JPH0887715A - Perpendicular magnetic head - Google Patents

Perpendicular magnetic head

Info

Publication number
JPH0887715A
JPH0887715A JP22001094A JP22001094A JPH0887715A JP H0887715 A JPH0887715 A JP H0887715A JP 22001094 A JP22001094 A JP 22001094A JP 22001094 A JP22001094 A JP 22001094A JP H0887715 A JPH0887715 A JP H0887715A
Authority
JP
Japan
Prior art keywords
magnetic
layer
film
magnetic field
specific resistance
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP22001094A
Other languages
Japanese (ja)
Other versions
JP3331389B2 (en
Inventor
Osamu Shinoura
治 篠浦
Satoru Araki
悟 荒木
Daisuke Miyauchi
大助 宮内
Yuichi Sato
雄一 佐藤
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
TDK Corp
Original Assignee
TDK Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by TDK Corp filed Critical TDK Corp
Priority to JP22001094A priority Critical patent/JP3331389B2/en
Publication of JPH0887715A publication Critical patent/JPH0887715A/en
Application granted granted Critical
Publication of JP3331389B2 publication Critical patent/JP3331389B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Abstract

PURPOSE: To obtain a perpendicular magnetic head which facilitates positioning of a head for reproduction and has a high writing capacity and large reproduced output. CONSTITUTION: A magnetic field detecting layer is formed between the main magnetic pole part of the perpendicular magnetic head and the yoke magnetic layers magnetically coupled to the main magnetic pole part. More preferably, the magnetic head is designed in such a manner that ρ1 and/or ρ2 is made >=3 times ρ3 when the specific resistance of the part of the main magnetic pole magnetic film in electrical contact with the magnetic field detecting layer is defined as ρ1, the specific resistance of the part of the yoke magnetic layer in electrical contact with the magnetic field detecting layer as ρ2 and the specific resistance of the magnetic field detecting layer as ρ3. Positioning is facilitated by commonly using the main magnetic pole of the perpendicular magnetic head for reproducing and writing. Further, a magnetic field detecting part is inserted between the main magnetic pole part and a upper yoke part. In addition, at least the one surface, preferably both surfaces, of the magnetic flux inflow part of the magnetic field detecting part are insulated by magnetic films having the sufficiently large specific resistance of >=3 times, more preferably >=5 times the specific resistance of thc magnetic field detecting layer in order to rapidly effect the magnetic flux inflow to the magnetic field detecting part, by which the high writing capacity and the large reproduced output are obtd.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【産業上の利用分野】本発明は、ディジタル情報を記録
再生する磁気ディスク装置に装備される垂直磁化方式の
磁気ヘッドに関する。特に従来のインダクティブヘッド
に比べて格段に大きな再生信号を得ることが出来ること
から高密度記録に対応できる垂直磁気ヘッドに関する。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a perpendicular magnetization type magnetic head installed in a magnetic disk device for recording and reproducing digital information. In particular, the present invention relates to a perpendicular magnetic head that can handle high density recording because it can obtain a reproduction signal that is significantly larger than that of a conventional inductive head.

【0002】[0002]

【従来の技術】IEEE Trans.Magn, MAG−13(197
7),1272ページに記載されているように垂直磁気
記録は磁気記録媒体の面内垂直方向に磁化する記録方式
で高い記録密度に対応している。
2. Description of the Related Art IEEE Trans. Magn, MAG-13 (197
7), page 1272, the perpendicular magnetic recording is a recording method in which the magnetic recording medium is magnetized in the in-plane perpendicular direction and is compatible with a high recording density.

【0003】この垂直磁気記録のためには従来とは異な
る磁気ヘッドが要求されており日本応用磁気学会誌 Vo
l.13(1989)、113ページ、特開平6−18
0810号公報などに記載されている。しかし、これら
の垂直磁気ヘッドは再生に記録と同じインダクティブヘ
ッドを用いており出力信号の強度は十分ではなかった。
For this perpendicular magnetic recording, a magnetic head different from the conventional one is required, and the journal of the Japan Society for Applied Magnetics Vo
l. 13 (1989), page 113, JP-A-6-18.
No. 0810 publication. However, these perpendicular magnetic heads use the same inductive head for recording as for reproduction, and the strength of the output signal was not sufficient.

【0004】一方、現在広く使用されている水平磁気記
録においては信学技報MR92−61(1992)、7
ページのように、高密度記録でより高い再生出力を得る
ために磁気抵抗効果再生ヘッド(MRヘッド)が使用さ
れ始めている。
On the other hand, in the horizontal magnetic recording which is widely used at present, Technical Report of MR92-61 (1992), 7
As in pages, magnetoresistive effect reproducing heads (MR heads) have begun to be used in order to obtain higher reproducing output in high density recording.

【0005】垂直磁気ヘッドにMR素子を用いて再生信
号を得ることは特開平4−278210号公報に開示さ
れているが主磁極はMR素子により分断されている構造
となっているために書き込みのための大きな磁界を発生
されることは出来ず再生専用であった。
Obtaining a reproduction signal by using an MR element in a perpendicular magnetic head is disclosed in Japanese Patent Laid-Open No. 4-278210, but since the main magnetic pole is divided by the MR element, writing is performed. It was not possible to generate a large magnetic field, and it was read-only.

【0006】磁気ヘッドのMR素子は特開平4−182
913号公報のように、膜面に垂直に磁束が流れるよう
に設置する構造も提案されている。しかし該明細書にも
記載されているように磁気抵抗効果素子としてNiFe
を用いた場合では、膜面方向に磁束が流れる構造よりも
不利であることは明白である。また通常の水平記録ヘッ
ドであり、その効果は小さい。これに対して同じように
膜面に垂直に磁束が流れるように設置する構造はHall
素子を用いた磁気ヘッドで提案されている。この場合は
ホール効果のため膜面に垂直に磁束が流れても高い効率
で磁束の検出が可能である。
The MR element of the magnetic head is disclosed in Japanese Patent Laid-Open No. 4-182.
As in Japanese Patent No. 913, a structure is also proposed in which the magnetic flux flows perpendicular to the film surface. However, as described in the specification, NiFe is used as a magnetoresistive effect element.
It is obvious that the case where is used is more disadvantageous than the structure in which the magnetic flux flows in the film surface direction. Also, since it is a normal horizontal recording head, its effect is small. On the other hand, in the same way, the structure in which the magnetic flux flows perpendicular to the film surface is Hall
A magnetic head using an element has been proposed. In this case, because of the Hall effect, even if the magnetic flux flows perpendicularly to the film surface, the magnetic flux can be detected with high efficiency.

【0007】このように各種の磁気ヘッド構造に関する
報告があるが垂直磁気ヘッドの再生効率をより高める1
つの主磁極を再生書き込みに共用するMR磁気ヘッドに
関しては大きな課題を残していた。
As described above, various magnetic head structures have been reported, but the reproduction efficiency of the perpendicular magnetic head is further improved.
There has been a big problem with the MR magnetic head in which the two main magnetic poles are shared for reproduction and writing.

【0008】[0008]

【発明が解決しようとする課題】垂直磁気ヘッドの再生
効率をより高めるMR複合磁気ヘッドは、通常の水平記
録MRヘッドとは異なる構造が要求される。すなわち極
めて高密度のため書き込み主磁極の膜厚が0.5μm以
下と薄く、再生時に別の位置に形成された再生専用磁極
で読み込むには位置決めが極めて困難である。このため
書き込み磁極と再生磁極を兼用することが重要である。
しかしMR素子には電流を流すために磁極とスペースを
設けている通常ヨーク型MRヘッドでは、書き込み時の
磁界が不十分となってしまう。
The MR composite magnetic head for further enhancing the reproducing efficiency of the perpendicular magnetic head is required to have a structure different from that of a normal horizontal recording MR head. That is, because of the extremely high density, the film thickness of the write main pole is as thin as 0.5 μm or less, and positioning is extremely difficult to read by the read-only magnetic pole formed at another position during reproduction. Therefore, it is important to use both the write magnetic pole and the read magnetic pole.
However, in a normal yoke type MR head in which a magnetic pole and a space are provided for passing a current through the MR element, the magnetic field during writing becomes insufficient.

【0009】[0009]

【課題を解決するための手段】このような垂直磁気MR
ヘッドの諸問題を解決し高い再生信号を得ることは以下
の本発明により可能となる。
[Means for Solving the Problems] Such perpendicular magnetic MR
It is possible to solve various problems of the head and obtain a high reproduction signal by the following invention.

【0010】(1)主磁極と主磁極部に磁気的に結合し
ているヨーク磁性層の間に磁界検出層を形成したことを
特徴とする垂直磁気ヘッド。
(1) A perpendicular magnetic head characterized in that a magnetic field detecting layer is formed between a main magnetic pole and a yoke magnetic layer magnetically coupled to the main magnetic pole portion.

【0011】(2)主磁極磁性膜の磁界検出層と電気的
に接触する部分の比抵抗をρ1、ヨーク磁性層の磁界検
出層と電気的に接触する部分の比抵抗をρ2、磁界検出
層の比抵抗をρ3とした時、ρ1および/またはρ2が
ρ3の3倍以上あることを特徴とする上記(1)の垂直
磁気ヘッド。
(2) The specific resistance of the portion of the main magnetic pole magnetic film electrically contacting the magnetic field detection layer is ρ1, the specific resistance of the portion of the yoke magnetic layer electrically contacting the magnetic field detection layer is ρ2, the magnetic field detection layer. The perpendicular magnetic head according to (1) above, wherein ρ1 and / or ρ2 is 3 times or more of ρ3, where ρ3 is the specific resistance of ρ3.

【0012】(3)上部ヨーク磁性層が電気めっき法に
より成膜された合金膜であり、該合金膜表面層の膜の比
抵抗が、それよりも内側の部分よりも高いことを特徴と
する上記(1)または(2)の垂直磁気ヘッド。
(3) The upper yoke magnetic layer is an alloy film formed by an electroplating method, and the specific resistance of the film of the alloy film surface layer is higher than that of the inner portion. The perpendicular magnetic head according to the above (1) or (2).

【0013】(4)ヨーク磁性層が電気めっき法により
成膜されたNiFeMoを主成分とする合金膜であり、
上部ヨーク最表面部の膜のMo含有量が、それよりも下
側の部分よりも高いことを特徴とする上記(1)ないし
(3)のいずれかの垂直磁気ヘッド。
(4) The yoke magnetic layer is an alloy film containing NiFeMo as a main component formed by electroplating,
The perpendicular magnetic head according to any one of the above (1) to (3), wherein the Mo content of the film on the outermost surface of the upper yoke is higher than that of the lower portion.

【0014】(5)ヨーク磁性層が電気めっき法により
成膜された合金膜であり、上部ヨーク最表面部の膜が、
逆電解により作製されたことを特徴とする上記(1)な
いし(3)のいずれかの垂直磁気ヘッド。
(5) The yoke magnetic layer is an alloy film formed by electroplating, and the film on the outermost surface of the upper yoke is
The perpendicular magnetic head according to any one of the above (1) to (3), which is manufactured by reverse electrolysis.

【0015】(6)磁界検出層が巨大磁気抵抗効果膜で
ある上記(1)ないし(5)のいずれかの垂直磁気ヘッ
ド。
(6) The perpendicular magnetic head according to any one of the above (1) to (5), wherein the magnetic field detecting layer is a giant magnetoresistive film.

【0016】(7)磁界検出層がホール素子である上記
(1)ないし(5)のいずれかの垂直磁気ヘッド。
(7) The perpendicular magnetic head according to any one of the above (1) to (5), wherein the magnetic field detecting layer is a Hall element.

【0017】[0017]

【作用】本発明においては垂直ヘッドの主磁極を再生と
書き込みに併用することで位置決めが容易となる。さら
に主磁極部分と上部ヨーク部分の間に磁界検出部を挿入
し、かつ磁界検出部への磁束流入をすみやかに行うため
に磁界検出部の磁束流入部分の少なくとも片面を、好ま
しくは両面を磁界検出層の比抵抗の3倍以上好ましくは
5倍以上の十分大きな比抵抗を有する磁性膜にて絶縁し
たことにより、高い書き込み能力、大きな再生出力を得
ることができる。
In the present invention, the positioning is facilitated by using the main magnetic pole of the vertical head for both reproduction and writing. Further, a magnetic field detecting section is inserted between the main magnetic pole section and the upper yoke section, and at least one side, preferably both sides, of the magnetic flux detecting section of the magnetic field detecting section is detected in order to promptly flow the magnetic flux into the magnetic field detecting section. Insulation with a magnetic film having a sufficiently large specific resistance of 3 times or more, preferably 5 times or more, of the specific resistance of the layer makes it possible to obtain high writing ability and large reproduction output.

【0018】[0018]

【具体的構成】図3は、従来の垂直磁気ヘッドの断面図
を示す。図1、図2は、本発明の垂直磁気ヘッドの断面
図を示す。両図中、6は主磁極で3は上部ヨーク膜、2
はリターンヨーク下部膜である。主磁極部分はパーマロ
イ、NiFeMo、FeN、FeYO、FeHfO、C
oZr等の軟磁性材料を用いることが好ましい。
[Specific Structure] FIG. 3 is a sectional view of a conventional perpendicular magnetic head. 1 and 2 are sectional views of a perpendicular magnetic head according to the present invention. In both figures, 6 is the main magnetic pole, 3 is the upper yoke film, and 2
Is a film under the return yoke. Main magnetic pole part is permalloy, NiFeMo, FeN, FeYO, FeHfO, C
It is preferable to use a soft magnetic material such as oZr.

【0019】また特開平5−101930号公報に開示
されているような多層膜高抵抗軟磁性材料も使用可能で
ある。前述のようにこの主磁極材料自体の比抵抗が磁界
検出層の比抵抗に比べて十分大きい場合には主磁極と磁
界検出層の間に、絶縁だけを目的とする絶縁層は不要と
なる。パーマロイ等の比抵抗の小さな材料を使用した場
合は、磁界検出層との間に比抵抗の大きな絶縁層を設け
る必要がある。絶縁層としてはアルミナ等の非磁性材料
も可能であるがNiFeMo、FeN、FeYO、Fe
HfO、CoZr、フェライト等の比抵抗の高い軟磁性
材料を用いることが好ましい。
Further, a multilayer high resistance soft magnetic material as disclosed in JP-A-5-101930 can also be used. As described above, when the specific resistance of the main magnetic pole material itself is sufficiently higher than the specific resistance of the magnetic field detecting layer, the insulating layer for the purpose of insulation is not necessary between the main magnetic pole and the magnetic field detecting layer. When a material having a low specific resistance such as permalloy is used, it is necessary to provide an insulating layer having a high specific resistance with the magnetic field detection layer. A non-magnetic material such as alumina can be used as the insulating layer, but NiFeMo, FeN, FeYO, Fe
It is preferable to use a soft magnetic material having a high specific resistance such as HfO, CoZr, and ferrite.

【0020】上部ヨーク、リターンヨークは厚さが厚い
ことから生産性を考慮して電気めっき法によるモリブデ
ンパーマロイ膜等が用いられる。これはパーマロイ膜に
比べて透磁率が高いのみならず成膜時の電流密度を変化
することで膜中のモリブデン含有量を増減することが容
易なためである。膜中のモリブデン含有量が多くなると
軟磁気特性はやや劣化するが膜の比抵抗は図5に示すよ
うに飛躍的に大きくなり300μΩcm以上の値が得られ
る。このため後述するように磁界検出層と上部ヨークの
間の電気絶縁層の成膜が不要となり、ヘッド構造の簡略
化に大きく寄与する。またパーマロイ膜を用いた場合に
も、逆電解を行い表面部のパーマロイめっき層を溶解し
硫黄酸素の含有量の高い比抵抗の大きな層を形成するこ
とで同様の絶縁効果をえることが可能である。
Since the upper yoke and the return yoke are thick, a molybdenum permalloy film or the like formed by electroplating is used in consideration of productivity. This is because not only is the magnetic permeability higher than that of the permalloy film, but it is also easy to increase or decrease the molybdenum content in the film by changing the current density during film formation. When the molybdenum content in the film is increased, the soft magnetic characteristics are slightly deteriorated, but the specific resistance of the film is remarkably increased as shown in FIG. 5, and a value of 300 μΩcm or more is obtained. Therefore, as described later, it is not necessary to form an electric insulating layer between the magnetic field detecting layer and the upper yoke, which greatly contributes to simplification of the head structure. Even when a permalloy film is used, it is possible to obtain the same insulating effect by performing reverse electrolysis to dissolve the permalloy plating layer on the surface and form a layer having a high specific resistance with a high sulfur oxygen content. is there.

【0021】5のコイルに電流を印加することで主磁極
6の先端から磁束が外部にある記録媒体に入り、磁化す
ることで記録が行われる。この際に主磁極が途中で分断
されていると強い磁界を発生することが出来ず媒体を十
分に磁化できずオーバーライト特性等が劣化してしま
う。このため主磁極を磁界検出層に磁束を導くために分
断することは好ましくない。
Recording is performed by applying a current to the coil of 5 to cause a magnetic flux to enter the external recording medium from the tip of the main magnetic pole 6 and magnetize it. At this time, if the main magnetic pole is divided halfway, a strong magnetic field cannot be generated, the medium cannot be magnetized sufficiently, and the overwrite characteristics and the like deteriorate. Therefore, it is not preferable to divide the main magnetic pole in order to guide the magnetic flux to the magnetic field detection layer.

【0022】本発明の磁界検出層では、巨大磁気抵抗効
果膜あるいはホール素子が使用される。 巨大磁気抵抗
効果膜は従来のパーマロイ等の異方性磁気抵抗効果にく
らべて遥かに大きな磁界に対する感度を有していること
から面内に磁束が流れる場合でも十分な再生出力を得る
ことができる。このような巨大磁気抵抗効果膜は人工格
子膜で実現している、これは金属の原子径オーダーの厚
さの薄膜が周期的に積層された構造をもち、バルク状の
金属とは異なった特性を示すために、近年注目されてき
ている。人工格子の1種として、基板上に強磁性金属薄
膜と非磁性金属薄膜とを交互に積層した磁性多層膜があ
り、これまで、鉄−クロム型、コバルト−銅型等の磁性
多層膜が知られている。このうち、鉄−クロム型(Fe
/Cr)については、超低温(4.2K)において40
%を超える磁気抵抗変化を示すという報告がある(Phy
s. Rev. Lett 第61巻、2472頁、1988
年)。
In the magnetic field detecting layer of the present invention, a giant magnetoresistive film or a Hall element is used. The giant magnetoresistive film has much higher sensitivity to a magnetic field than the conventional anisotropic magnetoresistive effect such as permalloy, so that a sufficient reproduction output can be obtained even when a magnetic flux flows in the plane. . Such a giant magnetoresistive film is realized by an artificial lattice film, which has a structure in which thin films with a thickness on the order of atomic diameter of metal are periodically stacked, and has characteristics different from those of bulk metal. In recent years, attention has been paid to show. As one type of artificial lattice, there is a magnetic multilayer film in which ferromagnetic metal thin films and non-magnetic metal thin films are alternately laminated on a substrate, and magnetic multilayer films of iron-chromium type, cobalt-copper type, etc. have been known so far. Has been. Of these, iron-chromium type (Fe
/ Cr) is 40 at ultra low temperature (4.2K)
There is a report that it shows a magnetoresistance change exceeding 100% (Phy
s. Rev. Lett Vol. 61, page 2472, 1988.
Year).

【0023】しかし、この人工格子磁性多層膜では最大
抵抗変化の起きる外部磁場(動作磁束強度)が十数kOe
〜数十kOe と大きく、このままでは実用性がない。この
他、Co/Ag等の人工格子磁性多層膜も提案されてい
るが、これらでも動作磁場強度が大きすぎる。
However, in this artificial lattice magnetic multilayer film, the external magnetic field (operating magnetic flux strength) at which the maximum resistance change occurs is more than ten kOe.
~ Large at several tens of kOe, and it is not practical as it is. In addition, artificial lattice magnetic multilayer films of Co / Ag and the like have been proposed, but the operating magnetic field strength of these is too large.

【0024】そこで、このような事情から、非磁性層を
介して保磁力の異なる2つの磁性層を積層した誘導フェ
リ磁性による巨大MR変化を示す3元系人工格子磁性多
層膜が提案されている。例えば、非磁性層を介して隣合
う磁性薄膜のHcが異なっており、各層の厚さが200
A以下であるもの(特開平4−218982号公報)な
どがある。また、スピンバルブ膜という新しい構造も提
案されている。
Under these circumstances, therefore, a ternary artificial lattice magnetic multilayer film has been proposed which exhibits a giant MR change due to induced ferrimagnetism by laminating two magnetic layers having different coercive forces via a non-magnetic layer. . For example, the Hc of adjacent magnetic thin films are different via the non-magnetic layer, and the thickness of each layer is 200.
Some of them are A or less (Japanese Patent Laid-Open No. 4-218982). Also, a new structure called a spin valve film has been proposed.

【0025】これは非磁性層を介してNiFe層が2層
形成されており、一方のNiFe層に隣接してFeMn
層が配置されている構成を持つ。ここではFeMn層と
隣接するNiFe層とが直接交換結合力で結合している
ため、このNiFe層の磁気スピンは数10〜数100
Oeの磁場強度まで、その向きを固着される。一方のNi
Fe層のスピンは外部磁場によって自由にその向きを変
えうる。その結果、NiFe層の保磁力程度という、小
さな磁場範囲で2〜5%の磁気抵抗変化率(MR変化
率)が実現されている。
In this structure, two NiFe layers are formed via a non-magnetic layer, and FeMn is adjacent to one NiFe layer.
It has a configuration in which layers are arranged. Here, since the FeMn layer and the adjacent NiFe layer are directly coupled by the exchange coupling force, the magnetic spin of this NiFe layer is several tens to several hundreds.
The direction is fixed up to the magnetic field strength of Oe. One Ni
The spin of the Fe layer can freely change its direction by an external magnetic field. As a result, a magnetoresistance change rate (MR change rate) of 2 to 5% is realized in a small magnetic field range, which is about the coercive force of the NiFe layer.

【0026】またホール素子は面内垂直の磁束成分を有
効に検出可能なために本構造の磁気ヘッドにおいても高
い再生信号が得られる。ホール素子としてはInSb、
InAs、GaSs等の材料が使用可能である。
Further, since the Hall element can effectively detect the magnetic flux component perpendicular to the surface, a high reproduction signal can be obtained even in the magnetic head of this structure. InSb as a Hall element,
Materials such as InAs and GaSs can be used.

【0027】電気絶縁層は磁界検出層に流したセンス電
流が分流され再生効率低下を防ぐ。
The sense current flowing through the magnetic field detecting layer is shunted to the electric insulating layer to prevent a reduction in reproduction efficiency.

【0028】電気絶縁層の比抵抗は磁界検出層の比抵抗
の3倍以上特に好ましくは5倍以上あれば分流による検
出感度の低下が防止される。3倍未満の比抵抗では分流
の影響が大きく、結果として磁界検出感度が低下し出力
が小さくなる。上限は材料により制限を受ける。たとえ
ばNiFeMoめっき膜では軟磁気特性があまり劣化し
ないためには膜の比抵抗は350μΩcm程度であり、こ
れは磁界検出層の10倍から15倍である。電流の分流
は膜の比抵抗だけでなく膜厚も影響を及ぼす。しかし薄
膜を積層した場合には膜と膜の界面での抵抗の影響が大
きく、この界面抵抗に膜そのものの比抵抗が大きな影響
を及ぼすために膜の比抵抗を規定することで所望の効果
が得られる。
If the specific resistance of the electric insulating layer is 3 times or more, and particularly preferably 5 times or more the specific resistance of the magnetic field detecting layer, a decrease in detection sensitivity due to shunting can be prevented. If the specific resistance is less than 3 times, the effect of shunt current is large, and as a result, the magnetic field detection sensitivity is reduced and the output is reduced. The upper limit is limited by the material. For example, in a NiFeMo plated film, the specific resistance of the film is about 350 μΩcm so that the soft magnetic characteristics do not deteriorate so much, which is 10 to 15 times that of the magnetic field detection layer. The shunt of the electric current affects not only the specific resistance of the film but also the film thickness. However, when laminating thin films, the effect of the resistance at the interface between the films is large, and the specific resistance of the film itself has a large effect on this interface resistance. Therefore, by defining the specific resistance of the film, the desired effect can be obtained. can get.

【0029】層間の界面での抵抗が重電気絶縁層電気絶
縁層は磁界検出層の両側に設ける必要がある。しかし主
磁極そのものに電気絶縁層と同じ効果を持たせることも
可能であり、この場合は図1に示すように上部ヨーク側
にのみ形成すれば良い。また図2に示すように上部ヨー
ク材料としてモリブデンパーマロイ膜等を用い、最上層
の比抵抗を磁界検出層の比抵抗の3倍以上特に好ましく
は5倍以上とした場合にはこの最上層が実質的に電気絶
縁層の働きをするために同一装置同一めっき浴からで連
続してめっき成膜可能である。このように本発明での電
気絶縁層とは比抵抗が磁界検出層の3倍以上の磁性膜で
あれば、磁界検出層の上部下部の絶縁に有効に利用さ
れ、絶縁のみならず磁束誘導効果も期待できる材料を少
なくとも片側に用いることが好ましい。
The resistance at the interface between the layers is a heavy electric insulation layer. The electric insulation layers must be provided on both sides of the magnetic field detection layer. However, it is also possible to give the main magnetic pole itself the same effect as the electrical insulating layer, and in this case, it is sufficient to form it only on the upper yoke side as shown in FIG. Further, as shown in FIG. 2, when a molybdenum permalloy film or the like is used as the material of the upper yoke and the specific resistance of the uppermost layer is set to 3 times or more, particularly preferably 5 times or more of the specific resistance of the magnetic field detection layer, the uppermost layer is substantially formed. In order to function as an electric insulation layer, it is possible to continuously form a plating film from the same apparatus and the same plating bath. As described above, the electric insulating layer in the present invention is a magnetic film having a specific resistance three times or more that of the magnetic field detecting layer, which is effectively used for insulating the upper and lower portions of the magnetic field detecting layer, and not only the insulating but also the magnetic flux induction effect. It is preferable to use a material that can also be expected on at least one side.

【0030】モリブデンパーマロイめっき膜は通常のパ
ーマロイめっき浴に酒石酸またはその塩を0.1モル/
リットルから1モル/リットルとモリブデン酸アンモニ
ウムイオンを適量添加することで成膜可能である。成膜
時の浴温は常温から60℃の範囲で、電流密度は0.1
A/dm2から3 A/dm2の範囲が好ましい。膜中のモリブ
デン含有量は浴中モリブデンイオンの含有率が一定の場
合、成膜時の電流密度が低いほど、高くなる。すなわち
上部ヨーク成膜工程において通常の2から5wt%のモリ
ブデン含有量の高透磁率モリブデンパーマロイ膜を数μ
m成膜した後に、電流密度を小さくして短時間の電析を
行いモリブデン含有量が5wt%以上の高比抵抗薄膜を成
膜することが可能である。電気絶縁層としての高比抵抗
モリブデンパーマロイ層の厚さは500 A以上あれば問
題はない。
The molybdenum permalloy plating film contains tartaric acid or its salt in an amount of 0.1 mol / mol in an ordinary permalloy plating bath.
A film can be formed by adding an appropriate amount of 1 to 1 mol / l of ammonium molybdate ion. The bath temperature during film formation is from room temperature to 60 ° C, and the current density is 0.1.
A range of A / dm 2 to 3 A / dm 2 is preferred. When the molybdenum ion content in the bath is constant, the molybdenum content in the film increases as the current density during film formation decreases. That is, in the upper yoke film forming step, a high permeability molybdenum permalloy film having a molybdenum content of 2 to 5 wt% is usually used for several μm.
After forming the m film, it is possible to form a high resistivity thin film having a molybdenum content of 5 wt% or more by reducing the current density and performing electrodeposition for a short time. There is no problem if the thickness of the high resistivity molybdenum permalloy layer as the electric insulating layer is 500 A or more.

【0031】パーマロイめっき膜を逆電解して高比抵抗
層を得るには通常の成膜の最終段階において逆電解を印
加する。逆電解量は0.01アンペア時から0.2アン
ペア時で電流密度は0.01A/dm2から1A/dm2であ
る。逆電圧を印加しはじめると浴電圧が上昇するので、
その浴電圧を見ながら決定することが好ましい。
In order to obtain a high resistivity layer by reverse electrolysis of the permalloy plating film, reverse electrolysis is applied at the final stage of ordinary film formation. The amount of reverse electrolysis is 0.01 to 0.2 ampere hour, and the current density is 0.01 A / dm 2 to 1 A / dm 2 . The bath voltage rises when the reverse voltage is applied, so
It is preferable to make the determination while looking at the bath voltage.

【0032】[0032]

【実施例】以下、本発明の実施例、比較例について詳細
に説明する。 〈実施例1〉実施例1として本発明のヘッド構造の一例
を示す。図2の構造とし主磁極6はスパッタ法で成膜し
た比抵抗150μΩcm、透磁率1500のFeYO膜を
用い厚さ0.1μm幅10μm、3の上部ヨークからの突
き出し量は5μmとした。上部ヨーク3は厚さ15μm幅
20μmで、リターンヨーク2は厚さ8μm幅150μm
とし、いずれも電気めっき法で成膜したモリブデンパー
マロイ膜でモリブデン含有量4wt%で比抵抗ρは60μ
Ωcmであった。そして上部ヨークの最上層部分の0.1
μmはモリブデン含有量は18wt%で比抵抗は300μ
Ωcmであった。磁界検出層としてはMBE法にて成膜し
た誘導フェリ型磁性人工格子膜で比抵抗30μΩcmの膜
を用いた。
EXAMPLES Examples of the present invention and comparative examples will be described in detail below. Example 1 An example of the head structure of the present invention will be shown as Example 1. In the structure shown in FIG. 2, the main magnetic pole 6 is formed of a FeYO film having a specific resistance of 150 μΩcm and a magnetic permeability of 1500 formed by a sputtering method, and the protrusion amount from the upper yoke having a thickness of 0.1 μm, a width of 10 μm and 3 is 5 μm. The upper yoke 3 is 15 μm thick and 20 μm wide, and the return yoke 2 is 8 μm thick and 150 μm wide.
And each of them is a molybdenum permalloy film formed by electroplating and the specific resistance ρ is 60μ at a molybdenum content of 4 wt%.
It was Ωcm. And 0.1 of the uppermost layer of the upper yoke
μm has a molybdenum content of 18 wt% and a specific resistance of 300μ
It was Ωcm. As the magnetic field detection layer, an induction ferrimagnetic artificial lattice film formed by the MBE method and having a specific resistance of 30 μΩcm was used.

【0033】基板には0.5mm厚の3インチのアルティ
ク(ALTIC)の上にスパッタ法でアルミナ膜を10
μm成膜したものを用いた。リターンヨーク部は以下の
組成の浴を用い電気めっき法により電流密度1A/dm2
浴温40℃、pH4.5で30分間成膜した。
On the substrate, an alumina film 10 is sputtered on a 0.5-inch thick 3-inch ALTIC.
A film having a thickness of μm was used. The return yoke part uses a bath of the following composition by electroplating with a current density of 1 A / dm 2 ,
A film was formed at a bath temperature of 40 ° C. and a pH of 4.5 for 30 minutes.

【0034】硫酸ニッケル 1.25モル/リットル 硫酸鉄 0.015モル/リットル ホウ酸 0.4モル/リットル 塩化アンモニウム 0.25モル/リットル サッカリン2g/リットル 酒石酸カリウムナトリウム0.5モル/リットル 膜組成は79wt%Ni−17wt%Fe−4wt%Moであ
った。ノボラック系フォトレジストを磁気コアの絶縁材
料として用い、コイルは電気めっき法により硫酸浴から
60分間成膜した。上部ヨークもリターンヨーク部と同
じ条件で成膜を行い、ただし最後の5分間のみ電流密度
を0.1A/dm2に減じた。
Nickel sulfate 1.25 mol / liter Iron sulfate 0.015 mol / liter Boric acid 0.4 mol / liter Ammonium chloride 0.25 mol / liter Saccharin 2 g / liter Potassium sodium tartrate 0.5 mol / liter Membrane composition Was 79 wt% Ni-17 wt% Fe-4 wt% Mo. A novolac photoresist was used as an insulating material for the magnetic core, and a coil was formed by electroplating from a sulfuric acid bath for 60 minutes. The upper yoke was also formed under the same conditions as the return yoke, but the current density was reduced to 0.1 A / dm 2 only for the last 5 minutes.

【0035】磁磁界検出部はCrを50 A成膜し、下地
層とした上にNiFe(50)−Cu(50)−Co
(50)−Cu(50)−NiFe(50)を順に2回
繰り返し積層し、磁性多層膜を成膜した。成膜条件は、
到達圧力1.3×10-10 Torr、成膜時圧力1.2×1
-9 Torr、基板温度35℃程度とし、各材料を0.2
〜0.3 A /sec の成膜速度で、成膜中に磁場を基板
の面内かつ測定電流と平行方向に印加しながら超高真空
下における蒸着法(MBE法)による成膜である。その
後20μm ×6μmのパターンを形成、その上にトラッ
ク幅3μm の電極を形成した後、主磁極の成膜をrfス
パッタ法にてアルゴン雰囲気中に酸素を0.2から0.
5体積%程度含有させ成膜した。78at%Fe−9at
%Y−13at%Oの膜組成となるように行った。最後
にフォトレジスト絶縁層、コイル層、アルミナ保護膜等
を形成した後、ヘッドピースに機械加工し、組立を行い
垂直磁気ヘッドとした。
The magnetic field detecting portion was formed by depositing 50 A of Cr and using it as an underlayer to form NiFe (50) -Cu (50) -Co.
(50) -Cu (50) -NiFe (50) was sequentially laminated twice to form a magnetic multilayer film. The film forming conditions are
Ultimate pressure 1.3 × 10 -10 Torr, film formation pressure 1.2 × 1
0 -9 Torr, and the substrate temperature was 35 ° C. C., the materials 0.2
The film formation is performed by a vapor deposition method (MBE method) under ultra-high vacuum while applying a magnetic field in the plane of the substrate and in a direction parallel to the measurement current at the film formation rate of 0.3 A / sec. After that, a pattern of 20 μm × 6 μm is formed, an electrode having a track width of 3 μm is formed on the pattern, and then a film of the main magnetic pole is formed by rf sputtering in an argon atmosphere with oxygen of 0.2 to 0.
About 5% by volume was included to form a film. 78 at% Fe-9 at
% Y-13 at% O film composition. Finally, after forming a photoresist insulating layer, a coil layer, an alumina protective film, etc., the head piece was machined and assembled into a perpendicular magnetic head.

【0036】本垂直磁気ヘッドは測定電流を12mA、記
録媒体として8000 ANiFe/1000 ACoCr
Pt/100 Aカーボンの1.8インチ径垂直ディスク
を用い記録密度100kFCI(4kbit/mm)、相対速度3
m/secにおいて200μVの再生出力、マイナス30d
Bのオーバーライト特性が得られた。なお本実施例にお
いてρ1/ρ3=5、ρ2/ρ1=10である。
This perpendicular magnetic head has a measuring current of 12 mA and a recording medium of 8000 ANiFe / 1000 ACoCr.
Pt / 100 A carbon 1.8 inch vertical disk is used, recording density 100 kFCI (4 kbit / mm), relative speed 3
200 mV playback output at m / sec, minus 30 d
The overwrite property of B was obtained. In this embodiment, ρ1 / ρ3 = 5 and ρ2 / ρ1 = 10.

【0037】〈比較例1〉図3の構造の従来型垂直磁気
インダクティブ再生ヘッドを比較例1とする。実施例1
から磁界検出層、リード層を省いた工程で他は同じ条件
で試作した。コイルのターン数は36ターンと実施例1
の3倍のターン数形成した。実施例1と同じ条件にて測
定したところ再生出力50μVと低い値しか得られなか
った。
Comparative Example 1 A conventional perpendicular magnetic inductive reproducing head having the structure shown in FIG. Example 1
The trial production was performed under the same conditions except for the process in which the magnetic field detection layer and the lead layer were omitted. The number of turns of the coil is 36, and the first embodiment is used.
3 times the number of turns. When measured under the same conditions as in Example 1, the reproduction output was as low as 50 μV, which was a low value.

【0038】〈実施例2〉実施例1において主磁極磁性
材料として比抵抗20μΩcmのNiFe薄膜を用いたヘ
ッドを実施例2とする。この場合には磁界検出層である
磁性人工格子膜よりも主磁極の比抵抗が低いために絶縁
を目的とした層が必要である。磁界検出層との電気絶縁
層には0.1μmのアルミナ膜を用いた。上部ヨーク等
は実施例1と全く同じである。実施例1と同様の測定で
出力195μVが得られた。
Example 2 A head using a NiFe thin film having a specific resistance of 20 μΩcm as the main magnetic pole magnetic material in Example 1 will be referred to as Example 2. In this case, the specific resistance of the main pole is lower than that of the magnetic artificial lattice film, which is the magnetic field detection layer, so that a layer for insulation is required. An alumina film having a thickness of 0.1 μm was used as an electric insulation layer for the magnetic field detection layer. The upper yoke and the like are exactly the same as in the first embodiment. The same measurement as in Example 1 gave an output of 195 μV.

【0039】〈比較例2〉実施例1において上部ヨーク
成膜の最後の2分間を0.7A/dm2としたヘッドを比較
例2とする。上部ヨークの磁界検出層と電気的に接触し
ている部分の比抵抗ρ2は75μΩcmで磁界検出層の比
抵抗ρ3の2.5倍であった。実施例1と同じ条件にて
測定したところ比較例2では10μV以下の低い値しか
得られなかった。
Comparative Example 2 A head in which the last two minutes of forming the upper yoke film was 0.7 A / dm 2 in Example 1 is referred to as Comparative Example 2. The specific resistance ρ2 of the portion of the upper yoke in electrical contact with the magnetic field detection layer was 75 μΩcm, which was 2.5 times the specific resistance ρ3 of the magnetic field detection layer. When measured under the same conditions as in Example 1, in Comparative Example 2, only a low value of 10 μV or less was obtained.

【0040】〈実施例3〉、〈比較例3〉 基本的構造は実施例1と同じで、磁界検出層としてIn
Sb膜を使用したホール効果ヘッドを試作した。InS
b膜は比抵抗が600μΩcmと大きな為、磁界検出層の
上下に0.1μmのアルミナ層を成膜した。しかしホー
ル効果素子は垂直方向の磁界検出感度が特に高いために
再生出力150μVと良い特性が得られた。
<Example 3>, <Comparative Example 3> The basic structure is the same as that of Example 1, and In is used as a magnetic field detection layer.
A Hall effect head using an Sb film was prototyped. InS
Since the film b has a large specific resistance of 600 μΩcm, 0.1 μm alumina layers were formed above and below the magnetic field detection layer. However, since the Hall effect element has a particularly high magnetic field detection sensitivity in the vertical direction, a good reproduction output of 150 μV was obtained.

【0041】次にCoPt薄膜をハード層とするハードフィ
ルムバイアス方式のパーマロイ膜を磁界検出層としたヘ
ッドを比較例3とすると、このヘッドは再生出力50μ
Vが得られたしか得られなかった。
Next, when a head using a hard film bias type permalloy film having a CoPt thin film as a hard layer and a magnetic field detecting layer is set as Comparative Example 3, this head has a reproduction output of 50 μm.
I could only get V.

【0042】〈実施例4〉リターンヨーク及び上部ヨー
クをパーマロイめっき膜(比抵抗ρ2=20μΩcm)で
作成したヘッドを実施例4とする。めっき浴は実施例1
の浴から酒石酸とモリブデン酸アンモニウムを除いた通
常のパーマロイめっき浴を用いた。そしてただし上部ヨ
ーク成膜の最後を電流値を減ずるかわりに、5分間、電
流密度を−0.1A/dm2の逆電解を印加した。他はすべ
て実施例1と同様である。なお、逆電解層の比抵抗測定
は困難であったが逆電解なしの試料等との比較から20
0μΩcm程度と推定された。本ヘッドは140μVの再
生出力、マイナス30dBのオーバーライト特性が得られ
た。
<Embodiment 4> A head in which the return yoke and the upper yoke are made of a permalloy plating film (specific resistance ρ2 = 20 μΩcm) is referred to as Embodiment 4. The plating bath is Example 1
An ordinary permalloy plating bath from which tartaric acid and ammonium molybdate were removed was used. However, instead of reducing the current value at the end of the upper yoke film formation, reverse electrolysis with a current density of -0.1 A / dm 2 was applied for 5 minutes. Everything else is the same as in Example 1. It was difficult to measure the specific resistance of the reverse electrolysis layer, but it was 20 from comparison with the sample without reverse electrolysis.
It was estimated to be about 0 μΩcm. This head has a reproduction output of 140 μV and an overwrite characteristic of -30 dB.

【0043】このように本発明の実施例では高い再生出
力と書き込み特性が得られ本発明の効果が確認された。
As described above, in the embodiment of the present invention, high reproduction output and writing characteristics were obtained, and the effect of the present invention was confirmed.

【図面の簡単な説明】[Brief description of drawings]

【図1】本発明の垂直磁気ヘッドの一例の断面図を示
す。
FIG. 1 shows a sectional view of an example of a perpendicular magnetic head of the present invention.

【図2】本発明の垂直磁気ヘッドの他の例の断面図を示
す。
FIG. 2 shows a sectional view of another example of the perpendicular magnetic head of the present invention.

【図3】従来の垂直磁気ヘッドの断面図を示す。FIG. 3 is a sectional view of a conventional perpendicular magnetic head.

【図4】本発明の垂直磁気ヘッドの断面図の主磁極近傍
の拡大図を示す。
FIG. 4 is an enlarged view of the vicinity of the main pole of a sectional view of a perpendicular magnetic head of the present invention.

【図5】電気めっき法により膜中モリブデン含有量と比
抵抗の関係を示す。
FIG. 5 shows the relationship between the molybdenum content in the film and the specific resistance obtained by electroplating.

【符号の説明】[Explanation of symbols]

1 下地膜 2 リターンヨーク下部膜 3 上部ヨーク膜 3’上部ヨーク膜最上層 4 絶縁層 5 コイル 6 主磁極 7 磁界検出層 8 絶縁層 a1 主磁極における媒体からの磁束の流れを概念的に
示したもの a2 磁界検出層を貫く磁束の流れを概念的に示したも
の a3 磁界検出層を通らないで上部ヨークに流れる磁束
を概念的に示したもの
1 Underlayer film 2 Return yoke lower film 3 Upper yoke film 3'Upper yoke film Uppermost layer 4 Insulating layer 5 Coil 6 Main pole 7 Magnetic field detection layer 8 Insulating layer a1 Magnetic flux flow from the medium in the main pole was conceptually shown. Thing a2 conceptually showing the flow of magnetic flux through the magnetic field detection layer a3 conceptually showing magnetic flux flowing through the upper yoke without passing through the magnetic field detection layer

───────────────────────────────────────────────────── フロントページの続き (72)発明者 佐藤 雄一 東京都中央区日本橋一丁目13番1号ティー ディーケイ株式会社内 ─────────────────────────────────────────────────── ─── Continuation of the front page (72) Inventor Yuichi Sato 1-13-1 Nihonbashi, Chuo-ku, Tokyo TDK Corporation

Claims (7)

【特許請求の範囲】[Claims] 【請求項1】 主磁極と主磁極部に磁気的に結合してい
るヨーク磁性層の間に磁界検出層を形成したことを特徴
とする垂直磁気ヘッド。
1. A perpendicular magnetic head comprising a magnetic field detecting layer formed between a main magnetic pole and a yoke magnetic layer magnetically coupled to the main magnetic pole portion.
【請求項2】 主磁極磁性膜の磁界検出層と電気的に接
触する部分の比抵抗をρ1、ヨーク磁性層の磁界検出層
と電気的に接触する部分の比抵抗をρ2、磁界検出層の
比抵抗をρ3とした時、ρ1および/またはρ2がρ3
の3倍以上あることを特徴とする請求項1に記載の垂直
磁気ヘッド。
2. A resistivity of a portion of the main magnetic pole magnetic film electrically contacting the magnetic field detecting layer is ρ1, a resistivity of a portion of the yoke magnetic layer electrically contacting the magnetic field detecting layer is ρ2, and a resistivity of the magnetic field detecting layer is When the specific resistance is ρ3, ρ1 and / or ρ2 is ρ3
3. The perpendicular magnetic head according to claim 1, wherein the perpendicular magnetic head is 3 times or more than.
【請求項3】 上部ヨーク磁性層が電気めっき法により
成膜された合金膜であり、該合金膜表面層の膜の比抵抗
が、それよりも内側の部分よりも高いことを特徴とする
請求項1または2に記載の垂直磁気ヘッド。
3. The upper yoke magnetic layer is an alloy film formed by an electroplating method, and the specific resistance of the film of the alloy film surface layer is higher than that of an inner part thereof. Item 3. The perpendicular magnetic head according to Item 1 or 2.
【請求項4】 ヨーク磁性層が電気めっき法により成膜
されたNiFeMoを主成分とする合金膜であり、上部
ヨーク最表面部の膜のMo含有量が、それよりも下側の
部分よりも高いことを特徴とする請求項1ないし3のい
ずれかに記載の垂直磁気ヘッド。
4. The yoke magnetic layer is an alloy film containing NiFeMo as a main component formed by an electroplating method, and the Mo content of the film on the outermost surface of the upper yoke is lower than that on the lower side. 4. The perpendicular magnetic head according to claim 1, wherein the height is high.
【請求項5】 ヨーク磁性層が電気めっき法により成膜
された合金膜であり、上部ヨーク最表面部の膜が、逆電
解により作製されたことを特徴とする請求項1ないし3
のいずれかに記載の垂直磁気ヘッド。
5. The yoke magnetic layer is an alloy film formed by an electroplating method, and the film on the outermost surface of the upper yoke is formed by reverse electrolysis.
The perpendicular magnetic head according to any one of 1.
【請求項6】 磁界検出層が巨大磁気抵抗効果膜である
請求項1ないし5のいずれかに記載の垂直磁気ヘッド。
6. The perpendicular magnetic head according to claim 1, wherein the magnetic field detection layer is a giant magnetoresistive film.
【請求項7】 磁界検出層がホール素子である請求項1
ないし5のいずれかに記載の垂直磁気ヘッド。
7. The magnetic field detection layer is a Hall element.
6. The perpendicular magnetic head according to any one of 1 to 5.
JP22001094A 1994-09-14 1994-09-14 Perpendicular magnetic head Expired - Fee Related JP3331389B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP22001094A JP3331389B2 (en) 1994-09-14 1994-09-14 Perpendicular magnetic head

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP22001094A JP3331389B2 (en) 1994-09-14 1994-09-14 Perpendicular magnetic head

Publications (2)

Publication Number Publication Date
JPH0887715A true JPH0887715A (en) 1996-04-02
JP3331389B2 JP3331389B2 (en) 2002-10-07

Family

ID=16744522

Family Applications (1)

Application Number Title Priority Date Filing Date
JP22001094A Expired - Fee Related JP3331389B2 (en) 1994-09-14 1994-09-14 Perpendicular magnetic head

Country Status (1)

Country Link
JP (1) JP3331389B2 (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6873499B2 (en) 1998-12-04 2005-03-29 International Business Machines Corporation Read head having high resistance soft magnetic flux guide layer for enhancing read sensor efficiency
KR100757759B1 (en) * 1998-12-14 2007-09-12 후지쯔 가부시끼가이샤 Magnetic material and magnetic head using the same and magnetic storage device having thereof
US7882617B2 (en) 2004-10-28 2011-02-08 Hitachi Global Storage Tech Nl Method of fabricating a magnetic recording head for perpendicular recording with enhanced covering power

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6873499B2 (en) 1998-12-04 2005-03-29 International Business Machines Corporation Read head having high resistance soft magnetic flux guide layer for enhancing read sensor efficiency
KR100757759B1 (en) * 1998-12-14 2007-09-12 후지쯔 가부시끼가이샤 Magnetic material and magnetic head using the same and magnetic storage device having thereof
US7882617B2 (en) 2004-10-28 2011-02-08 Hitachi Global Storage Tech Nl Method of fabricating a magnetic recording head for perpendicular recording with enhanced covering power

Also Published As

Publication number Publication date
JP3331389B2 (en) 2002-10-07

Similar Documents

Publication Publication Date Title
JP3462832B2 (en) Magnetic resistance sensor, magnetic head and magnetic recording / reproducing apparatus using the same
US7072155B2 (en) Magnetoresistive sensor including magnetic domain control layers having high electric resistivity, magnetic head and magnetic disk apparatus
JP3473684B2 (en) Magnetic head, method of manufacturing the same, and magnetic recording / reproducing apparatus using the same
US6351357B1 (en) Laminated hard magnet in MR sensor
JPH104012A (en) Magnetoresistance effect element, manufacture thereof and magnetic head manufactured thereby
US6778357B2 (en) Electrodeposited high-magnetic-moment material at writer gap pole
JP3263018B2 (en) Magnetoresistive element and method of manufacturing the same
JP2000322707A (en) Co-Fe-Ni MAGNETIC FILM HAVING HIGHLY SATURATED MAGNETIC FLUX DENSITY, COMPLEX THIN FILM MAGNETIC HEAD USING THE SAME AS MAGNETIC POLE AND MAGNETIC STORAGE DEVICE
US6635366B2 (en) Spin valve thin film magnetic element and thin film magnetic head
JP2002217030A (en) Magnetoresistance effect magnetic sensor and magnetic recording reproducer
US6798620B2 (en) Magneto-resistive element, magnetic head, and magnetic recording and reproduction apparatus
US7433163B2 (en) Seedlayer for high hard bias layer coercivity
JP2004152454A (en) Magnetic head and its manufacturing method
JP3331389B2 (en) Perpendicular magnetic head
KR100382865B1 (en) Recording head, recording head manufacturing method, combined head and magnetic recording/reproduction apparatus
US6687082B1 (en) Magnetic head and manufacturing method thereof and magnetic recording and reproducing apparatus
JP3217625B2 (en) Magnetoresistive head
JPH10241125A (en) Thin film magnetic head and recording/reproducing separation type magnetic head and magnetic recording/ reproducing apparatus using the same
JPH103620A (en) Magneto-resistive element and its production as well as magnetic head formed by using the same
JPH0774022A (en) Multilayer magnetoresistance-effect film and magnetic head
JP4265415B2 (en) Magnetoresistive magnetic head and magnetic recording / reproducing apparatus including the same
JPH07182629A (en) Magnetic sensor
US20030012982A1 (en) Thin magnetic film, method of fabricating the same and magnetic head including the same
JP3764361B2 (en) Method for manufacturing magnetoresistive element
JP4265416B2 (en) Magnetoresistive magnetic head and magnetic recording / reproducing apparatus including the same

Legal Events

Date Code Title Description
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20020618

S533 Written request for registration of change of name

Free format text: JAPANESE INTERMEDIATE CODE: R313533

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20080726

Year of fee payment: 6

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090726

Year of fee payment: 7

LAPS Cancellation because of no payment of annual fees