JP3326737B2 - DC current sensor - Google Patents
DC current sensorInfo
- Publication number
- JP3326737B2 JP3326737B2 JP11883297A JP11883297A JP3326737B2 JP 3326737 B2 JP3326737 B2 JP 3326737B2 JP 11883297 A JP11883297 A JP 11883297A JP 11883297 A JP11883297 A JP 11883297A JP 3326737 B2 JP3326737 B2 JP 3326737B2
- Authority
- JP
- Japan
- Prior art keywords
- magnetic field
- current
- field detectors
- current sensor
- detector
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Expired - Fee Related
Links
Landscapes
- Measuring Instrument Details And Bridges, And Automatic Balancing Devices (AREA)
- Measurement Of Current Or Voltage (AREA)
Description
【0001】[0001]
【発明の属する技術分野】本発明は静止磁界検出型の直
流電流センサ、特に直流大電流計測用の軽量小型の直流
電流センサに関する。BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a DC current sensor of a static magnetic field detection type, and more particularly to a light and small DC current sensor for measuring a large DC current.
【0002】[0002]
【従来の技術】例えば電気鉄道用直流変電所では、送電
網から受電した高圧交流電力を変圧器で600〜300
0V程度に降圧し、シリコン整流器、水銀整流器等で直
流に変換して線路に供給する。直流供給回線には、負荷
量を計測するための直流電流センサ及び指示記録計器類
が設置される。2. Description of the Related Art For example, in a DC substation for electric railways, high-voltage AC power received from a power transmission network is converted into 600 to 300 by a transformer.
The voltage is reduced to about 0 V, converted to DC by a silicon rectifier, a mercury rectifier, and supplied to the line. The DC supply line is provided with a DC current sensor for measuring the amount of load and indication recording instruments.
【0003】上記のような用途に使用される直流電流セ
ンサには多くのタイプがあるが、中でもクレーマー型直
流変流器、及びホール素子等の磁電変換器を用いる電流
センサが従来から広く使用されている。両者とも直流電
流の回りに同心円状に生じる静止磁界の磁束密度を検出
することによりその電流の大きさを検出するものである
が、夫々の磁界検出の原理は異なる。[0003] There are many types of DC current sensors used for the above applications. Among them, Kramer type DC current transformers and current sensors using magnetoelectric converters such as Hall elements have been widely used. ing. In both cases, the magnitude of the static current is detected by detecting the magnetic flux density of a static magnetic field generated concentrically around a direct current, but the principles of the respective magnetic field detection are different.
【0004】クレーマー型直流変流器では直流導体の回
りに角形磁気特性を有する一対の環状磁心を設け、各磁
心に同一巻数の巻線を巻き、互に逆直列に接続した上で
交流電源で励磁する。被測定電流により偏磁されて飽和
している各磁心を交流で励磁することにより、各磁心の
飽和状態が半波ごとに打ち消されてリセットされ、その
間に等アンペアターンの法則に従って巻線に被測定電流
に比例した検出電流が流れる。この検出電流を全波整流
して、変流出力としての直流電流又は電圧を得る。In a Kramer type DC current transformer, a pair of annular magnetic cores having rectangular magnetic characteristics are provided around a DC conductor, windings having the same number of windings are wound around each magnetic core, and connected in anti-series with each other. Excite. By exciting each of the magnetic cores, which are polarized and saturated by the current to be measured, with AC, the saturation state of each magnetic core is canceled and reset every half-wave, and during that time, the windings are wound on the windings according to the law of equal ampere-turn. A detection current proportional to the measurement current flows. This detection current is full-wave rectified to obtain a DC current or voltage as a current transformation output.
【0005】ホール素子等を用いる電流センサでは、直
流導体の回りに環状磁心による導磁路を設け、磁路の一
部に空隙を設けてその中にホール素子又は磁気抵抗素子
を置く。被測定電流による導磁路の磁化は非飽和領域に
留められるから、空隙中の磁界の強さは被測定電流に比
例する。その磁界をホール素子等により電圧又は抵抗値
に変換する。In a current sensor using a Hall element or the like, a magnetic path of an annular magnetic core is provided around a DC conductor, a gap is provided in a part of the magnetic path, and a Hall element or a magnetoresistive element is placed therein. Since the magnetization of the magnetic path due to the current to be measured is kept in the unsaturated region, the strength of the magnetic field in the air gap is proportional to the current to be measured. The magnetic field is converted into a voltage or a resistance value by a Hall element or the like.
【0006】上記クレーマー型直流変流器は、被測定電
流の向きが1方向に限定されると共に、電流が0から急
峻に立ち上がる場合、励磁巻線に高電圧が発生し絶縁破
壊を生じるおそれがあるという構造的弱点を有する。ま
た応答時間が0.5〜1秒と遅く、さらに測定精度が定
格値の±2.5%程度と低く、近時の高精度の要求に対
しては充分でない場合がある。In the above-mentioned Kramer-type DC current transformer, the direction of the current to be measured is limited to one direction, and when the current rises sharply from 0, a high voltage is generated in the exciting winding and dielectric breakdown may occur. There is a structural weakness that there is. Further, the response time is as slow as 0.5 to 1 second, and the measurement accuracy is as low as about ± 2.5% of the rated value, which may not be sufficient for recent demands for high accuracy.
【0007】ホール素子等を用いる電流センサでは、導
磁路の磁化を非飽和領域に限るため磁心が大型となり、
磁心にホール素子等を埋め込むため構造が複雑である。
またホール素子等半導体素子の耐久温度が高くないた
め、使用温度の上限が50℃程度に限定される等の弱点
を有する。In a current sensor using a Hall element or the like, the magnetic core becomes large because the magnetization of the magnetic path is limited to an unsaturated region.
The structure is complicated because a Hall element or the like is embedded in the magnetic core.
Further, since the durability temperature of a semiconductor element such as a Hall element is not high, there is a weak point such that the upper limit of the operating temperature is limited to about 50 ° C.
【0008】すなわちこれら従来の直流電流センサは、
いずれも大型の磁心を備えるので重くかつ外形が大き
く、直流導体とセンサ窓との位置関係が測定精度に影響
し、また地磁気等外部磁界にも配慮が必要であるため、
取付工事の際の取り扱いが不便である。総じてこれら従
来の直流電流センサが近年のマイクロエレクトロニクス
化の趨勢から取り残されていることは否めず、小型化、
高機能化が遅れており、しかも生産性を高めることが困
難な構造であるため、低価格化要求にも応え得ていな
い。That is, these conventional DC current sensors are:
Since both have large magnetic cores, they are heavy and large in size, and the positional relationship between the DC conductor and the sensor window affects the measurement accuracy, and it is necessary to consider external magnetic fields such as geomagnetism.
Inconvenient handling during installation work. In general, it cannot be denied that these conventional DC current sensors have been left out of the trend of microelectronics in recent years.
Because of its structure that has been delayed in enhancing its functions and it is difficult to increase its productivity, it has not been able to meet the demand for lower prices.
【0009】[0009]
【発明が解決しようとする課題】本発明の課題は、従来
の電流センサが抱える上記問題点を解消するため、小型
軽量安価で高精度、高応答性を有し、外部磁界の影響を
受け難く、広い温度範囲で安定に使用できる、新たな構
造の直流電流センサを提供することである。SUMMARY OF THE INVENTION An object of the present invention is to solve the above-mentioned problems of the conventional current sensor, so that it has a small size, light weight, low cost, high accuracy and high response, and is hardly affected by an external magnetic field. Another object of the present invention is to provide a DC current sensor having a new structure that can be used stably in a wide temperature range.
【0010】[0010]
【課題を解決するための手段】上記の課題は、被測定電
流が流れる導体の軸心から等距離にある円周上の空間
に、偶数個の、センサ軸方向の局所的静止磁界を検出す
る可飽和コア型磁界検出器を、検出器軸を同一周回方向
に向けて等間隔に配置し、各磁界検出器の出力電圧を直
列に加算して出力すること、により達成される。The object of the present invention is to detect an even number of local static magnetic fields in the sensor axis direction in a space on the circumference equidistant from the axis of a conductor through which a current to be measured flows. This is achieved by arranging the saturable core type magnetic field detectors at equal intervals with the detector axes directed in the same circumferential direction, and adding and outputting the output voltages of the respective magnetic field detectors in series.
【0011】本発明の直流電流センサ(以下、本センサ
という)は、大型の磁心を不要にした点が特徴の一つで
ある。従って、小型軽量で取り扱い容易である。そのよ
うな基本構造を可能にする鍵は、局所的静止磁界を検出
する可飽和コア型磁界検出器の採用にある。この磁界検
出器は、元来はマグネットと組合せる無接触位置センサ
として開発・使用されてきたものである(実開昭51−
24269号、特公平7−21536号等参照)。本発
明者らはその静止磁界検出性能に着目し、本センサに使
用するためさらに改良を加え、本発明を完成するに至っ
た。One of the features of the direct current sensor (hereinafter referred to as the present sensor) of the present invention is that a large magnetic core is not required. Therefore, it is small and lightweight and easy to handle. The key to enabling such a basic structure lies in the adoption of a saturable core type magnetic field detector that detects a local static magnetic field. This magnetic field detector was originally developed and used as a non-contact position sensor combined with a magnet.
No. 24269 and Japanese Patent Publication No. 7-21536). The present inventors have paid attention to the static magnetic field detection performance, have made further improvements for use in the present sensor, and have completed the present invention.
【0012】可飽和コア型磁界検出器の構造及び動作原
理を図2を参照して説明する。図2(A)は可飽和コア
型磁界検出器の簡略化した内部結線図、同(B)はコア
のB−H曲線である。The structure and operating principle of the saturable core type magnetic field detector will be described with reference to FIG. FIG. 2A is a simplified internal connection diagram of a saturable core type magnetic field detector, and FIG. 2B is a BH curve of the core.
【0013】図2(A)において、同形同大かつ互いに
磁気遮蔽された2個1組の可飽和コアは、夫々が例えば
幅3mm×長さ5mm×厚さ0.1mm程度の寸法を有
する。各コアの長辺方向には夫々コイルL1、L2が巻
かれ、1MHz程度のパルス状電流I1、I2により励
磁される。各コアの励磁の向きは互いに逆向き、励磁磁
界の大きさは被検出磁界Hexがない状態で飽和寸前の
大きさとする。図の右方から左方へ向かう被検出磁界H
exを、図中上下の位置に示す各コアの長辺方向に加え
ると、上辺のコアでは励磁による磁界と被検出磁界He
xとが同方向に作用するから加算され、下辺のコアでは
その逆に減算となる。In FIG. 2A, each pair of saturable cores having the same shape, the same size, and magnetically shielded from each other has dimensions of, for example, about 3 mm wide × 5 mm long × 0.1 mm thick. . Coils L1 and L2 are wound in the long side direction of each core, and are excited by pulse currents I1 and I2 of about 1 MHz. The directions of excitation of the respective cores are opposite to each other, and the magnitude of the excitation magnetic field is set to a level immediately before saturation in the absence of the detected magnetic field Hex. Magnetic field H to be detected going from right to left in the figure
ex in the direction of the long side of each core shown in the upper and lower positions in the figure, the magnetic field by excitation and the detected magnetic field He
Since x and x act in the same direction, they are added, and in the core on the lower side, the addition is subtracted.
【0014】この状態を図2(B)のB−H曲線で説明
する。上辺のコアは励磁磁界と被検出磁界Hexとが加
算されて飽和磁化となり、励磁による磁化パルスの尖頭
が被検出磁界Hexによる直流磁化相当分だけカットさ
れる。下辺のコアでは上記と逆に、励磁による磁化パル
スは被検出磁界Hexによる直流磁化相当分を起点とし
てマイナス方向へ非飽和の範囲で振れる。各コアにおけ
るこのような磁化状態の違いは励磁コイルL1、L2の
インダクタンスに相違を生じる。説明した状態ではコイ
ルL1のインダクタンスはコイルL2のインダクタンス
より小さく、その差は被検出磁界Hexの大きさに比例
する。従って図2(A)に示すように、L1、L2を流
れる電流I1、I2を検波整流器D1、D2で検波し、
夫々同一の値を有する負荷コンデンサC1、C2及び抵
抗器R1、R2で終端すれば、夫々に生じる2つの直流
電圧V1、V2の差は被検出磁界Hexの大きさに比例
する。This state will be described with reference to the BH curve in FIG. The upper core becomes the saturation magnetization by adding the excitation magnetic field and the magnetic field to be detected Hex, and the peak of the magnetization pulse by the excitation is cut by an amount corresponding to the DC magnetization by the magnetic field to be detected Hex. Conversely, in the lower core, the magnetization pulse due to excitation oscillates in the negative direction in the range of non-saturation starting from the portion corresponding to the DC magnetization due to the detected magnetic field Hex. Such a difference in the magnetization state in each core causes a difference in the inductance of the exciting coils L1 and L2. In the state described, the inductance of the coil L1 is smaller than the inductance of the coil L2, and the difference is proportional to the magnitude of the detected magnetic field Hex. Therefore, as shown in FIG. 2A, currents I1 and I2 flowing through L1 and L2 are detected by detection rectifiers D1 and D2, respectively.
By terminating the load capacitors C1 and C2 and the resistors R1 and R2 having the same value, the difference between the two DC voltages V1 and V2 respectively generated is proportional to the magnitude of the detected magnetic field Hex.
【0015】なお、応答速度を速くするために、励磁パ
ルスとして1MHz程度の高周波パルスを使用する場
合、各コアを上記のように飽和寸前の状態にまで励磁す
るには大きな励磁電流を与えなければならず、そのため
大容量の高周波パルス発振器が必要である。この点を改
良するため、各コアの短辺側に接して永久磁石を配設
し、夫々の励磁磁界の方向に予めバイアス磁界を与えて
おくことが考えられる。上記特公平7−21536号は
そのような改良に関するものである。When a high-frequency pulse of about 1 MHz is used as the excitation pulse to increase the response speed, a large excitation current must be applied to excite each core to a state just before saturation as described above. Instead, a large-capacity high-frequency pulse oscillator is required. In order to improve this point, it is conceivable to arrange a permanent magnet in contact with the short side of each core, and to apply a bias magnetic field in the direction of each exciting magnetic field in advance. Japanese Patent Publication No. 21536/1995 relates to such an improvement.
【0016】上の説明から分かるように、この可飽和コ
ア型磁界検出器は、励磁コイルを巻いた各コアの長辺方
向を検出器の軸方向として、この方向の被検出磁界にの
み感度を有し、また回路が対称なブリッジ型に構成され
ているから、逆向きの被検出磁界に対しては逆極性の応
答電圧を与える。さらにこの磁界検出器は1MHz程度
の励磁パルスを使用するので応答時間が5ミリ秒程度と
速い。本センサはこのような特性を有する磁界検出器を
偶数個、被測定電流が流れる導体の軸心から等距離にあ
る円周上の空間に、検出器軸を同一周回方向に向けて等
間隔に配置し、各磁界検出器の出力電圧を直列に加算し
て全体の出力信号とするものである。As can be seen from the above description, the saturable core type magnetic field detector has sensitivity to only the magnetic field to be detected in this direction, with the long side direction of each core wound with the exciting coil as the axial direction of the detector. And the circuit is configured in a symmetrical bridge type, so that a response voltage of the opposite polarity is applied to the detected magnetic field in the opposite direction. Further, since this magnetic field detector uses an excitation pulse of about 1 MHz, the response time is as fast as about 5 milliseconds. In this sensor, an even number of magnetic field detectors having such characteristics are placed at equal intervals in a space on the circumference that is equidistant from the axis of the conductor through which the measured current flows, with the detector axes oriented in the same orbit. And the output voltages of the respective magnetic field detectors are added in series to form an overall output signal.
【0017】以上のように構成される本センサは、前述
のように大型磁心が不要という特徴のほかに次の特徴を
有する。すなわち、被測定電流用導体の位置が上記の円
の中心から偏心しても、偶数個の磁界検出器が円周上に
等間隔に配置され、しかもそれらの出力を加算するので
影響が相殺されて軽減されること、また前記の円を横切
る地磁気や外部磁界の影響も同様の理由で軽減されるこ
と、したがって電流測定精度が定格値の±1%未満と従
来のものに比して高いこと、応答時間が従来のものに比
較して格段に早いこと、前記導体上の電流の向きが予定
と異なっても出力端子の接続極性を逆にするだけで対応
できること、及び、本センサの耐用温度が−10℃〜+
60℃程度と従来のものより広いこと、である。The present sensor configured as described above has the following features in addition to the feature that a large magnetic core is not required as described above. In other words, even if the position of the current conductor to be measured is eccentric from the center of the circle, an even number of magnetic field detectors are arranged at equal intervals on the circumference, and their outputs are added, so that the effects are offset. That the influence of geomagnetism and external magnetic fields crossing the circle is also reduced for the same reason, and that the current measurement accuracy is less than ± 1% of the rated value, which is higher than the conventional one. The response time is much faster than that of the conventional one. Even if the direction of the current on the conductor is different from the expected one, it can be handled only by reversing the connection polarity of the output terminal. -10 ° C ~ +
About 60 ° C., which is wider than conventional ones.
【0018】[0018]
【発明の実施の形態】本発明の好適な実施形態として以
下の(イ)〜(ニ)を挙げることができる。 (イ)本センサを構成する磁界検出器の個数が少なくと
も4個、より好ましくは6個以上12個以下であるこ
と。DESCRIPTION OF THE PREFERRED EMBODIMENTS Preferred embodiments of the present invention include the following (a) to (d). (A) The number of magnetic field detectors constituting the present sensor is at least 4, more preferably 6 or more and 12 or less.
【0019】(ロ)本センサを構成する各磁界検出器の
先端に接して検出器軸と同軸に設けたテスト磁界発生用
コイルを備えること。(B) A test magnetic field generating coil provided coaxially with the detector axis in contact with the tip of each magnetic field detector constituting the present sensor.
【0020】(ハ)本センサを構成する磁界検出器の個
数に等しい辺数を有する正多角形の環状、又は円環状
の、非磁性体からなるヨークに各磁界検出器を固定し、
全体を絶縁物質で被覆すること。(C) fixing each magnetic field detector to a regular polygonal annular or annular yoke made of a nonmagnetic material having the same number of sides as the number of magnetic field detectors constituting the present sensor;
Cover the whole with an insulating material.
【0021】(ニ)本センサの全体が直径を境に2個の
対称な部分に分割可能であること。(D) The entirety of the sensor can be divided into two symmetrical parts with respect to the diameter.
【0022】実施形態(イ)は本センサを構成する磁界
検出器の個数に関する。上述のように、被測定電流用導
体の位置が上記の円の中心から偏心した場合の影響、及
び外部磁界の影響が、各磁界検出器の出力電圧の相殺に
より軽減されるためには、磁界検出器の個数が4個以上
であることが望ましい。2個の場合は各磁界検出器を結
ぶ直径上での偏心に限っては相殺効果が有効に作用する
が、それ以外の偏心に対しては効果が少ない。外部磁界
の影響は、各磁界検出器における外部磁界がほぼ逆向き
で大きさもほぼ等しいので、2個の場合でも有効に相殺
される。Embodiment (A) relates to the number of magnetic field detectors constituting the present sensor. As described above, in order to reduce the influence of the case where the position of the current conductor to be measured is decentered from the center of the circle and the influence of the external magnetic field by canceling the output voltages of the respective magnetic field detectors, the magnetic field must be reduced. It is desirable that the number of detectors is four or more. In the case of two, the canceling effect works effectively only on the eccentricity on the diameter connecting the magnetic field detectors, but has little effect on other eccentricities. The influence of the external magnetic field can be effectively canceled even in the case of two magnetic fields since the external magnetic fields in the respective magnetic field detectors are substantially opposite in direction and have substantially the same magnitude.
【0023】磁界検出器の個数が2個の場合に比較して
4個以上の場合は、基準となる直径の数が多くなるので
導体位置の偏位に対する相殺効果がより確実になる。こ
れは外部磁気の影響の相殺についても同様である。この
観点からは磁界検出器の個数は偶数である限り多いほど
良く、最低でも4個、4個よりも6個の方が望ましいと
いえる。一方、磁界検出器には大きさがあるので上記の
円周上に収容可能な個数には限度がある。実際の本セン
サの上記の円の直径が10〜20cm程度であることを
考慮すれば、上限は12個程度と考えられる。In the case where the number of magnetic field detectors is four or more as compared with the case where the number of magnetic field detectors is two, the number of reference diameters increases, so that the effect of offsetting the displacement of the conductor position becomes more reliable. The same applies to the cancellation of the influence of external magnetism. From this viewpoint, the number of magnetic field detectors is better as long as it is an even number, and it can be said that at least four magnetic field detectors are more preferable than four. On the other hand, the number of magnetic field detectors that can be accommodated on the circumference is limited because of its size. Considering that the diameter of the circle of the actual sensor is about 10 to 20 cm, the upper limit is considered to be about 12 pieces.
【0024】実施形態(ロ)はテスト磁界発生用コイル
の設置に関する。本センサを構成する各磁界検出器が常
時満足に機能していることを保証するためには、時折に
テストできることが望ましい。そのために、各磁界検出
器に個々にテスト磁界発生用コイルを設置しておき、一
定時間毎に各テストコイルに一斉に所定の電流を流し、
本センサの出力電圧をチェックすることが考えられる。Embodiment (b) relates to the installation of a test magnetic field generating coil. It is desirable to be able to test occasionally to ensure that the magnetic field detectors that make up the sensor are always functioning satisfactorily. For this purpose, a test magnetic field generating coil is individually installed in each magnetic field detector, and a predetermined current is simultaneously applied to each test coil at regular time intervals.
It is conceivable to check the output voltage of this sensor.
【0025】実施形態(ハ)は本センサの外部構造に関
する。上述のように本センサは大型の磁心を持たず、各
磁界検出器は上記円周上の空間内に配置されるが、各磁
界検出器をこの空間内に支持するために非磁性体からな
る環状ヨークに固定し、直流の高電圧から各磁界検出器
を保護するために全体を絶縁物質で被覆する。非磁性体
としては例えばアルミニウム、絶縁物質としては例えば
ゴムが挙げられる。Embodiment (c) relates to the external structure of the present sensor. As described above, this sensor does not have a large magnetic core, and each magnetic field detector is arranged in the space on the circumference, but is made of a non-magnetic material in order to support each magnetic field detector in this space. It is fixed to an annular yoke, and the whole is covered with an insulating material to protect each magnetic field detector from a high DC voltage. The non-magnetic material includes, for example, aluminum, and the insulating material includes, for example, rubber.
【0026】実施形態(ニ)は本センサを2つ割構造に
することに関する。本センサ設置の際は、被測定電流用
導体を本センサの中心孔に貫通させる必要があるが、本
センサが2つ割構造になっていれば、その作業を容易に
行うことができる。Embodiment (d) relates to making the present sensor into a split structure. When installing the present sensor, it is necessary to penetrate the conductor for the current to be measured through the center hole of the present sensor. However, if the present sensor has a split structure, the operation can be easily performed.
【0027】[0027]
【実施例】以下、本センサの好適な一実施例について添
付図面を参照しつつ説明する。図1は本実施例たる定格
電流20KAの直流電流センサ(参照符号100)の外
形及び設置状況を示す斜視図、図2はセンサ100に用
いる可飽和コア型磁界検出器の簡略化した内部結線図
(A)及び可飽和コアのB−H曲線を示す図(B)であ
る。DETAILED DESCRIPTION OF THE PREFERRED EMBODIMENTS A preferred embodiment of the present sensor will be described below with reference to the accompanying drawings. FIG. 1 is a perspective view showing the external shape and installation state of a DC current sensor (reference numeral 100) having a rated current of 20 KA according to the present embodiment. FIG. 2 is a simplified internal connection diagram of a saturable core type magnetic field detector used in the sensor 100. (A) and FIG. (B) showing a BH curve of the saturable core.
【0028】図1において、参照符号1はヨーク、2は
可飽和コア型磁界検出器、3はリードワイヤ、4は回路
部、5はセンサ100を対称な2つの部分に分割する分
割線、6は被測定電流が流れる導体としてのブスバー
(本発明外のため点線で表示)を示す。なお、センサ1
00全体を覆う絶縁物質からなるケーシングは図示を省
略する。また、図2の内容は既に上で説明したので、再
度の説明を省く。In FIG. 1, reference numeral 1 denotes a yoke, 2 denotes a saturable core type magnetic field detector, 3 denotes a lead wire, 4 denotes a circuit unit, 5 denotes a dividing line for dividing the sensor 100 into two symmetrical portions, 6 Denotes a bus bar as a conductor through which a current to be measured flows (indicated by a dotted line because it is outside the present invention). The sensor 1
The casing made of an insulating material covering the entire 00 is not shown. Since the contents of FIG. 2 have already been described above, the description will not be repeated.
【0029】図1に示すように、偶数個(本実施例では
6個)の可飽和コア型磁界検出器2が、6角形をなすヨ
ーク1の溝内でブスバー6の軸芯から等距離にある円周
上の空間内に支持され、検出器軸を同一周回方向に向け
て等間隔に配置される。ブスバー6を流れる直流電流は
その周囲に同心円状の静止磁界を作り、各磁界検出器2
はこの静止磁界の強さに比例する電圧を出力する。ヨー
ク1は直径を通る分割線5において対称な2つの部分に
分割可能であるので、ブスバー6をヨーク1の中心孔に
貫通させる作業を容易に行うことができる。なお、各磁
界検出器2には図3に示すテスト磁界発生用コイルを設
けてもよい。As shown in FIG. 1, an even number (six in this embodiment) of saturable core type magnetic field detectors 2 are equidistant from the axis of the bus bar 6 in the groove of the hexagonal yoke 1. It is supported in a space on a certain circumference, and is arranged at equal intervals with the detector axes directed in the same circumferential direction. The DC current flowing through the bus bar 6 creates a concentric static magnetic field around the bus bar 6, and the respective magnetic field detectors 2
Outputs a voltage proportional to the strength of the static magnetic field. Since the yoke 1 can be divided into two parts symmetrical with respect to the dividing line 5 passing through the diameter, the operation of passing the bus bar 6 through the center hole of the yoke 1 can be easily performed. Each magnetic field detector 2 may be provided with a test magnetic field generating coil shown in FIG.
【0030】各磁界検出器2はリードワイヤ3によって
回路部4に結ばれ、回路部4には図示しない加算演算回
路、電圧電流変換回路及び電源回路が設けられている。
加算演算回路は6個の磁界検出器2の出力電圧を加算
し、電圧電流変換回路は加算出力電圧に比例する電流を
発生させる。電源回路は前記加算演算回路、電圧電流変
換回路及び各磁界検出器2へ夫々必要な電源電圧を供給
する。Each magnetic field detector 2 is connected to a circuit section 4 by a lead wire 3, and the circuit section 4 is provided with an addition operation circuit, a voltage-current conversion circuit, and a power supply circuit (not shown).
The addition operation circuit adds the output voltages of the six magnetic field detectors 2, and the voltage-current conversion circuit generates a current proportional to the added output voltage. The power supply circuit supplies a necessary power supply voltage to the addition operation circuit, the voltage-current conversion circuit, and each magnetic field detector 2.
【0031】図3は、各磁界検出器2の先端部分に設け
たテスト磁界発生用コイル7を示す。コイル7には外部
電源8からスイッチ9を経由して所用の電源電圧が供給
され、スイッチ9を閉じることによりコイル7がテスト
用磁界を発生する。このテスト用磁界を検出した各磁界
検出器2の出力は上記回路部4で処理された上、正常か
否かを検査される。なお、スイッチ9は手動又は自動と
することができ、自動スイッチとする場合は上記正常か
否かの検査も自動化して、これと自動スイッチとを連動
させてもよい。FIG. 3 shows a test magnetic field generating coil 7 provided at the tip of each magnetic field detector 2. A desired power supply voltage is supplied to the coil 7 from an external power supply 8 via a switch 9. When the switch 9 is closed, the coil 7 generates a test magnetic field. The output of each magnetic field detector 2 that has detected the test magnetic field is processed by the circuit unit 4 and then checked for normality. Note that the switch 9 can be manual or automatic. When the switch 9 is an automatic switch, the above-described inspection of whether or not the switch 9 is normal may be automated, and this and the automatic switch may be linked.
【0032】[0032]
【発明の効果】請求項1の発明によれば、本センサでは
大型磁心が不要であるので、小型軽量かつ取り扱い容易
である。また、被測定電流用導体の位置が可飽和コア型
磁界検出器が配置された円の中心から偏心しても、その
影響が相殺されて軽減されること、また前記の円を横切
る地磁気や外部磁界の影響も同様に軽減されること、し
たがって高精度であること、応答時間が従来のものに比
較して格段に速いこと、導体中の電流の向きが予定と異
なっても出力端子の接続極性を逆にするだけで対応でき
ること、及び耐用温度を−10℃〜+60℃程度と広く
することができるという特徴を有する。According to the first aspect of the present invention, since the present sensor does not require a large magnetic core, it is small and lightweight and easy to handle. In addition, even if the position of the current conductor to be measured is eccentric from the center of the circle where the saturable core type magnetic field detector is arranged, the influence is offset and reduced, and terrestrial magnetism or external magnetic field crossing the circle The effect is also reduced, so the accuracy is high, the response time is much faster than the conventional one, and even if the direction of the current in the conductor is different from the plan, the connection polarity of the output terminal is changed. It has features that it can be dealt with simply by reversing it and that the service temperature can be broadened to about -10 ° C to + 60 ° C.
【0033】請求項2の発明によれば、本センサにおけ
る可飽和コア型磁界検出器の個数が4個以上の場合は、
被測定電流用導体の偏心に対する相殺効果、外部磁気の
影響の相殺効果が、個数がそれ未満の場合に比較してよ
り確実になり、しかも個数が多い程有利である。しか
し、上記の円周上に収容可能な磁界検出器の個数に限度
があることを考慮すれば、6個〜12個という値は、本
センサにおける磁界検出器の実用的な個数の範囲を与え
る。According to the second aspect of the present invention, when the number of saturable core type magnetic field detectors in the present sensor is four or more,
The effect of canceling out the eccentricity of the measured current conductor and the effect of the influence of the external magnetism are more reliable as compared with the case where the number is smaller, and the larger the number, the more advantageous. However, considering that there is a limit to the number of magnetic field detectors that can be accommodated on the circumference, a value of 6 to 12 provides a practical range of the number of magnetic field detectors in the present sensor. .
【0034】請求項3の発明によれば、本センサ中の各
可飽和コア型磁界検出器ににテスト磁界発生用コイルを
設置して一定時間毎に短時間のテストを行うことによ
り、各磁界検出器が常時満足に機能していることを保証
することができる。According to the third aspect of the present invention, a test magnetic field generating coil is installed in each of the saturable core type magnetic field detectors in the present sensor, and a short-time test is performed at regular time intervals. It can be ensured that the detector is always functioning satisfactorily.
【0035】請求項4の発明によれば、本センサ中の可
飽和コア型磁界検出器を非磁性体からなる環状ヨークに
支持させることにより、各磁界検出器を被測定電流用導
体の軸芯から等距離にある円周上の空間内に固定するこ
とができる。また、全体を絶縁物質で被覆することによ
り、各磁界検出器を直流の高電圧から保護することがで
きる。According to the fourth aspect of the present invention, the saturable core type magnetic field detector in the present sensor is supported by the annular yoke made of a non-magnetic material, so that each magnetic field detector has the axis of the current conductor to be measured. Can be fixed in a space on the circumference that is equidistant from. Further, by covering the whole with an insulating material, each magnetic field detector can be protected from a high DC voltage.
【0036】請求項5の発明によれば、本センサが2つ
割構造になっているので、本センサの設置に際して、被
測定電流用導体を本センサの中心孔に貫通させる作業を
容易に行うことができる。According to the fifth aspect of the present invention, since the present sensor has a split structure, when installing the present sensor, it is easy to penetrate the conductor for current to be measured into the center hole of the present sensor. be able to.
【0037】以上を総合して、本発明によれば、小型軽
量安価で高精度、高応答性を有し、外部磁界の影響を受
け難く、広い温度範囲で安定に使用できる、新たな構造
の直流電流センサが提供され、従来の電流センサが抱え
る多くの問題点を解消することができる。In summary, according to the present invention, a new structure having a small structure, light weight, low cost, high accuracy, high responsiveness, less susceptible to an external magnetic field, and stable use over a wide temperature range. A DC current sensor is provided, which overcomes many of the problems with conventional current sensors.
【図1】実施例としての直流電流センサの外形及び設置
状況を示す斜視図である。FIG. 1 is a perspective view showing an external shape and an installation state of a DC current sensor as an embodiment.
【図2】可飽和コア型磁界検出器の簡略化した内部結線
図及び可飽和コアのB−H曲線を示す図である。FIG. 2 is a diagram showing a simplified internal connection diagram of a saturable core type magnetic field detector and a BH curve of a saturable core.
【図3】テスト磁界発生用コイルの設置状態を示す図で
ある。FIG. 3 is a diagram showing an installation state of a test magnetic field generating coil.
1…ヨーク 2…可飽和コア型磁界
検出器 3…リードワイヤ 4…回路部 5…分割線 6…ブスバー(本発明
外) 7…テスト磁界発生用コイル 8…テスト磁界発生用
コイルの電源 9…スイッチ L1、L2…コイル I1、I2…励磁電流 D1、D2…検波整流器 R1、R2…終端抵抗
器 C1、C2…コンデンサ V1、V2…検波整流
器出力電圧 P…励磁用パルス電流源 A…差動電圧増幅器DESCRIPTION OF SYMBOLS 1 ... Yoke 2 ... Saturable core type magnetic field detector 3 ... Lead wire 4 ... Circuit part 5 ... Division line 6 ... Bus bar (outside the present invention) 7 ... Test magnetic field generating coil 8 ... Test magnetic field generating coil power supply 9 ... Switch L1, L2 ... Coil I1, I2 ... Exciting current D1, D2 ... Detection rectifier R1, R2 ... Terminating resistor C1, C2 ... Capacitor V1, V2 ... Detection rectifier output voltage P ... Excitation pulse current source A ... Differential voltage amplifier
───────────────────────────────────────────────────── フロントページの続き (72)発明者 上垣 哲 神奈川県相模原市北里2−9−9 昭和 電子工業株式会社内 (72)発明者 永田 強 東京都大田区西蒲田7−32−6 株式会 社マコメ研究所内 (56)参考文献 特開 昭54−115174(JP,A) 特開 平3−18765(JP,A) 特開 平7−333263(JP,A) 特開 昭52−101419(JP,A) 実開 昭51−24269(JP,U) 実開 平7−20572(JP,U) 特公 平7−21536(JP,B2) 実公 昭40−16820(JP,Y1) (58)調査した分野(Int.Cl.7,DB名) G01R 15/20 G01R 19/00 ──────────────────────────────────────────────────続 き Continuing on the front page (72) Inventor Tetsu Uegaki 2-9-9 Kitasato, Sagamihara City, Kanagawa Prefecture Showa Electronics Co., Ltd. (72) Inventor Tsuyoshi Nagata 7-32-6 Nishikamata, Ota-ku, Tokyo Co., Ltd. Inside the Makome Laboratory (56) References JP-A-54-115174 (JP, A) JP-A-3-18765 (JP, A) JP-A-7-333263 (JP, A) JP-A-52-101419 (JP, A) A) Japanese Utility Model Showa 51-24269 (JP, U) Japanese Utility Model Hei 7-20572 (JP, U) Japanese Patent Publication 7-21536 (JP, B2) Japanese Utility Model Showa 40-16820 (JP, Y1) (58) Survey Field (Int.Cl. 7 , DB name) G01R 15/20 G01R 19/00
Claims (5)
にある円周上の空間に、偶数個の、検出器軸方向の局所
的静止磁界を検出する可飽和コア型磁界検出器を、検出
器軸を同一周回方向に向けて等間隔に配置し、前記各磁
界検出器の出力電圧を直列に加算して出力することを特
徴とする直流電流センサ。An even number of saturable core type magnetic field detectors for detecting an even number of local static magnetic fields in the axial direction of a detector in a space on a circumference equidistant from an axis of a conductor through which a current to be measured flows. A DC current sensor, wherein detector axes are arranged at equal intervals in the same circumferential direction, and output voltages of the magnetic field detectors are added in series and output.
より好ましくは6個以上12個以下の偶数個である、請
求項1記載の直流電流センサ。2. The method according to claim 1, wherein the number of the magnetic field detectors is at least four,
More preferably an even number of 12 or less 6 or more, the DC current sensor of claim 1, wherein.
と同軸に設けたテスト磁界発生用コイルを備える、請求
項1又は2記載の直流電流センサ。3. The DC current sensor according to claim 1, further comprising a test magnetic field generating coil provided in contact with a tip of each of said magnetic field detectors and coaxial with a detector axis.
る正多角形の環状、又は円環状の、非磁性体からなるヨ
ークに前記各磁界検出器を固定し、全体を絶縁物質で被
覆してなる、請求項1から3のいずれかに記載の直流電
流センサ。4. Each of the magnetic field detectors is fixed to a regular polygonal or annular non-magnetic yoke having a number of sides equal to the number of the magnetic field detectors, and the whole is covered with an insulating material. The direct current sensor according to any one of claims 1 to 3, comprising:
称な部分に分割可能である、請求項1から4のいずれか
に記載の直流電流センサ。5. The direct current sensor according to claim 1, wherein the entirety of the sensor is dividable into two symmetrical portions with a diameter as a boundary.
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP11883297A JP3326737B2 (en) | 1997-04-22 | 1997-04-22 | DC current sensor |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP11883297A JP3326737B2 (en) | 1997-04-22 | 1997-04-22 | DC current sensor |
Publications (2)
Publication Number | Publication Date |
---|---|
JPH10300795A JPH10300795A (en) | 1998-11-13 |
JP3326737B2 true JP3326737B2 (en) | 2002-09-24 |
Family
ID=14746266
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP11883297A Expired - Fee Related JP3326737B2 (en) | 1997-04-22 | 1997-04-22 | DC current sensor |
Country Status (1)
Country | Link |
---|---|
JP (1) | JP3326737B2 (en) |
Families Citing this family (5)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP4722717B2 (en) * | 2005-02-10 | 2011-07-13 | 東北電力株式会社 | Current sensor |
JP4630401B2 (en) * | 2005-02-10 | 2011-02-09 | 東北電力株式会社 | Current sensor and current detection method |
US7719258B2 (en) * | 2008-10-13 | 2010-05-18 | National Taiwan University Of Science And Technology | Method and apparatus for current measurement using hall sensors without iron cores |
EP2546661A4 (en) | 2010-03-12 | 2017-12-06 | Alps Electric Co., Ltd. | Current measurement device |
JP5544466B2 (en) * | 2010-12-02 | 2014-07-09 | アルプス・グリーンデバイス株式会社 | Current sensor |
-
1997
- 1997-04-22 JP JP11883297A patent/JP3326737B2/en not_active Expired - Fee Related
Also Published As
Publication number | Publication date |
---|---|
JPH10300795A (en) | 1998-11-13 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
JP3286431B2 (en) | DC current sensor | |
EP0661547A1 (en) | DC current sensor | |
JPS61245511A (en) | Dc and ac current transformer | |
JPH0769130B2 (en) | Magnetic displacement sensor | |
WO1989002082A1 (en) | Single-winding magnetometer | |
JP3326737B2 (en) | DC current sensor | |
JPH11237411A (en) | Dc current sensor and dc current measurement system | |
US6414579B1 (en) | Current transformer and method for correcting asymmetries therein | |
JP4716030B2 (en) | Current sensor | |
EP0360574B1 (en) | Current sensor having an element made of amorphous magnetic metal | |
CN114019220B (en) | Current detector and circuit | |
JPH0618568A (en) | Current sensor | |
US5541503A (en) | Alternating current sensor based on concentric-pipe geometry and having a transformer for providing separate self-powering | |
JP2547169Y2 (en) | Current detection sensor | |
JP2001264364A (en) | Optical current transformer | |
US5831424A (en) | Isolated current sensor | |
JPH1068744A (en) | Direct current sensor | |
JP3093532B2 (en) | DC current sensor | |
JP7492474B2 (en) | Sensing Device | |
JP3093531B2 (en) | DC current sensor | |
JPH09127158A (en) | Direct current sensor | |
JPS63236955A (en) | Detection sensor for foreign matter of ferromagnetic body | |
JPH03186725A (en) | Method and instrument for measuring magnetic stress | |
JPH05223910A (en) | Measuring method for magnetism | |
CN116580942A (en) | Magnetic core and coil assembly based on TMR weak current sensor |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
R250 | Receipt of annual fees |
Free format text: JAPANESE INTERMEDIATE CODE: R250 |
|
FPAY | Renewal fee payment (prs date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20090712 Year of fee payment: 7 |
|
LAPS | Cancellation because of no payment of annual fees |