JP3326037B2 - Deterioration detection method for scattered light smoke detector - Google Patents

Deterioration detection method for scattered light smoke detector

Info

Publication number
JP3326037B2
JP3326037B2 JP01351095A JP1351095A JP3326037B2 JP 3326037 B2 JP3326037 B2 JP 3326037B2 JP 01351095 A JP01351095 A JP 01351095A JP 1351095 A JP1351095 A JP 1351095A JP 3326037 B2 JP3326037 B2 JP 3326037B2
Authority
JP
Japan
Prior art keywords
deterioration
light emitting
light
emitting unit
test
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
JP01351095A
Other languages
Japanese (ja)
Other versions
JPH08202969A (en
Inventor
洌 渡辺
茂 大谷
健人 中井
幸衛 宮尾
一郎 遠藤
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Hochiki Corp
Original Assignee
Hochiki Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hochiki Corp filed Critical Hochiki Corp
Priority to JP01351095A priority Critical patent/JP3326037B2/en
Publication of JPH08202969A publication Critical patent/JPH08202969A/en
Application granted granted Critical
Publication of JP3326037B2 publication Critical patent/JP3326037B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Landscapes

  • Fire-Detection Mechanisms (AREA)

Description

【発明の詳細な説明】DETAILED DESCRIPTION OF THE INVENTION

【0001】[0001]

【産業上の利用分野】本発明は、警戒空間からファンに
より吸引した空気に含まれる煙粒子にレーザスポットを
照射して得られた散乱光を受光して煙量を高感度に検出
する散乱光式煙検出装置の劣化検出方法に関する。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a scattered light for detecting the amount of smoke with high sensitivity by receiving scattered light obtained by irradiating a laser spot to smoke particles contained in air sucked by a fan from a security space. The present invention relates to a method for detecting deterioration of a smoke detector.

【0002】[0002]

【従来の技術】従来、この種の高感度の散乱光式煙検出
装置にあっては、半導体関連のクリーンルームやコンピ
ュータルームなどの警戒空間にサンプリングパイプを張
り巡らし、ファンやポンプで空気を吸引して検煙部に導
き、レーザ光を集光したビームスポットを当てて煙粒子
1つ1つのパルス的な散乱光を受光部で把え、比較器で
閾値と比較してパルス信号に変換し、このパルス信号の
カウントにより煙量を検出している。
2. Description of the Related Art Conventionally, in such a high-sensitivity scattered light type smoke detector, a sampling pipe is set up in a caution space such as a semiconductor-related clean room or a computer room, and air is sucked by a fan or a pump. The laser beam is focused, and the laser beam is focused. The pulsed scattered light of each smoke particle is captured by the light receiving unit, compared with a threshold value by a comparator, and converted into a pulse signal. The smoke amount is detected by counting the pulse signal.

【0003】検煙部の構造は、レーザダイオードからの
レーザ光をレンズにより集光して検煙位置に微小なスポ
ットを当て、レーザ光の光軸に対し所定角度ずれた位置
にフォトダイオードを配置し、煙粒子による散乱光レン
ズで集光して受光信号に変換している。またフォトダイ
オードに対向した位置にはテスト用LEDが配置され、
点検時にテスト用LEDを点灯して正常にフォトダイオ
ードの受光出力が得られるかどうかチェックしている。
[0003] The structure of the smoke detection section is such that a laser beam from a laser diode is condensed by a lens, a minute spot is applied to the smoke detection position, and a photodiode is arranged at a position shifted by a predetermined angle with respect to the optical axis of the laser light. Then, the light is condensed by a lens scattered by smoke particles and converted into a light reception signal. A test LED is arranged at a position facing the photodiode,
At the time of inspection, the test LED is turned on to check whether or not the photodiode output can be normally obtained.

【0004】[0004]

【発明が解決しようとする課題】ところで、このような
高感度の散乱光式煙検出装置に使用しているレーザダイ
オードは、長期間使用している間に発光能力が劣化して
発光量が低下する。しかし、現在のところ、レーザダイ
オード自体の劣化の度合を判断する方法は見られない。
By the way, the laser diode used in such a highly sensitive scattered light type smoke detector has a deteriorated light emission capability during a long period of use, resulting in a reduced light emission amount. I do. However, at present, there is no method for judging the degree of deterioration of the laser diode itself.

【0005】また受光用のフォトダイオードについて
も、経年変化により同様に受光能力が低下する。これに
対してはテスト用LEDを点灯して劣化を判断すること
が可能である。しかし、テスト用LEDについても同様
に発光能力の劣化があり、フォトダイオードのみの劣化
を判断することは難しいという問題がある。本発明は、
このような従来の問題点に鑑みてなされたもので、レー
ザダイオード、テスト用LED及びフォトダイオードに
つき、それぞれの劣化の度合を可能な限り正確に検出す
ることのできる散乱式煙検出装置の劣化検出方法を提供
することを目的とする。
[0005] Also, with respect to the photodiode for receiving light, the light receiving capability similarly decreases due to aging. In response to this, it is possible to determine the deterioration by lighting the test LED. However, the test LED also suffers from the deterioration of the light emitting ability, and it is difficult to determine the deterioration of only the photodiode. The present invention
In view of such a conventional problem, deterioration detection of a scattering type smoke detector that can detect the degree of deterioration of a laser diode, a test LED, and a photodiode as accurately as possible is possible. The aim is to provide a method.

【0006】[0006]

【課題を解決するための手段】まず本発明は、検煙空間
に対する発光部の光軸に対し所定角度ずれた位置に受光
部を配置して煙粒子による散乱光を受光し、更に受光部
に対向した位置にテスト用発光部を設けた散乱光式煙検
出装置を対象とする。このような散乱光式煙検出装置の
劣化検出方法として本発明は、 一定期間毎に、発光部及びテスト用発光部を所定の電
流値で駆動し、受光部の受光出力に基づき、発光部の特
性値、テスト用発光部の特性値、更に発光部とテスト用
発光部を同時駆動した時の特性値を各々測定する測定過
程、 測定過程で得られた前回と今回の特性値に基づいて、
発光部、テスト用発光部、及び受光部の劣化を算出する
劣化算出過程、 を設けたことを特徴とする。
First, according to the present invention, a light receiving section is arranged at a position shifted by a predetermined angle with respect to an optical axis of a light emitting section with respect to a smoke detection space to receive light scattered by smoke particles. It is intended for a scattered light type smoke detection device provided with a test light emitting unit at an opposing position. As a method of detecting deterioration of such a scattered light type smoke detection device, the present invention drives the light emitting unit and the test light emitting unit at a predetermined current value at regular intervals, and based on the light reception output of the light receiving unit, Based on the characteristic value, the characteristic value of the test light emitting unit, the characteristic value when the light emitting unit and the test light emitting unit are simultaneously driven, a measurement process, and the previous and current characteristic values obtained in the measurement process.
A deterioration calculating step of calculating deterioration of the light emitting unit, the test light emitting unit, and the light receiving unit.

【0007】ここで、測定過程にあっては、発光部及び
テスト用発光部の電流値を変化させ、受光部の受光出力
の平均値として発光部の特性値、テスト用発光部の特性
値、更に発光部とテスト用発光部を同時駆動した時の特
性値を各々測定することが望ましい。劣化算出過程は、
発光部の特性値、テスト用発光部の特性値、更に前記発
光部とテスト用発光部を同時駆動した時の特性値の各々
について、前回の特性値で今回の特性値を割って劣化の
度合KL 、LE 、KLEを求め、発光部の劣化α、テスト
発光部の劣化β、及び受光部の劣化γを、 α=KLE/KE β=KLE/KL γ=KL ・KE /KLE として算出する。
In the measurement process, the current values of the light emitting section and the test light emitting section are changed, and the characteristic value of the light emitting section, the characteristic value of the test light emitting section, Further, it is desirable to measure characteristic values when the light emitting unit and the test light emitting unit are simultaneously driven. The deterioration calculation process
For each of the characteristic value of the light emitting unit, the characteristic value of the test light emitting unit, and the characteristic value when the light emitting unit and the test light emitting unit are simultaneously driven, the degree of deterioration is obtained by dividing the current characteristic value by the previous characteristic value. K L , L E , and K LE are obtained, and the deterioration α of the light emitting unit, the deterioration β of the test light emitting unit, and the deterioration γ of the light receiving unit are calculated as follows: α = K LE / K E β = K LE / K L γ = K L・ Calculate as K E / K LE .

【0008】本発明で煙粒子を高感度に検出する場合、
受光部はレーザダイオードであり、テスト用発光部はL
EDであり、更に、受光部はフォトダイオードであり、
レーザダイオードとLEDの発光能力の劣化α、β及び
フォトダイオードの受光能力の劣化γを検出する。
In the present invention, when detecting smoke particles with high sensitivity,
The light receiving unit is a laser diode, and the test light emitting unit is L
ED, and the light receiving unit is a photodiode,
The deterioration α and β of the light emitting ability of the laser diode and the LED and the deterioration γ of the light receiving ability of the photodiode are detected.

【0009】[0009]

【作用】このような本発明による散乱光式煙検出装置の
劣化検出方法によれば、レーザダイオード、フォトダイ
オード及びテスト用LEDを配置した散乱光式による高
感度で煙量を検出する装置につき、レーザダイオードの
単独駆動、テスト用LEDの単独駆動、及びレーザダイ
オードとテスト用LEDの同時駆動の各々におけるフォ
トダイオードの受光出力を各特性値として測定し、前回
の測定結果と今回の測定結果に基づいて各素子の劣化を
数値的に検出することができ、どの素子がどの程度劣化
しているかを把握することで、劣化補償処理や調整処理
を適切に行うことができ、装置の安定性と信頼性を大幅
に向上できる。
According to the method for detecting the deterioration of a scattered light type smoke detector according to the present invention, a device for detecting a smoke amount with high sensitivity by a scattered light type in which a laser diode, a photodiode and a test LED are arranged is provided. Measure the light receiving output of the photodiode as each characteristic value in each of the laser diode alone drive, the test LED alone drive, and the simultaneous drive of the laser diode and the test LED, based on the previous measurement result and this measurement result Deterioration of each element can be numerically detected, and by knowing which element has deteriorated to what extent, deterioration compensation processing and adjustment processing can be performed appropriately, and the stability and reliability of the device can be improved. Performance can be greatly improved.

【0010】[0010]

【実施例】図1は本発明の劣化検出方法が適用される散
乱光式煙検出装置の一例である。図1において、検煙部
1には光源としてレーザダイオード(LD)2が設けら
れ、レーザダイオード2からのレーザ光をレンズ6で集
光して、検煙空間5に微小なビームスポットを結像して
いる。
FIG. 1 shows an example of a scattered light type smoke detector to which the deterioration detection method of the present invention is applied. In FIG. 1, a laser diode (LD) 2 is provided as a light source in a smoke detection section 1, and a laser beam from the laser diode 2 is condensed by a lens 6 to form a small beam spot in a smoke detection space 5. are doing.

【0011】レーザダイオード2からのレーザ光の光軸
に対し、所定の受光角θずれた位置にフォトダイオード
(PD)3を設置しており、検煙空間5に存在する煙粒
子による散乱光をレンズ7で集光して電気信号に変換し
ている。なお、レーザダイオード2に対向した位置には
光トラップ25が設けられ、不要な光がフォトダイオー
ド3に入射しないようにしている。
A photodiode (PD) 3 is provided at a position shifted by a predetermined light receiving angle θ with respect to the optical axis of the laser beam from the laser diode 2, and scattered light due to smoke particles existing in the smoke detection space 5. The light is condensed by the lens 7 and converted into an electric signal. An optical trap 25 is provided at a position facing the laser diode 2 so that unnecessary light does not enter the photodiode 3.

【0012】更に、検煙領域5を挟んでフォトダイオー
ド3に対向した位置には、テスト用LED4が設置され
ている。検煙部1に対しては、散乱光式による煙量の検
出処理と本発明による劣化検出処理のため、MPU8が
設けられている。MPU8には、散乱光式による煙量の
計測機能に加え、本発明の劣化検出方法を実現するため
劣化測定処理部15がプログラム制御の機能として設け
られる。
Further, a test LED 4 is provided at a position facing the photodiode 3 with the smoke detection area 5 interposed therebetween. The smoke detection unit 1 is provided with an MPU 8 for the process of detecting the amount of smoke by the scattered light method and the process of detecting the deterioration according to the present invention. In addition to the function of measuring the amount of smoke by the scattered light method, the MPU 8 is provided with a deterioration measurement processing unit 15 as a program control function for realizing the deterioration detection method of the present invention.

【0013】レーザダイオード2は、LD駆動回路10
による供給電流の設定で発光量を制御することができ
る。LD駆動回路10によるレーザダイオード2に対す
る供給電流は、MPU8からの供給電流の指示値をDA
コンバータ9でアナログ信号に変換してLD駆動回路1
0に供給することで制御できる。テスト用LED4は、
LED駆動回路12による供給電流の制御で発光量が制
御される。このLED駆動回路12についても、供給電
流はMPU8からの電流指示データをDAコンバータ1
1で変換することで可変できる。
The laser diode 2 includes an LD drive circuit 10
The amount of light emission can be controlled by setting the supply current according to. The supply current to the laser diode 2 by the LD drive circuit 10 is the same as the supply current instruction value from the MPU 8.
The converter 9 converts the signal into an analog signal, and the LD drive circuit 1
It can be controlled by supplying 0. The test LED 4 is
The amount of light emission is controlled by controlling the supply current by the LED drive circuit 12. In this LED drive circuit 12 as well, the supply current is the current instruction data from the MPU 8 and the DA converter 1
It can be changed by converting by 1.

【0014】フォトダイオード3からの受光信号は、受
光増幅回路13で増幅された後、ADコンバータ14に
よりデジタルデータとしてMPU8に取り込まれ、通常
の煙量の計測処理、更に劣化測定処理部15による本発
明の劣化検出処理に用いられる。更に、MPU8の通常
の煙量の検出結果あるいは劣化測定処理部15による測
定された劣化値は、受信機などの外部ユニットに送ら
れ、出力表示されることになる。
The light-receiving signal from the photodiode 3 is amplified by a light-receiving amplifier circuit 13, taken into the MPU 8 as digital data by an AD converter 14, and subjected to a normal smoke amount measurement process and further to a deterioration measurement processing unit 15. Used for the deterioration detection processing of the invention. Further, the detection result of the normal amount of smoke of the MPU 8 or the deterioration value measured by the deterioration measurement processing unit 15 is sent to an external unit such as a receiver and output and displayed.

【0015】次に、図1のMPU8に設けた劣化測定処
理部15により実行される本発明の劣化検出方法の原理
を説明する。本発明の劣化検出方法は、 予め定めた一定期間ごとにレーザダイオード2および
テスト用LED4の駆動状態で供給電流を変化させ、フ
ォトダイオード3の受光出力に基づき、レーザダイオー
ド2を単独で駆動したときの受光出力、テスト用LED
4を単独で駆動したときの受光出力、更にレーザダイオ
ード2とテスト用LED4を同時に駆動したときの受光
出力の各々を特性値として測定する測定過程 この測定過程で得られた前回と今回の特性値に基づい
て、レーザダイオード2、テスト用LED4およびフォ
トダイオード3の劣化α,βおよびγを算出する劣化算
出過程 の2つの処理過程から構成される。
Next, the principle of the deterioration detection method of the present invention executed by the deterioration measurement processing unit 15 provided in the MPU 8 of FIG. 1 will be described. The deterioration detection method of the present invention is based on a case where the laser diode 2 and the test LED 4 are driven by changing the supply current at predetermined intervals, and the laser diode 2 is driven independently based on the light receiving output of the photodiode 3. Light receiving output, test LED
The measurement process of measuring each of the received light output when the laser diode 4 is driven independently and the received light output when the laser diode 2 and the test LED 4 are simultaneously driven as characteristic values The previous and current characteristic values obtained in this measuring process , The deterioration calculation process of calculating the deterioration α, β, and γ of the laser diode 2, the test LED 4, and the photodiode 3.

【0016】図2は、最初に行われる測定過程における
特性値の測定の様子を示している。まず図2(A)は、
レーザダイオード2の測定結果であり、実線が最初の測
定で得られた特性であり、破線が一定期間経過して次の
測定で得られた特性である。即ち、レーザダイオード2
に対する供給電流を例えばIa1,Ia2,Ia3の3段階に
変化させて、1回目についてはフォトダイオード3のP
D出力として実線の特性を与えるJa1,Ja2,Ja3を測
定する。
FIG. 2 shows how the characteristic values are measured in the first measurement process. First, FIG. 2 (A)
The measurement results of the laser diode 2 are shown. The solid line is the characteristic obtained in the first measurement, and the broken line is the characteristic obtained in the next measurement after a certain period of time. That is, the laser diode 2
The supply current to the photodiode 3 is changed in three stages, for example, Ia1, Ia2, and Ia3.
Ja1, Ja2, and Ja3 giving the characteristics of the solid line as the D output are measured.

【0017】これに対し、一定期間を経過してある程度
レーザダイオード3に劣化が起きると、2回目の測定で
得られたPD出力は破線の特性のように、Ja1´,Ja2
´,Ja3´のように低下する。図2(B)は、テスト用
LED4について同様に、LED供給電流をIb1,Ib
2,Ib3と3段階に変化させた2回分の特性であり、実
線が前回の特性であり破線が今回の特性である。この場
合にも、前回のテスト用LED4の点灯で得られたPD
出力Nb1,Nb2,Nb3は、一定期間後の劣化の度合によ
り、破線の特性を与えるNb1´,Nb2´,Nb3´に低下
している。
On the other hand, if the laser diode 3 deteriorates to a certain extent after a certain period of time, the PD output obtained in the second measurement shows Ja1 ', Ja2 as shown by the broken line.
', Ja3'. FIG. 2B shows the LED supply currents Ib1 and Ib for the test LED 4 in the same manner.
The characteristics for two times changed in three steps of 2, Ib3, the solid line is the previous characteristic, and the broken line is the current characteristic. Also in this case, the PD obtained by the previous lighting of the test LED 4 was used.
The outputs Nb1, Nb2, and Nb3 are reduced to Nb1 ', Nb2', and Nb3 ', which give the characteristics indicated by broken lines, depending on the degree of deterioration after a certain period.

【0018】更に図2(C)は、レーザダイオード2と
テスト用LED4の両方を同時に駆動したときのフォト
ダイオード3によるPD出力の特性であり、同様に実線
が前回の特性、破線が今回の特性となる。このときのレ
ーザダイオード2およびテスト用LED4に対する供給
電流Ia ,Ib は、図2(A)(B)で使用した3段階
のLED供給電流Ia1〜Ia3とLED供給電流Ib1〜I
b3を使用する。
FIG. 2C shows the characteristics of the PD output by the photodiode 3 when both the laser diode 2 and the test LED 4 are simultaneously driven. Similarly, the solid line is the previous characteristic, and the broken line is the current characteristic. Becomes At this time, the supply currents Ia and Ib to the laser diode 2 and the test LED 4 are the three-stage LED supply currents Ia1 to Ia3 and the LED supply currents Ib1 to Ib used in FIGS.
Use b3.

【0019】図2(C)の同時駆動の場合、実線の前回
にあっては、同時駆動によるPD出力がMab1 ,Mab2
,Mab3 となっており、一定期間後の劣化に応じ、今
回の測定結果は破線のようにMab1´,Mab2´,Mab3
´と低下している。次に、図2に示した前回と今回の特
性の測定結果に基づいて行われる劣化検出過程を説明す
る。
In the case of the simultaneous driving shown in FIG. 2C, the PD output by the simultaneous driving is Mab1, Mab2 in the previous time of the solid line.
, Mab3, and according to the deterioration after a certain period of time, the current measurement results show Mab1 ', Mab2', Mab3 as indicated by broken lines.
´. Next, a description will be given of a deterioration detection process performed based on the previous and current characteristic measurement results shown in FIG.

【0020】まず図2(A)(B)(C)の各々につい
て、実線で示す前回の特性と破線で示す今回の特性の相
違から、レーザダイオード2の単独駆動における劣化の
度合KL 、テスト用LED4の単独駆動における劣化の
度合KE 、およびレーザダイオード2とテスト用LED
4の同時駆動における劣化の度合KLEを次式で算出す
る。
First, in each of FIGS. 2A, 2B and 2C, the degree of deterioration K L of the laser diode 2 alone driving and the test are shown from the difference between the previous characteristic indicated by the solid line and the current characteristic indicated by the broken line. Degree of Degree K E of Single Drive of Test LED 4, and Laser Diode 2 and Test LED
The degree of deterioration K LE in the simultaneous driving of No. 4 is calculated by the following equation.

【0021】[0021]

【数1】 (Equation 1)

【0022】この(1)〜(3)式の意味は、図2
(A)〜(C)に示した供給電流を3段階に変化して求
めた3つのPD出力の測定値の平均値を前回と今回につ
いて求め、前回の平均値で今回の平均値を割ったもので
ある。このように供給電流を3段階に変化させて得た測
定値の平均値を用いた劣化度合の算出により、バラツキ
の少ない劣化の度合が求められる。
The meaning of the equations (1) to (3) is shown in FIG.
The average value of the measured values of the three PD outputs obtained by changing the supply current shown in (A) to (C) in three stages was obtained for the previous time and this time, and the current average value was divided by the previous average value. Things. Thus, by calculating the degree of deterioration using the average value of the measured values obtained by changing the supply current in three stages, the degree of deterioration with little variation can be obtained.

【0023】勿論、劣化の度合の算出に使用する測定回
数は3回に限定されず複数回としてもよいし、測定結果
が安定していれば平均値とせずに、最初の測定過程で特
定の供給電流における1つの測定値のみを使用してもよ
い。ここでレーザダイオード2の発光能力の劣化をα、
テスト用LED4の発光能力の劣化をβ、更にフォトダ
イオード3の受光能力の劣化をγとすると、前記(1)
〜(3)式の実測値に基づく劣化の度合KL ,KE およ
びKLEとの間には次の関係が成立する。
Of course, the number of measurements used to calculate the degree of deterioration is not limited to three, but may be a plurality of times. If the measurement result is stable, it is not an average value but a specific value in the first measurement process. Only one measurement of the supply current may be used. Here, the degradation of the light emitting ability of the laser diode 2 is α,
Assuming that the deterioration of the light emitting ability of the test LED 4 is β and the deterioration of the light receiving ability of the photodiode 3 is γ, the above (1)
The following relationship is established between the degrees of deterioration K L , K E, and K LE based on the actually measured values of Expressions (3) to (3).

【0024】[0024]

【数2】 (Equation 2)

【0025】したがって、この(4)〜(6)式の関係
からレーザダイオードの発光能力の劣化α、テスト用L
ED4の発光能力の劣化β、フォトダイオード3の受光
能力の劣化γは、次式で算出される。
Therefore, based on the relations of the equations (4) to (6), the deterioration α of the light emitting ability of the laser diode and the test L
The degradation β of the light emitting ability of the ED 4 and the degradation γ of the light receiving ability of the photodiode 3 are calculated by the following equations.

【0026】[0026]

【数3】 (Equation 3)

【0027】図3のフローチャートは、図1のMPU8
に設けた劣化測定処理部15による測定処理の全体的な
処理である。まずステップS1で、レーザダイオード
2、テスト用LED4、およびレーザダイオード2とテ
スト用LED4の駆動によるフォトダイオード3の出力
測定を行い、例えば図2(A)〜(C)の実線で示す特
性に従った3つの測定値を得る。
FIG. 3 is a flowchart showing the operation of the MPU 8 shown in FIG.
This is the overall processing of the measurement processing by the deterioration measurement processing unit 15 provided in the above. First, in step S1, the output of the laser diode 2, the test LED 4, and the output of the photodiode 3 by driving the laser diode 2 and the test LED 4 are measured, for example, according to the characteristics shown by solid lines in FIGS. Obtain three measurements.

【0028】続いてステップS2で、劣化が予想される
予め定めた一定期間例えば1カ月、半年あるいは1年と
いった期間の経過を監視し、一定期間を経過するとステ
ップS3に進み、ステップS1と同様なPD出力の測定
を行い、例えば図2(A)〜(C)の破線で示す特性に
従った測定値を得る。続いてステップS4で、前記
(1)〜(3)式に従って劣化の度合KL ,KE ,KLE
を算出し、ステップS5で、(7)〜(9)式に従って
それぞれの劣化α,β,γを算出する。
Subsequently, in step S2, the progress of a predetermined period of time, for example, one month, half year, or one year, in which deterioration is expected, is monitored. When the predetermined period has passed, the process proceeds to step S3, and the same as step S1 is performed. The PD output is measured to obtain a measured value according to the characteristics indicated by broken lines in FIGS. 2 (A) to 2 (C), for example. Subsequently, in step S4, the degrees of deterioration K L , K E , and K LE according to the above equations (1) to (3).
Is calculated, and in step S5, the respective deterioration α, β, γ are calculated according to the equations (7) to (9).

【0029】そしてステップS6で、算出された劣化
α,β,γの評価と出力表示を行う。この算出された劣
化の評価は人為的に行ってもよいし、例えば異常と判断
する劣化の閾値を定めておき、閾値を下回ったときにメ
ンテナンス要求の警報表示を行ってもよい。以下同様
に、一定期間ごとにステップS2〜S6の処理を繰り返
す。
Then, in step S6, the calculated deteriorations α, β, γ are evaluated and output is displayed. The evaluation of the calculated deterioration may be performed artificially, or, for example, a threshold value of the deterioration to be determined to be abnormal may be determined, and a warning of a maintenance request may be displayed when the threshold value falls below the threshold value. Hereinafter, similarly, the processing of steps S2 to S6 is repeated at regular intervals.

【0030】図4は、図3のステップS1およびステッ
プS3に示したPD出力の測定処理の詳細である。まず
ステップS1で、レーザダイオード2の供給電流を初期
値にセットし、ステップS2でレーザダイオード2の発
光駆動を行い、ステップS3でフォトダイオード3の受
光出力を測定する。続いてステップS4で、予め定めた
回数の測定が終了したか否かチェックし、終了していな
ければ、ステップS5で、レーザダイオード2に対する
供給電流を次の値に更新し、ステップS2からの処理を
繰り返す。
FIG. 4 shows details of the PD output measurement processing shown in steps S1 and S3 in FIG. First, in step S1, the supply current of the laser diode 2 is set to an initial value, light emission driving of the laser diode 2 is performed in step S2, and the light receiving output of the photodiode 3 is measured in step S3. Subsequently, in step S4, it is checked whether or not the predetermined number of measurements has been completed. If not, in step S5, the supply current to the laser diode 2 is updated to the next value, and the processing from step S2 is performed. repeat.

【0031】レーザダイオード2の発光駆動による測定
処理が済むと、ステップS6で、テスト用LED4に対
する供給電流の初期値をセットし、ステップS7で、テ
スト用LED4を発光駆動して、ステップS8でフォト
ダイオード3の出力を測定する。続いてステップS9
で、テスト用LED4について定めた所定回数の測定が
終了したか否かチェックし、終了していなければ、ステ
ップS10で、テスト用LED4に供給する電流を次の
値に更新して、ステップS7からの処理を繰り返す。
When the measurement process by the light emission drive of the laser diode 2 is completed, an initial value of the supply current to the test LED 4 is set in a step S6, and the test LED 4 is driven to emit light in a step S7. The output of the diode 3 is measured. Then, step S9
Then, it is checked whether or not the predetermined number of measurements determined for the test LED 4 has been completed. If the measurement has not been completed, in step S10, the current supplied to the test LED 4 is updated to the next value. Is repeated.

【0032】テスト用LED4の駆動による測定が済む
と、次にステップS11で、レーザダイオード2および
テスト用LED4の各々につき同時駆動のための供給電
流をセットし、ステップS12で同時に駆動し、ステッ
プS13でフォトダイオード3のLD出力を測定し、ス
テップS14で所定の測定回数が終了するまで、ステッ
プS15でレーザダイオード2およびテスト用LED4
の供給電流を次の値に更新して処理を繰り返し、以上を
もって一連の処理を終了する。
When the measurement by driving the test LED 4 is completed, the supply current for simultaneous driving is set for each of the laser diode 2 and the test LED 4 in step S11, and the drive current is simultaneously driven in step S12. The LD output of the photodiode 3 is measured at step S14, and the laser diode 2 and the test LED 4 are measured at step S15 until the predetermined number of measurements is completed at step S14.
The supply current is updated to the next value, and the processing is repeated.

【0033】図5は本発明の劣化検出方法が適用される
高感度煙検出装置を示す。図5において、高感度煙検出
装置16は、検煙部1、回路部18、流量計測部19、
ファン部20を有し、検煙部1に対しては、警戒空間2
1にサンプリング管22を配管し、ファン部20による
吸引で警戒空間21の空気を検煙部1に吸引している。
検煙部1の構成は図1と同じになる。回路部18には、
図1に示したようなMPU8を備えたハードウェアが実
装される。
FIG. 5 shows a high-sensitivity smoke detector to which the deterioration detection method of the present invention is applied. In FIG. 5, the high-sensitivity smoke detection device 16 includes a smoke detection unit 1, a circuit unit 18, a flow measurement unit 19,
It has a fan unit 20, and a warning space 2
1, a sampling pipe 22 is provided, and the air in the caution space 21 is sucked into the smoke detection section 1 by suction by the fan section 20.
The configuration of the smoke detector 1 is the same as that of FIG. In the circuit section 18,
The hardware including the MPU 8 as shown in FIG. 1 is implemented.

【0034】回路部18による煙検出処理としては、検
煙部1に設けているフォトダイオード3で得られた煙粒
子からの散乱によるパルス状の信号に対し、フィルタに
よるノイズ低減処理と信号増幅を行ってS/Nを改善し
た後、ADコンバータ14によりデジタル信号に変換し
て、一定のゲート時間に亘り信号パルスを取り込んでカ
ウントすることにより、煙濃度に換算する。
The smoke detection processing by the circuit section 18 includes a noise reduction processing and a signal amplification by a filter for a pulse-like signal due to scattering from smoke particles obtained by the photodiode 3 provided in the smoke detection section 1. After that, the S / N is improved, the signal is converted into a digital signal by the AD converter 14, and a signal pulse is taken in over a certain gate time and counted, thereby converting into a smoke density.

【0035】更に回路部18には、本発明の劣化検出方
法を実現する処理機能が設けられていることから、例え
ば高感度検出装置16の電源投入に伴う初期化診断処理
の際に1回目の測定処理を行い、その後は、予め設定し
た一定期間経過ごとに測定処理を行い、2回目以降、毎
回、検煙部1に設けているレーザダイオード、テスト用
LEDおよびフォトダイオードの劣化α,β,γの算出
結果を使用して、装置自体での表示あるいは上位装置へ
の通報表示により必要な対応を行う。
Further, since the circuit section 18 is provided with a processing function for realizing the deterioration detection method of the present invention, for example, at the time of initializing diagnosis processing when the power of the high-sensitivity detecting device 16 is turned on, the first processing is performed. The measurement process is performed, and thereafter, the measurement process is performed every elapse of a predetermined period, and the deterioration of the laser diode, test LED, and photodiode provided in the smoke detection unit 1 is performed every time after the second time. Using the result of the calculation of γ, necessary measures are taken by displaying on the device itself or displaying a message to the host device.

【0036】また検煙部1に続いて設けた流量計測部1
9としては、例えば白金膜サーミスタを使用してファン
部20により吸引されている試料空気の流速を計測す
る。この流速計測部19の計測結果は回路部18に与え
られ、例えば流量変動による煙粒子の計数値を補正した
り、流量が一定値以下に落ちた場合には、サンプリング
管22あるいは吸引用のファン部20に何らかの異常が
あったものとして警報表示を行わせる。
The flow rate measuring section 1 provided following the smoke detecting section 1
As 9, the flow rate of the sample air sucked by the fan unit 20 is measured using, for example, a platinum film thermistor. The measurement result of the flow velocity measuring section 19 is given to the circuit section 18 and, for example, when the count value of smoke particles due to the flow rate fluctuation is corrected, or when the flow rate falls below a certain value, the sampling pipe 22 or the suction fan An alarm display is made on the assumption that the unit 20 has some abnormality.

【0037】尚、上記の実施例は、レーザダイオードの
ビームスポットを試料空気の通過位置に絞り込んで煙粒
子の散乱光を受光する高感度の煙検出装置への適用を例
にとっているが、レーザダイオード2の代わりにLED
を用いた通常の散乱光式煙感知器についても同様に適用
できる。散乱光式煙感知器に本発明を適用する場合に
は、感知器自体にその機能を設けてもよいし、受信機に
設けて受信機からのポーリングにより必要な情報のやり
取りを行って劣化を検出するようにしてもよい。
In the above-described embodiment, the application to a high-sensitivity smoke detection device which receives the scattered light of smoke particles by narrowing the beam spot of the laser diode to the position where the sample air passes is described as an example. LED instead of 2
The same can be applied to a normal scattered light type smoke detector using the above. When the present invention is applied to the scattered light type smoke detector, the function may be provided in the detector itself, or provided in the receiver to exchange necessary information by polling from the receiver to reduce deterioration. You may make it detect.

【0038】[0038]

【発明の効果】以上説明してきたように本発明によれ
ば、レーザダイオードの単独駆動、テスト用LEDの単
独駆動、およびレーザダイオードとテスト用LEDの同
時駆動の各々によるフォトダイオードの受光出力を実測
して、前回と今回の測定結果から数字的に各素子の劣化
を検出することができ、どの素子でどの程度の劣化が生
じているかが数量的に把握できるため、劣化による発光
量や受光量の低下を補償する劣化補償処理、適正な発光
量や受光量に維持するための強制処理、更には素子の異
常を正確且つ適切に判断でき、装置の安定性と信頼性を
大幅に向上することができる。
As described above, according to the present invention, the light receiving output of the photodiode is measured by independently driving the laser diode, independently driving the test LED, and simultaneously driving the laser diode and the test LED. The deterioration of each element can be numerically detected from the previous and current measurement results, and the degree of deterioration of each element can be grasped quantitatively. Compensation processing for compensating for the decrease in the amount of light, forcible processing for maintaining the appropriate amount of emitted light and received light, and the ability to accurately and appropriately judge the abnormality of the element, greatly improving the stability and reliability of the device. Can be.

【図面の簡単な説明】[Brief description of the drawings]

【図1】本発明が適用される装置構成の説明図FIG. 1 is an explanatory diagram of a device configuration to which the present invention is applied.

【図2】本発明による特性値の測定例の説明図FIG. 2 is an explanatory diagram of a measurement example of a characteristic value according to the present invention.

【図3】図1のMPUによる本発明の劣化検出の全体的
な処理を示したフローチャート
FIG. 3 is a flowchart showing overall processing of deterioration detection according to the present invention by the MPU of FIG. 1;

【図4】図3のLD駆動、LED駆動、及びLDとLE
Dの同時駆動によるPD出力の測定処理のフローチャー
FIG. 4 shows the LD drive, LED drive, LD and LE of FIG.
Flowchart of measurement process of PD output by simultaneous driving of D

【図5】本発明が適用される高感度煙検出装置の説明図FIG. 5 is an explanatory diagram of a high-sensitivity smoke detection device to which the present invention is applied.

【符号の説明】[Explanation of symbols]

1:検煙部 2:レーザダイオード(LD) 3:フォトダイオード(PD) 4:テスト用LED 5:検煙領域 6,7:レンズ 8:MPU 9,11:DAコンバータ(DAC) 10:LD駆動回路 12:LED駆動回路 13:受光増幅回路 14:ADコンバータ(ADC) 15:劣化測定処理部 16:高感度煙検出装置 18:回路部 19:流量計測部 20:ファン部 21:警戒空間 22:サンプリング管 25:光トラップ 1: Smoke detection section 2: Laser diode (LD) 3: Photodiode (PD) 4: Test LED 5: Smoke detection area 6, 7: Lens 8: MPU 9, 11, DA converter (DAC) 10: LD drive Circuit 12: LED drive circuit 13: Light-receiving amplifier circuit 14: AD converter (ADC) 15: Deterioration measurement processing unit 16: High-sensitivity smoke detector 18: Circuit unit 19: Flow rate measurement unit 20: Fan unit 21: Warning space 22: Sampling tube 25: Optical trap

───────────────────────────────────────────────────── フロントページの続き (72)発明者 宮尾 幸衛 東京都品川区上大崎2丁目10番43号 ホ ーチキ株式会社内 (72)発明者 遠藤 一郎 東京都品川区上大崎2丁目10番43号 ホ ーチキ株式会社内 (56)参考文献 特開 平2−18697(JP,A) 特開 昭55−78397(JP,A) 特開 平2−18695(JP,A) 特開 平1−213794(JP,A) 特公 昭49−35035(JP,B1) (58)調査した分野(Int.Cl.7,DB名) G08B 17/107 ──────────────────────────────────────────────────続 き Continuing on the front page (72) Inventor Kohei Miyao 2-10-43 Kami-Osaki, Shinagawa-ku, Tokyo Inside Houtiki Co., Ltd. (72) Inventor Ichiro Endo 2- 10-43, Kami-Osaki, Shinagawa-ku, Tokyo (56) References JP-A-2-18697 (JP, A) JP-A-55-78397 (JP, A) JP-A-2-18695 (JP, A) JP-A-1-213794 ( JP, A) JP 49-35035 (JP, B1) (58) Fields investigated (Int. Cl. 7 , DB name) G08B 17/107

Claims (4)

(57)【特許請求の範囲】(57) [Claims] 【請求項1】検煙空間に対する発光部の光軸に対し所定
角度ずれた位置に受光部を配置して煙粒子による散乱光
を受光し、更に前記受光素子に対向した位置にテスト用
発光部を設けた散乱光式煙検出装置の劣化検出方法に於
いて、 一定期間毎に、前記発光部及びテスト用発光部を所定の
電流値で駆動し、前記受光部の受光出力に基づき、前記
発光部の特性値、前記テスト用発光部の特性値、更に前
記発光部とテスト用発光部を同時駆動した時の特性値を
各々測定する測定過程と、 前記測定過程で得られた前回と今回の特性値に基づい
て、前記発光部、テスト用発光部、及び受光部の劣化を
算出する劣化算出過程と、を備えたことを特徴とする散
乱光式煙検出装置の劣化検出方法。
1. A light-emitting unit is disposed at a position deviated by a predetermined angle from an optical axis of a light-emitting unit with respect to a smoke detection space to receive light scattered by smoke particles, and a test light-emitting unit is disposed at a position facing the light-receiving element. In the method for detecting deterioration of the scattered light type smoke detection device provided with, the light emitting unit and the test light emitting unit are driven at a predetermined current value at regular intervals, and the light emission is performed based on the light receiving output of the light receiving unit. Measuring the characteristic value of the unit, the characteristic value of the test light emitting unit, and the characteristic value when simultaneously driving the light emitting unit and the test light emitting unit; and the previous and the current time obtained in the measuring process. A deterioration calculating step of calculating deterioration of the light emitting unit, the test light emitting unit, and the light receiving unit based on the characteristic value.
【請求項2】請求項1記載の散乱光式煙検出装置の劣化
検出方法に於いて、前記測定過程は、前記発光部及びテ
スト用発光部の電流値を変化させ、前記受光部の受光出
力の平均値として前記発光部の特性値、前記テスト用発
光部の特性値、更に前記発光部とテスト用発光部を同時
駆動した時の特性値を各々測定することを特徴とする散
乱光式煙検出装置の劣化検出方法。
2. The method for detecting deterioration of a scattered light type smoke detector according to claim 1, wherein the measuring step includes changing a current value of the light emitting unit and the test light emitting unit, and detecting a light output of the light receiving unit. The characteristic value of the light emitting unit, the characteristic value of the test light emitting unit, and the characteristic value when the light emitting unit and the test light emitting unit are simultaneously driven are measured as an average value of the scattered light smoke. A method for detecting deterioration of a detection device.
【請求項3】請求項1記載の散乱光式煙検出装置の劣化
検出方法に於いて、前記劣化算出過程は、前記発光部の
特性値、前記テスト用発光部の特性値、更に前記発光部
とテスト用発光部を同時駆動した時の特性値の各々につ
いて、前回の特性値で今回の特性値を割って劣化の度合
L 、LE 、KLEを求め、発光部の劣化α、テスト発光
部の劣化β、及び受光部の劣化γを、 α=KLE/KE β=KLE/KL γ=KL ・KE /KLE として算出することを特徴とする散乱光式煙検出装置の
劣化検出方法。
3. The deterioration detecting method for a scattered light type smoke detector according to claim 1, wherein the deterioration calculating step includes the step of calculating the characteristic value of the light emitting section, the characteristic value of the test light emitting section, and the light emitting section. and for each of the characteristic values when simultaneously driving the test light emitting portion, the degree K L deterioration by dividing the current characteristic value in the previous characteristic values, L E, determine the K LE, deterioration of the light emitting portion alpha, test The scattered light smoke is characterized in that the deterioration β of the light emitting part and the deterioration γ of the light receiving part are calculated as α = K LE / K E β = K LE / K L γ = K L · K E / K LE A method for detecting deterioration of a detection device.
【請求項4】請求項1乃至3記載の散乱光式煙検出装置
の劣化検出方法に於いて、前記受光部はレーザダイオー
ドであり、前記テスト用発光部はLEDであり、更に、
前記受光部はフォトダイオードであり、レーザダイオー
ドとLEDの発光能力の劣化α、β及びフォトダイオー
ドの受光能力の劣化γを検出することを特徴とする散乱
光式煙検出装置の劣化検出方法。
4. A method for detecting deterioration of a scattered light type smoke detector according to claim 1, wherein said light receiving section is a laser diode, said test light emitting section is an LED, and
A method for detecting deterioration of a scattered light type smoke detector, wherein the light receiving unit is a photodiode, and detects deterioration α, β of light emitting ability of the laser diode and the LED and deterioration γ of light receiving ability of the photodiode.
JP01351095A 1995-01-31 1995-01-31 Deterioration detection method for scattered light smoke detector Expired - Lifetime JP3326037B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP01351095A JP3326037B2 (en) 1995-01-31 1995-01-31 Deterioration detection method for scattered light smoke detector

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP01351095A JP3326037B2 (en) 1995-01-31 1995-01-31 Deterioration detection method for scattered light smoke detector

Publications (2)

Publication Number Publication Date
JPH08202969A JPH08202969A (en) 1996-08-09
JP3326037B2 true JP3326037B2 (en) 2002-09-17

Family

ID=11835149

Family Applications (1)

Application Number Title Priority Date Filing Date
JP01351095A Expired - Lifetime JP3326037B2 (en) 1995-01-31 1995-01-31 Deterioration detection method for scattered light smoke detector

Country Status (1)

Country Link
JP (1) JP3326037B2 (en)

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP5099334B2 (en) * 2007-10-12 2012-12-19 オムロン株式会社 PLC slave
DE102010041693B4 (en) 2010-09-30 2021-08-19 Robert Bosch Gmbh Method for checking the functionality of a photoelectric smoke alarm and smoke alarm for carrying out the method

Also Published As

Publication number Publication date
JPH08202969A (en) 1996-08-09

Similar Documents

Publication Publication Date Title
JP5301158B2 (en) TOF-PET timing adjustment
JP3423759B2 (en) Particle detection and smoke detection device
JP5974143B2 (en) Photodetection of particle characteristics
JP3435140B2 (en) Optical flow sensor and method for measuring velocity of gas flow in a predetermined gas flow direction
RU2351918C2 (en) Method of estimation of diffused light signal and detector of diffused light for method realisation
JP2007057360A (en) Particle detector and particle detecting method used therein
JP2010197403A (en) Method for controlling one or more parameters of flow cytometer type measurement system
JP2005504300A (en) High sensitivity particle detector
US9581494B2 (en) Method and device for analyzing small particles in gas
JP7261748B2 (en) Chamberless smoke detector with indoor air quality detection and monitoring
US5923260A (en) Smoke detecting apparatus utilizing light signal pulse widths
JP3326037B2 (en) Deterioration detection method for scattered light smoke detector
CN107655803A (en) The particle sensor and its detection method of a kind of double working modes
JP2886031B2 (en) Apparatus for detecting backscattering of light in living tissue
JP2015210189A (en) Particle measuring apparatus
JP6233711B2 (en) Particle measuring device
JP3312712B2 (en) Optimal threshold setting method for high-sensitivity smoke detector
JP4157389B2 (en) Radiation monitor
JP2008039735A (en) Particle measuring apparatus
JPH11339159A (en) Smoke sensor
JP3034596B2 (en) Fire detector
JP3783991B2 (en) Smoke detector
CN207457013U (en) A kind of optical particle sensors of double working modes
JP3780701B2 (en) Smoke detector
JP2004320373A (en) Photodetecting sensor device

Legal Events

Date Code Title Description
FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090705

Year of fee payment: 7

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090705

Year of fee payment: 7

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100705

Year of fee payment: 8

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100705

Year of fee payment: 8

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110705

Year of fee payment: 9

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120705

Year of fee payment: 10

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130705

Year of fee payment: 11

EXPY Cancellation because of completion of term