIC POLE AND MAGNETIC STORAGE DEVICE
JP2000235911A (en) Magnetic material, magnetic head using the same and magnetic recording device
US6635366B2 (en) Spin valve thin film magnetic element and thin film magnetic head
JP2002217030A (en) Magnetoresistance effect magnetic sensor and magnetic recording reproducer
US7433163B2 (en) Seedlayer for high hard bias layer coercivity
US6798620B2 (en) Magneto-resistive element, magnetic head, and magnetic recording and reproduction apparatus
US6120920A (en) Magneto-resistive effect magnetic head
JP3331389B2 (en) Perpendicular magnetic head
KR100382865B1 (en) Recording head, recording head manufacturing method, combined head and magnetic recording/reproduction apparatus
US6687082B1 (en) Magnetic head and manufacturing method thereof and magnetic recording and reproducing apparatus
JP3217625B2 (en) Magnetoresistive head
JPH10241125A (en) Thin film magnetic head and recording/reproducing separation type magnetic head and magnetic recording/ reproducing apparatus using the same
US20070047140A1 (en) Electroplated multiple layer soft magnetic materials with high magnetic moment
JP2002123912A (en) Magneto-resistive effect element and magnetic disk unit
KR100331188B1 (en) A thin film magnetic head, a recording/reproduction separation type head and a magnetic recording and reproducing apparatus using the head
JPH103620A (en) Magneto-resistive element and its production as well as magnetic head formed by using the same

Legal Events

Date Code Title Description
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20020618

S533 Written request for registration of change of name

Free format text: JAPANESE INTERMEDIATE CODE: R313533

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20080726

Year of fee payment: 6

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090726

Year of fee payment: 7

LAPS Cancellation because of no payment of annual fees