JP3329667B2 - Reinforcement part position determination method, method for manufacturing multiple-panel printed circuit board, and multiple-panel printed board - Google Patents

Reinforcement part position determination method, method for manufacturing multiple-panel printed circuit board, and multiple-panel printed board

Info

Publication number
JP3329667B2
JP3329667B2 JP24530396A JP24530396A JP3329667B2 JP 3329667 B2 JP3329667 B2 JP 3329667B2 JP 24530396 A JP24530396 A JP 24530396A JP 24530396 A JP24530396 A JP 24530396A JP 3329667 B2 JP3329667 B2 JP 3329667B2
Authority
JP
Japan
Prior art keywords
distribution
printed circuit
circuit board
deformation
stress
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP24530396A
Other languages
Japanese (ja)
Other versions
JPH1093206A (en
Inventor
賢治 廣畑
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Toshiba Corp
Original Assignee
Toshiba Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Toshiba Corp filed Critical Toshiba Corp
Priority to JP24530396A priority Critical patent/JP3329667B2/en
Publication of JPH1093206A publication Critical patent/JPH1093206A/en
Application granted granted Critical
Publication of JP3329667B2 publication Critical patent/JP3329667B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Classifications

    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05KPRINTED CIRCUITS; CASINGS OR CONSTRUCTIONAL DETAILS OF ELECTRIC APPARATUS; MANUFACTURE OF ASSEMBLAGES OF ELECTRICAL COMPONENTS
    • H05K1/00Printed circuits
    • H05K1/02Details
    • H05K1/0266Marks, test patterns or identification means
    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05KPRINTED CIRCUITS; CASINGS OR CONSTRUCTIONAL DETAILS OF ELECTRIC APPARATUS; MANUFACTURE OF ASSEMBLAGES OF ELECTRICAL COMPONENTS
    • H05K1/00Printed circuits
    • H05K1/02Details
    • H05K1/0271Arrangements for reducing stress or warp in rigid printed circuit boards, e.g. caused by loads, vibrations or differences in thermal expansion
    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05KPRINTED CIRCUITS; CASINGS OR CONSTRUCTIONAL DETAILS OF ELECTRIC APPARATUS; MANUFACTURE OF ASSEMBLAGES OF ELECTRICAL COMPONENTS
    • H05K1/00Printed circuits
    • H05K1/02Details
    • H05K1/03Use of materials for the substrate

Description

【発明の詳細な説明】DETAILED DESCRIPTION OF THE INVENTION

【0001】[0001]

【発明の属する技術分野】本発明は、補強部位置決定方
法、多面取りプリント基板の製造方法、及び多面取りプ
リント基板に関するものである。
The present invention relates to a method for determining the position of a reinforcing portion.
Method of manufacturing a multi-cavity printed circuit board
It relates to a lint substrate.

【0002】[0002]

【従来の技術】プリント基板においては、リフロー時、
図6に示すように両端支持のために自重により、あるい
は熱負荷により反り変形が発生する。小型、薄型化の傾
向にある各種電子部品をプリント基板に搭載する場合、
プリント基板の僅かな反り変形が部品と基板の接続精
度、信頼性に大きく影響することになる。
2. Description of the Related Art In a printed circuit board, at the time of reflow,
As shown in FIG. 6, warpage occurs due to its own weight due to the support at both ends or due to a thermal load. When mounting various electronic components, which tend to be smaller and thinner, on printed circuit boards,
Slight warpage of the printed circuit board greatly affects the connection accuracy and reliability between the component and the board.

【0003】そこで、プリント基板に熱負荷が作用した
場合に生じる反りを低減することは実装の高信頼性化を
実現する上で必要であり、プリント基板の溝部(基板ブ
レイク線部あるいは、ルーター加工部とも呼ぶが、本願
では以下、基板ブレイク線部と呼ぶ)に補強部を設ける
ことが行われている。ところが、基板製造工程では、補
強部を切断場合(割板時)手で折ることが多いので、補
強部幅または補強部数を増やすことは作業効率が低下す
る。
Therefore, it is necessary to reduce the warpage generated when a thermal load is applied to the printed circuit board in order to realize high reliability of mounting, and it is necessary to reduce the groove of the printed circuit board (substrate break line portion or router processing). However, in the present application, the reinforcing portion is provided on the substrate break line portion. However, in the substrate manufacturing process, the reinforcing portion is often broken by hand when cutting (at the time of splitting), and thus increasing the width of the reinforcing portion or the number of reinforcing portions lowers the work efficiency.

【0004】この相反する要求の中で、プリント基板の
基板ブレイク線に配置すべき補強部の位置を移動するこ
とで大幅に反りが低減できることが経験的に明らかにさ
れている。そこで妥当な補強部数において最適な配置を
探索することは、高精度なプリント基板を製造する上で
必要不可欠となっている。
It has been empirically clarified that, among these conflicting demands, warpage can be greatly reduced by moving the position of a reinforcing portion to be arranged on a substrate break line of a printed circuit board. Therefore, it is indispensable to search for an optimal arrangement with an appropriate number of reinforcing portions in order to manufacture a high-precision printed circuit board.

【0005】[0005]

【発明が解決しようとする課題】ところが、補強部の配
置は、従来設計者の経験によるところが大きく、試行錯
誤による反り量低減が行われており、試作基板作成には
多大な労力とコストを要していた。このような状況の中
で簡易的で合理的な補強部位置決定方法が求められてい
るが、このような要望を実現するための手段は知られて
いない。
However, the arrangement of the reinforcing portion largely depends on the experience of the conventional designer, and the amount of warpage has been reduced by trial and error. Was. Under such circumstances, a simple and rational method for determining the position of the reinforcing portion is required, but there is no known means for realizing such a demand.

【0006】本発明はこのような課題に着目してなされ
たものであり、その目的とするところは、プリント基板
の補強部の配置位置を簡易にかつ、より合理的に決定し
て表示することができる補強部位置決定方法、多面取り
プリント基板の製造方法、及び多面取りプリント基板を
提供することにある。
The present invention has been made in view of such a problem, and an object of the present invention is to easily and more rationally determine and display an arrangement position of a reinforcing portion of a printed circuit board. Method for determining the position of the reinforcing part,
Printed circuit board manufacturing method,
To provide.

【0007】[0007]

【課題を解決するための手段】上記の目的を達成するた
めに、第1の発明に係る補強部位置決定方法は、多面取
りプリント基板の溝部位に、その周辺部位と比較して剛
性を低下させたダミー材料を埋め込んだ数値モデルを設
定する工程と、前記数値モデルに対してシミュレーショ
ンを行って、前記溝部位における応力分布あるいは変形
量の分布あるいは歪分布を求める工程と、前記応力分布
あるいは変形量の分布あるいは歪分布に基づいて、前記
溝部位に配置する補強部の位置を決定する工程とを具備
する。 また、第2の発明は、第1の発明に関わるもので
あり、前記ダミー材料の弾性率は、前記周辺部位の弾性
率の1/1000〜1/100に設定される。
In order to achieve the above object, a method for determining the position of a reinforcing portion according to a first aspect of the present invention is a method for determining the position of a multi-unit.
The rigidity of the groove on the printed circuit board is
A numerical model with a dummy material with reduced
And simulating the numerical model.
Stress distribution or deformation at the groove
Determining the distribution of the quantity or the strain distribution;
Or, based on the distribution of the deformation amount or the strain distribution,
Determining the position of the reinforcing portion to be arranged in the groove portion
I do. The second invention relates to the first invention.
The elastic modulus of the dummy material is determined by the elasticity of the peripheral portion.
It is set to 1/1000 to 1/100 of the rate.

【0008】また、第3の発明は、第1又は第2のいず
れかの発明に関わるものであり、前記応力分布あるいは
変形量の分布あるいは歪分布を、該応力分布あるいは変
形量あるいは歪の大きさに応じた表示状態で表示する工
程をさらに備える。 また、第4の発明は、第1乃至第3
のいずれか1つの発明に関わるものであり、前記ダミー
材料の線膨張率及び比重は、前記周辺部位の線膨張率及
び比重と同一である。
[0008] A third aspect of the present invention is the first or second aspect.
The invention relates to any one of the above-mentioned stress distributions or
The deformation distribution or strain distribution is changed to the stress distribution or deformation.
Display in the display state according to the shape amount or the magnitude of distortion
The process is further provided. Further, the fourth invention is characterized in that the first to the third
The invention relates to any one of the above inventions,
The linear expansion coefficient and specific gravity of the material
And specific gravity.

【0009】また、第5の発明は、第1の発明に関わる
ものであり、前記溝部位における応力分布あるいは変形
量の分布あるいは歪分布を求める工程は、前記多面取り
プリント基板の自重及び熱負荷が作用した状態での分布
を有限要素法により計算する。
A fifth invention relates to the first invention.
Stress distribution or deformation at the groove portion
The step of obtaining the distribution of the amount or the strain distribution is performed by the multi-chamfering.
Distribution of printed circuit board under its own weight and thermal load
Is calculated by the finite element method.

【0010】また、第6の発明は、溝部位により仕切ら
れた複数のプリント基板からなる多面取りプリント基板
の製造方法において、前記溝部位に、その周辺部位と比
較して剛性を低下させたダミー材料を埋め込んだ数値モ
デルを設定する工程と、前記数値モデルに対してシミュ
レーションを行って、前記溝部位における応力分布ある
いは変形量の分布あるいは歪分布を求める工程と、前記
応力分布あるいは変形量の分布あるいは歪分布に基づい
て、前記溝部位に配置する補強部の位置を決定する工程
と、決定された前記位置に補強部を配置する工程とを備
える。 また、第7の発明は、多面取りプリント基板に関
わり、第6の発明の多面取りプリント基板の製造方法に
よって製造されるものである。
In a sixth aspect of the present invention, a partition is provided by a groove portion.
PCB with multiple printed circuit boards
In the method of manufacturing, the groove portion has a ratio
Numerical model with embedded dummy material with reduced rigidity
Setting up a Dell and simulating the numerical model
A stress distribution in the groove portion
Or a step of obtaining a distribution or strain distribution of the deformation amount,
Based on stress distribution or deformation distribution or strain distribution
Determining the position of the reinforcing portion to be arranged in the groove portion
And arranging a reinforcing portion at the determined position.
I can. Further, a seventh invention relates to a multi-cavity printed circuit board.
Instead, the method for manufacturing a multi-surface printed circuit board according to the sixth invention is described.
Therefore, it is manufactured.

【0011】[0011]

【発明の実施の形態】以下、図面を参照して本発明の一
実施形態を詳細に説明する。まず、本実施形態に係る補
強部位置決定方法の概略を説明する。図1において、ま
ず、多面取りプリント基板(以下、単にプリント基板と
呼ぶ)10の溝部(基板ブレイク線部位)11を、その
周辺部と比較して線膨張率、比重が同じで弾性率がかな
り低いダミー材料12で埋める。次に、このようなプリ
ント基板10を解析対象として有限要素法または境界要
素法を用いて応力解析するために要素分割を行う。そし
て、室温からリフロー温度までの熱履歴を荷重条件とし
て、一様温度分布の弾性解析を行う。このとき、プリン
ト基板10の変形モードがダミー材料で埋めていない通
常のプリント基板10の変形モードと同じになるように
ダミー材料の弾性率の設定を行う。例えば、多層プリン
ト基板用銅張積層板(ガラス布基材エポキシ樹脂)の場
合、溝に埋め込むダミー材料の弾性率を周辺部の1/1
000から1/100程度に設定する。
DETAILED DESCRIPTION OF THE PREFERRED EMBODIMENTS Hereinafter, an embodiment of the present invention will be described in detail with reference to the drawings. First, an outline of the method for determining the position of the reinforcing portion according to the present embodiment will be described. In FIG. 1, first, a groove portion (substrate break line portion) 11 of a multi-panel printed circuit board (hereinafter simply referred to as a printed circuit board) 10 has the same coefficient of linear expansion and specific gravity as its peripheral portion, and has a considerably high elastic modulus. Fill with a low dummy material 12. Next, element division is performed on the printed board 10 for analysis using the finite element method or the boundary element method with respect to the analysis target. Then, elasticity analysis of a uniform temperature distribution is performed using the heat history from room temperature to the reflow temperature as a load condition. At this time, the elastic modulus of the dummy material is set so that the deformation mode of the printed circuit board 10 is the same as the normal deformation mode of the printed circuit board 10 not filled with the dummy material. For example, in the case of a copper-clad laminate for a multilayer printed circuit board (glass cloth base epoxy resin), the elastic modulus of the dummy material embedded in the groove is set to 1/1 of the peripheral portion.
Set it to about 000 to 1/100.

【0012】次に、自重と熱負荷が作用した状態での応
力分布図、変形量分布図(歪分布図とも呼ぶ)を計算し
て、溝部11において相対的に応力、歪が高くなる高応
力部13を求め、図2に示すように、補強材14を順次
配置する。
Next, a stress distribution diagram and a deformation amount distribution diagram (also referred to as a strain distribution diagram) in a state where the own weight and the heat load are applied are calculated, and a high stress in which the stress and strain are relatively high in the groove portion 11 is calculated. The part 13 is obtained, and the reinforcing members 14 are sequentially arranged as shown in FIG.

【0013】このように本実施形態では、基板ブレイク
線部位に他部位と比較してかなり剛性を低下させたダミ
ー材料を埋め込んだ数値モデルによる反り変形シミュレ
ーションを行い、埋め込んだダミー材料部分の高応力・
高変形量部に補強部を配置することを特徴とする。
As described above, in the present embodiment, a warp deformation simulation is performed by a numerical model in which a dummy material whose rigidity is considerably reduced as compared with other portions is embedded in a substrate break line portion, and a high stress in the embedded dummy material portion is obtained.・
It is characterized in that a reinforcing portion is disposed in the high deformation portion.

【0014】以下に上記した本実施形態の概略をさらに
詳細に説明する。 1.まず、補強部の位置決定方法の概略を述べる。 自重と熱負荷(温度一様分布)が作用するときの反り変
形解析を行う。以下に補強材の配置位置を決定する方法
の概略を図3を参照しながら説明する。 (1) プリント基板10の溝部11に、他部位に比べ
て線膨張率、比重は同じで、かなり剛性を下げたダミー
材料12を埋める(図3(a))。 (2) このようなモデルに対してメッシュを切り、有
限要素法(FEM)による解析を行なうために所定の入
力データを作成する(図3(b))。 (3) プリント基板10の自重と熱負荷が作用した状
態での応力分布を有限要素法により計算する(図3
(c))。図では溝部のみの分布を示している。 (4) 溝部11の中で相対的に応力が高い部分(高応
力部)13に補強材14を配置する(図3(d)))。
Hereinafter, the outline of the above-described embodiment will be described in more detail. 1. First, an outline of a method for determining the position of the reinforcing portion will be described. The warpage deformation analysis when the own weight and the thermal load (uniform temperature distribution) act. Hereinafter, an outline of a method for determining the arrangement position of the reinforcing member will be described with reference to FIG. (1) The groove 11 of the printed circuit board 10 is filled with a dummy material 12 having the same linear expansion coefficient and specific gravity as those of other parts and having considerably reduced rigidity (FIG. 3A). (2) A mesh is cut from such a model, and predetermined input data is created for analysis by the finite element method (FEM) (FIG. 3B). (3) Calculate the stress distribution of the printed circuit board 10 under its own weight and heat load by the finite element method (FIG. 3).
(C)). The figure shows the distribution of only the grooves. (4) The reinforcing member 14 is arranged in a portion (high stress portion) 13 where the stress is relatively high in the groove portion 11 (FIG. 3D).

【0015】ここで、溝部11に埋め込むダミー材料1
2の弾性率を小さくするのは、ダミー材料12による影
響を小さくするためである。ダミー材料12の弾性率が
小さすぎれば溝部11の変形が大きくなりすぎ、また、
弾性率が大き過ぎればプリント基板10は中心を軸にた
わむ変形となり、実際の変形と異なってくる。従って、
ダミー材料12の弾性率の設定はプリント基板10の変
形モードがダミー材料で埋めていない通常のプリント基
板の変形モードと同じになるように行う。 2.次に、有限要素法による解析例を説明する。
Here, the dummy material 1 to be embedded in the groove 11
The reason for reducing the elastic modulus of No. 2 is to reduce the influence of the dummy material 12. If the elastic modulus of the dummy material 12 is too small, the deformation of the groove 11 becomes too large, and
If the elastic modulus is too large, the printed circuit board 10 is deformed around the center as an axis, which is different from the actual deformation. Therefore,
The elastic modulus of the dummy material 12 is set such that the deformation mode of the printed circuit board 10 is the same as the deformation mode of a normal printed circuit board not filled with the dummy material. 2. Next, an example of analysis by the finite element method will be described.

【0016】ここでは、ノート型パソコン用多層プリン
ト基板を対象として本実施形態の適用例を示す。 (1) 解析コード、要素 解析に用いるプログラムは汎用有限要素法プログラムA
BAQUS(Ver.5.4)を用い、使用要素は3次
元4節点シェル要素とする(一部3次元3節点シェル要
素)。解析に使用する単位系は、mm、N、MPa、℃
とする。 (2) 構造モデル 解析に用いるプリント基板の形状は横238mm、高さ
195mm、板厚1.2mmである。このプリント基板
の断面図を図4に示す。実際には配線パターンを有する
鋼板をモデル化したものを用いる。また、面内、厚さ方
向とも一様温度分布とする。プリント基板の反りは熱負
荷を掛けた後、室温に戻しても反りが残っていることを
考えると、基本的には材料の非線形性を考慮した非弾性
解析を行うべきであるが、ここでは、高温での応力分布
を相対的に比較することを目的としているので、計算時
間の短縮化のために弾性解析を用いる。
Here, an application example of the present embodiment is shown for a multilayer printed circuit board for a notebook personal computer. (1) Analysis code and elements The program used for analysis is the general-purpose finite element method program A.
BAQUS (Ver. 5.4) is used, and the elements used are three-dimensional four-node shell elements (partially three-dimensional three-node shell elements). The unit system used for analysis is mm, N, MPa, ° C.
And (2) Structural Model The shape of the printed circuit board used for the analysis is 238 mm in width, 195 mm in height, and 1.2 mm in thickness. FIG. 4 shows a cross-sectional view of the printed circuit board. In practice, a model of a steel sheet having a wiring pattern is used. In addition, the temperature distribution is uniform in the plane and in the thickness direction. Considering that the warpage of the printed circuit board remains even after returning to room temperature after applying a thermal load, inelastic analysis considering the nonlinearity of the material should be performed basically, but here Since the purpose is to relatively compare stress distributions at high temperatures, elastic analysis is used to shorten the calculation time.

【0017】図4において、プリント基板の積層材(1
3層)の板厚は上から10−1及び10−13が18μ
m、10−2、10−4、10−6、10−8、10−
10、10−12(銅材からなる)が35μm、10−
3、10−5、10−7、10−9、10−11(FR
−4(プリプレグ)材からなる)が194.8μmであ
る。 (3) 材料定数 以下の表1は銅の物性値であり、表2はFR−4の物性
値であり、表3はFR−4の平均熱膨張係数である。高
温での応力分布を相対的に比較することを目的とするの
で、ここでは材料の弾性特性値のみを記すが、定量的な
精度の良い解析を行うためには、銅、FR−4とも材料
の非線形特性を考慮する必要がある。
In FIG. 4, the laminated material (1
The thickness of the (3 layers) is 18 μm for 10-1 and 10-13 from the top.
m, 10-2, 10-4, 10-6, 10-8, 10-
10, 10-12 (made of copper material) is 35 μm,
3, 10-5, 10-7, 10-9, 10-11 (FR
-4 (prepreg) material) is 194.8 µm. (3) Material constants Table 1 below shows the physical properties of copper, Table 2 shows the physical properties of FR-4, and Table 3 shows the average thermal expansion coefficient of FR-4. Since the purpose is to relatively compare the stress distributions at high temperatures, only the elastic characteristic values of the material are described here. Needs to be considered.

【0018】[0018]

【表1】 [Table 1]

【0019】[0019]

【表2】 [Table 2]

【0020】[0020]

【表3】 (4) 境界条件 境界条件を図5に示す。また、プリント基板には自重が
作用するため、ここでは25℃→200℃の条件で弾性
解析を行なう。 (5) 解析項目 1.まず、溝部をすべてダミー材料(線膨張率と比重と
ポアソン比は周辺部と同じ)で埋めた場合の弾性解析を
25℃→200℃の条件で行なう。変形モードが、溝部
を埋めていないときのプリント基板と同じになるような
ダミー材料の弾性定数を探索する。
[Table 3] (4) Boundary conditions The boundary conditions are shown in FIG. Further, since the printed board is subject to its own weight, the elasticity analysis is performed under the condition of 25 ° C. → 200 ° C. (5) Analysis items First, the elasticity analysis in the case where all the grooves are filled with a dummy material (the coefficient of linear expansion, the specific gravity, and the Poisson's ratio are the same as the peripheral part) is performed under the condition of 25 ° C. → 200 ° C. A search is made for an elastic constant of the dummy material such that the deformation mode is the same as that of the printed circuit board when the groove is not filled.

【0021】2.次に、変形モードが、溝部を埋めてい
ないときのプリント基板と同じになる場合について、溝
部のσ22方向の応力分布図を出力する。 3.次に、2.で出力した応力分布図をもとに相対的に
応力値が高くなっている部分(高応力部)に補強部を配
置し、反り変形シミュレーションを行なう。
2. Next, deformation mode, the case where the same as the printed circuit board when not fill the grooves, and outputs the sigma 22 direction of stress distribution diagram of the groove. 3. Next, 2. Based on the stress distribution diagram output in step (1), a reinforcing portion is arranged at a portion where the stress value is relatively high (high stress portion), and a warping deformation simulation is performed.

【0022】4.次に、従来の経験的な方法で補強部配
置が行われたプリント基板と比較する。 (6) 解析結果 1.解析項目1の結果 溝部に埋め込むダミー材料の弾性率が周辺部の1/10
0の場合、変形モードは従来例とある程度類似する。変
形モードが異なる例として弾性率が周辺部の1/105
の場合の変形量分布図を求める。変形モード溝を埋めて
いない場合と類似するダミー材料の物性値を探索した結
果、本解析対象の材料、形状の場合、弾性率が周辺部の
1/1000〜1/100程度が望ましいことがわかっ
た。
4. Next, a comparison is made with a printed circuit board in which reinforcing portions are arranged by a conventional empirical method. (6) Analysis results Result of analysis item 1 The elastic modulus of the dummy material embedded in the groove is 1/10 that of the peripheral part
In the case of 0, the deformation mode is somewhat similar to the conventional example. As an example of different deformation modes, the elastic modulus is 1/10 5 of the peripheral part.
Then, a deformation amount distribution chart in the case of is obtained. As a result of searching for physical properties of the dummy material similar to the case where the deformation mode groove is not filled, it is found that, in the case of the material and shape to be analyzed, the elastic modulus is preferably about 1/1000 to 1/100 of the peripheral part. Was.

【0023】2.解析項目2、3の結果 変形モードが類似する場合(ダミー材料の弾性率が周辺
部の1/100)の200℃での応力分布図(σ22)を
出力する(図3(c))。同図では溝部のみの応力分布
を出力している。この結果から相対的に応力が高くなっ
ている部分に補強部を配置する(図3(d))。 (7) 最大反り変形量 以下の表4で示すように、本方法を用いて補強部の位置
を決定した場合、従来例1と補強材個数が同じでも反り
量は低減している。また、従来例2は補強材個数を多く
して反りを従来例1より低減した場合の結果である。
2. Results of Analysis Items 2 and 3 A stress distribution diagram (σ 22 ) at 200 ° C. when the deformation modes are similar (the elastic modulus of the dummy material is 1/100 of the peripheral portion) is output (FIG. 3C). In the figure, the stress distribution of only the groove is output. Based on this result, the reinforcing portion is arranged at a portion where the stress is relatively high (FIG. 3D). (7) Maximum Warpage Deformation As shown in Table 4 below, when the position of the reinforcing portion is determined using the present method, the warpage amount is reduced even if the number of reinforcing materials is the same as in Conventional Example 1. Further, Conventional Example 2 is a result in the case where the number of reinforcing members is increased and warpage is reduced as compared with Conventional Example 1.

【0024】[0024]

【表4】 (8) 考察 本実施形態によるプリント基板の弾性変形シミュレーシ
ョンでは、オリジナルモデル(従来例1)、さらには補
強部数を増やしたモデル(従来例2)よりも最大反り量
が低減されていることがわかる。
[Table 4] (8) Discussion In the elastic deformation simulation of the printed circuit board according to the present embodiment, it can be seen that the maximum warpage amount is smaller than that of the original model (conventional example 1) and the model with the increased number of reinforcing parts (conventional example 2). .

【0025】なお、前述のように、プリント基板の反り
は熱負荷を加えた後に室温に戻しても反りが残っている
ことを考えると、基本的には材料の非線形性を考慮した
非弾性解析を行うべきである。ここでは、高温での応力
分布を相対的に比較するという目的のもとで、計算時間
の短縮化のために弾性解析を採用した。3.結論上記し
たように、本実施形態では、補強部位置の合理的な決定
法として、ダミー材料(変形モードが変化しないように
弾性率を設定)で溝部を埋めたモデルで弾性解析を行
い、200℃での溝部応力分布を反映して補強材の位置
を決定する方法を示した。ノート型パソコン用基板をモ
チーフにして解析を行い、本実施形態による方法の優位
性を示した。また、ダミー材料の物性値は、線膨張率が
周辺部の材料と同じで、本解析対象の場合、弾性率が周
辺部の1/1000〜1/100程度が望ましいことが
わかった。なお、上記した実施形態では応力分布を求め
たが、歪分布を求めても同様の結論を得ることができ
る。
As described above, considering that the warpage of the printed circuit board remains even after returning to room temperature after applying a thermal load, the inelastic analysis basically takes into account the nonlinearity of the material. Should be done. Here, for the purpose of relatively comparing stress distributions at high temperatures, elastic analysis was employed to shorten the calculation time. 3. Conclusion As described above, in the present embodiment, as a rational method for determining the position of the reinforcing portion, elastic analysis was performed using a model in which the groove was filled with a dummy material (setting the elastic modulus so that the deformation mode did not change), and 200 A method to determine the position of the reinforcing material by reflecting the groove stress distribution at ℃ was shown. Analysis was performed using the notebook PC substrate as a motif, and the superiority of the method according to the present embodiment was demonstrated. In addition, it was found that the physical property value of the dummy material is the same as that of the material of the peripheral portion in the coefficient of linear expansion. Although the stress distribution is obtained in the above-described embodiment, the same conclusion can be obtained by obtaining the strain distribution.

【0026】[0026]

【発明の効果】本発明によれば、プリント基板の補強部
の位置を簡易にかつ、より合理的な方法で決定すること
ができる。これによって、プリント基板作成の労力が低
減でき、開発期間、コストの面からも有益である。
According to the present invention, the position of the reinforcing portion of the printed circuit board can be determined simply and in a more rational manner. As a result, the labor for producing a printed circuit board can be reduced, and this is also advantageous from the viewpoints of development period and cost.

【図面の簡単な説明】[Brief description of the drawings]

【図1】本発明の一実施形態に係る補強部位置決定方法
の概略を説明するための図である。
FIG. 1 is a diagram for explaining an outline of a reinforcing portion position determining method according to an embodiment of the present invention.

【図2】プリント基板の溝部位に補強部を配置した状態
を示す図である。
FIG. 2 is a diagram illustrating a state in which a reinforcing portion is arranged in a groove portion of a printed circuit board.

【図3】補強材の配置位置を決定する方法の概略を説明
するための図である。
FIG. 3 is a diagram for explaining an outline of a method for determining an arrangement position of a reinforcing member.

【図4】本解析に用いるプリント基板の断面図である。FIG. 4 is a cross-sectional view of a printed circuit board used in the analysis.

【図5】境界条件を示す図である。FIG. 5 is a diagram showing boundary conditions.

【図6】反り変形が発生する原因を説明するための図で
ある。
FIG. 6 is a diagram for explaining the cause of warpage deformation.

【符号の説明】[Explanation of symbols]

10…プリント基板、11…溝部、12…ダミー材料、
13…高応力部、14…補強部。
10 ... printed circuit board, 11 ... groove, 12 ... dummy material,
13 ... high stress part, 14 ... reinforcement part.

───────────────────────────────────────────────────── フロントページの続き (58)調査した分野(Int.Cl.7,DB名) H05K 3/00 H05K 1/02 ──────────────────────────────────────────────────続 き Continued on the front page (58) Field surveyed (Int.Cl. 7 , DB name) H05K 3/00 H05K 1/02

Claims (7)

(57)【特許請求の範囲】(57) [Claims] 【請求項1】 多面取りプリント基板の溝部位に、その
周辺部位と比較して剛性を低下させたダミー材料を埋め
込んだ数値モデルを設定する工程と、 前記数値モデルに対してシミュレーションを行って、前
記溝部位における応力分布あるいは変形量の分布あるい
は歪分布を求める工程と、 前記応力分布あるいは変形量の分布あるいは歪分布に基
づいて、前記溝部位に配置する補強部の位置を決定する
工程と、 を具備することを特徴とする補強部位置決定方法。
[Claim 1] A groove portion of the multi-faced printed circuit board, the
Fill dummy material with reduced rigidity compared to the surrounding area
Setting the embedded numerical model, and performing a simulation on the numerical model,
Distribution of stress or deformation at the groove
Is the step of obtaining the strain distribution and the step of obtaining the stress distribution or the amount of deformation or the strain distribution.
The position of the reinforcing portion to be arranged in the groove portion
And a step of determining the position of the reinforcing part.
【請求項2】 前記ダミー材料の弾性率は、前記周辺部
位の弾性率の1/1000〜1/100に設定されるこ
とを特徴とする請求項1記載の補強部位置決定方法。
2. The elastic material of the dummy material has a modulus of elasticity in the peripheral portion.
Set to 1/1000 to 1/100 of the elastic modulus
2. The method of claim 1, further comprising the steps of:
【請求項3】 前記応力分布あるいは変形量の分布ある
いは歪分布を、該応力分布あるいは変形量あるいは歪の
大きさに応じた表示状態で表示する工程をさらに備えた
ことを特徴とする請求項1又は2のいずれか一項に記載
の補強部位置決定方法。
3. The method according to claim 2, wherein said stress distribution or deformation amount distribution is provided.
The strain distribution or the amount of deformation or strain
It further comprises a step of displaying in a display state according to the size.
The method according to claim 1, wherein:
Method for determining the position of the reinforcement.
【請求項4】 前記ダミー材料の線膨張率及び比重は、
前記周辺部位の線膨張率及び比重と同一であることを特
徴とする請求項1乃至3のいずれか1つに記載の補強部
位置決定方法。
4. The coefficient of linear expansion and specific gravity of the dummy material are as follows:
It is the same as the linear expansion coefficient and specific gravity of the surrounding area.
The reinforcing part according to any one of claims 1 to 3, wherein the reinforcing part is a symbol.
Positioning method.
【請求項5】 前記溝部位における応力分布あるいは変
形量の分布あるいは歪分布を求める工程は、前記多面取
りプリント基板の自重及び熱負荷が作用した状態での分
布を有限要素法により計算することを特徴とする請求項
1記載の補強部位置決定方法。
5. The method according to claim 1, wherein a stress distribution or variation in the groove portion is obtained.
The step of obtaining the distribution of the shape amount or the strain distribution is performed by the multi
Of the printed circuit board under its own weight and heat load
Claim: The cloth is calculated by a finite element method.
The method for determining the position of a reinforcing part according to claim 1.
【請求項6】 溝部位により仕切られた複数のプリント
基板からなる多面取りプリント基板の製造方法におい
て、 前記溝部位に、その周辺部位と比較して剛性を低下させ
たダミー材料を埋め込んだ数値モデルを設定する工程
と、 前記数値モデルに対してシミュレーションを行って、前
記溝部位における応力分布あるいは変形量の分布あるい
は歪分布を求める工程と、 前記応力分布あるいは変形量の分布あるいは歪分布に基
づいて、前記溝部位に 配置する補強部の位置を決定する
工程と、 決定された前記位置に補強部を配置する工程とを備えた
ことを特徴とする多面取りプリント基板の製造方法。
6. A plurality of prints partitioned by groove portions.
In the manufacturing method of multi-panel printed circuit boards consisting of substrates
In the groove portion, the rigidity is reduced as compared with the peripheral portion.
Of setting a numerical model with embedded dummy material
And simulated the numerical model,
Distribution of stress or deformation at the groove
Is the step of obtaining the strain distribution and the step of obtaining the stress distribution or the amount of deformation or the strain distribution.
The position of the reinforcing portion to be arranged in the groove portion
And a step of arranging a reinforcing portion at the determined position.
A method for manufacturing a multi-panel printed circuit board, comprising:
【請求項7】 請求項6に記載の多面取りプリント基板
の製造方法によって製造されることを特徴とする多面取
りプリント基板。
7. The printed circuit board according to claim 6, wherein :
Multi-chamfer, characterized by being manufactured by the method of manufacturing
Printed circuit board.
JP24530396A 1996-09-17 1996-09-17 Reinforcement part position determination method, method for manufacturing multiple-panel printed circuit board, and multiple-panel printed board Expired - Fee Related JP3329667B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP24530396A JP3329667B2 (en) 1996-09-17 1996-09-17 Reinforcement part position determination method, method for manufacturing multiple-panel printed circuit board, and multiple-panel printed board

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP24530396A JP3329667B2 (en) 1996-09-17 1996-09-17 Reinforcement part position determination method, method for manufacturing multiple-panel printed circuit board, and multiple-panel printed board

Publications (2)

Publication Number Publication Date
JPH1093206A JPH1093206A (en) 1998-04-10
JP3329667B2 true JP3329667B2 (en) 2002-09-30

Family

ID=17131676

Family Applications (1)

Application Number Title Priority Date Filing Date
JP24530396A Expired - Fee Related JP3329667B2 (en) 1996-09-17 1996-09-17 Reinforcement part position determination method, method for manufacturing multiple-panel printed circuit board, and multiple-panel printed board

Country Status (1)

Country Link
JP (1) JP3329667B2 (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2006209629A (en) * 2005-01-31 2006-08-10 Fujitsu Ltd Structural analysis method using finite element method
US9384314B2 (en) 2014-02-28 2016-07-05 International Business Machines Corporation Reduction of warpage of multilayered substrate or package

Families Citing this family (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP4579617B2 (en) 2004-08-11 2010-11-10 富士通株式会社 Substrate deformation prediction apparatus, substrate deformation prediction method, and substrate deformation prediction program
JP4481761B2 (en) 2004-08-11 2010-06-16 富士通株式会社 Board design support device, board design support method, and board design support program
JP4774810B2 (en) * 2005-06-02 2011-09-14 日本電気株式会社 Substrate warp analysis method, system, program, and recording medium
WO2008107983A1 (en) 2007-03-07 2008-09-12 Fujitsu Limited Analyzer, analysis method, and analysis program
JP5051036B2 (en) 2008-07-22 2012-10-17 富士通株式会社 Multilayer substrate analysis apparatus, multilayer substrate analysis program and method
JP7308352B2 (en) * 2020-03-24 2023-07-13 株式会社日立製作所 Substrate analysis support method and substrate analysis support system

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2006209629A (en) * 2005-01-31 2006-08-10 Fujitsu Ltd Structural analysis method using finite element method
JP4597691B2 (en) * 2005-01-31 2010-12-15 富士通株式会社 Structural analysis method using finite element method
US9384314B2 (en) 2014-02-28 2016-07-05 International Business Machines Corporation Reduction of warpage of multilayered substrate or package
US9672323B2 (en) 2014-02-28 2017-06-06 International Business Machines Corporation Reduction of warpage of multilayered substrate or package

Also Published As

Publication number Publication date
JPH1093206A (en) 1998-04-10

Similar Documents

Publication Publication Date Title
Boothroyd et al. Design for assembly
KR100783461B1 (en) Multilayer printed circuit board and manufacturing method thereof
KR100739407B1 (en) Structural analysis method employing finite element method
JP5062249B2 (en) Analysis apparatus, analysis method, and analysis program
JP3329667B2 (en) Reinforcement part position determination method, method for manufacturing multiple-panel printed circuit board, and multiple-panel printed board
JP4588502B2 (en) Printed circuit board design support apparatus, printed circuit board design support method, and printed circuit board design support program
CN103200779B (en) A kind of printed circuit board spacing drawing process
JP4774810B2 (en) Substrate warp analysis method, system, program, and recording medium
JP2007027152A (en) Method of designing printed board
JP2008186104A (en) Product attribute information predicting device, product attribute information predicting method and product attribute information prediction program
JPWO2009044699A1 (en) 3D substrate warp analysis system, 3D substrate warp analysis device, 3D substrate warp analysis method and program.
US20110010153A1 (en) Model analysis system, model analysis method, and model analysis program
JP5040363B2 (en) Analysis apparatus, analysis method, and analysis program
JP4618065B2 (en) Wiring pattern design apparatus and method, and program
WO2012003511A1 (en) Fabrication process for embedded passive components
CN103857174A (en) Printed circuit board and manufacturing method thereof
CN114189999B (en) Temperature optimization design method and system for reducing warp deformation after PCB lamination
Weninger et al. Evaluation of thermomechanical behavior of electronic devices through the use of a reduced order modelling approach
US6973635B2 (en) Printed wiring board design aiding system, printed wiring board CAD system, and record medium
US7780803B2 (en) Apparatus and method for positioning and assembling circuit board
JP4204530B2 (en) Component mounting board analysis method
JP2005050137A (en) Device and method for automatically creating mesh and program
Hall Thermal expansivity and thermal stress in multilayered structures
JP5195918B2 (en) Analysis apparatus, analysis method, and analysis program
JPH098492A (en) Part arrangement optimizing method

Legal Events

Date Code Title Description
FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20080719

Year of fee payment: 6

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090719

Year of fee payment: 7

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090719

Year of fee payment: 7

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100719

Year of fee payment: 8

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110719

Year of fee payment: 9

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120719

Year of fee payment: 10

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130719

Year of fee payment: 11

LAPS Cancellation because of no payment of annual fees