JP3783991B2 - Smoke detector - Google Patents

Smoke detector Download PDF

Info

Publication number
JP3783991B2
JP3783991B2 JP14890598A JP14890598A JP3783991B2 JP 3783991 B2 JP3783991 B2 JP 3783991B2 JP 14890598 A JP14890598 A JP 14890598A JP 14890598 A JP14890598 A JP 14890598A JP 3783991 B2 JP3783991 B2 JP 3783991B2
Authority
JP
Japan
Prior art keywords
smoke
data
light
bit
peak value
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP14890598A
Other languages
Japanese (ja)
Other versions
JPH11339153A (en
Inventor
一郎 遠藤
学 土肥
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Hochiki Corp
Original Assignee
Hochiki Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hochiki Corp filed Critical Hochiki Corp
Priority to JP14890598A priority Critical patent/JP3783991B2/en
Publication of JPH11339153A publication Critical patent/JPH11339153A/en
Application granted granted Critical
Publication of JP3783991B2 publication Critical patent/JP3783991B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Images

Landscapes

  • Fire-Detection Mechanisms (AREA)

Description

【0001】
【発明の属する技術分野】
本発明は、監視区域から吸引した空気中に浮遊する煙粒子をレーザ光を用いて光学的に検出して火災を判断する煙感知装置に関する。
【0002】
【従来の技術】
従来、コンピュータルームや半導体製造設備のクリーンルームに代表される清浄空間で起きる火災を極く初期に検出するため、超高感度の煙感知装置が使用されている。
この超高感度の煙感知装置は、清浄空間に設置した配管より空気を吸引し、吸引した空気に含まれる煙粒子をレーザダイオードを照射した検煙領域に通し、受光素子で検出された煙粒子の散乱光による受光パルス信号の内、所定の閾値を越えた受光パルス信号の単位時間当りの数をカウントし、この単位時間当りのカウント数に基づいて0.05〜0.20%/mといった範囲の微弱な煙濃度を検出している。
【0003】
このように受光パルス信号のパルスカウントにより煙濃度を検出する超高感度の煙感知装置にあっては、吸引する空気の流量の変化により単位時間当りの散乱光のカウント数が変化してしまい、正確な煙濃度の検出ができない問題がある。この問題を解消するため従来装置にあっては、流量計により吸引した空気の流量を測定し、設定流量と検出流量から補正係数を求め、単位時間当りのカウント数を補正するようにしている。
【0004】
即ち、設定流量Qrに対し実際の検出流量Qが増加した場合には、単位時間当りのカウント数が増加して煙濃度が高めになることから、補正係数K=Qr/Qを求め、これを単位時間当りのカウント値に掛けて設定流量Qrに換算したカウント値に補正して正しい煙濃度を検出できるようにしている。
しかし、吸引空気の流量変化による単位時間当りのカウント数を補正するためには、流量計が必要となり、装置コストがかなり高くなる。また流量計に不具合が生じたときには煙濃度が正確に検出できなくなる問題もある。
【0005】
そこで本願発明者にあっては、吸入空気の流量計測を必要とすることなく、吸入空気の流量が変化しても正確に散乱光のに基づく煙濃度の検出ができる超高感度の煙感知装置として、ある閾値を超えた受光部からの受光パルス信号を積分部で積分して単位時間当りの積分量、即ち波形面積を求め、この積分量に基づいて煙濃度検出部で煙濃度を検出するものを提案している(特願平9−173968号)。
【0006】
【発明が解決しようとする課題】
しかしながら、単位時間当りの散乱光の受光パルス信号の積分値を基準に煙濃度に変換する煙感知装置にあっては、煙濃度は同じであっても、燃焼物の種類により煙の粒子径の分布に差があるため、単位時間当りの積分量に違いがでる。例えば小さい粒子径の煙粒子を多く含む煙の場合には、粒子径が小さい煙粒子の散乱光量が弱く、受光パルス信号の積分量が小さめになる。これに対し大きい粒子径の煙粒子を多く含む煙の場合には、粒子径が大きい煙粒子の散乱光量が強く、受光パルス信号の積分量が大きめになる。
【0007】
このため煙の粒子系の分布の差により単位時間当りの積分量に違いがでるようになり、煙濃度の検出精度が低下する恐れがあった。
本発明は、このような問題点に鑑みてなされたもので、煙の種類により粒子径の分布に差があっても、その影響を受けることなく積分量に基づいて煙濃度を正確に検出できるようにした煙感知装置を提供することを目的とする。
【0008】
【課題を解決するための手段】
この目的を達成するため本発明は次のように構成する。まず本発明は、レーザダイオードから出射されたレーザ光を吸入空気が通過する検煙領域に照射する投光部と、検煙領域を煙粒子が通過する毎に生ずる散乱光パルスを受光素子で受光して受光パルス信号を出力する受光部と、受光部からの受光パルス信号を積分して単位時間当りの積分量を求める積分部と、積分部の単位時間当りの積分量に基づいて煙濃度を検出する煙濃度検出部とを備え、監視区域から吸引した空気中に浮遊する煙粒子を光学的に検出して火災を判断する煙感知装置を対象とする。
【0009】
このような煙感知装置につき本発明は、受光部で受光した受光パルス信号に対し複数の閾値を設定し、受光パルス信号の波高値に対応した閾値を判定する閾値判定部と、閾値判定部の判定閾値が所定値以下の場合、この判定閾値に対応する受光パルス信号の波高値を、より大きな波高値に補正して積分部で積分させる波高値補正部とを設けたことを特徴とする。
【0010】
本願発明者の考察によれば、粒子系の大きな煙粒子を多く含む煙と、粒子径の小さな煙粒子を多く含む煙について、煙粒子の散乱光の受光パルス信号から得られた波高値の分布を計測したところ、両者とも波高値の小さい領域の分布が集中している。そこで、本発明は、波高値の小さい領域に集中する煙粒子の散乱パルス信号の波高値について補正を行うことで、煙の粒子径の分布の相違による積分量の誤差を抑制し、煙の種類によらずより正確に煙濃度を検出できるようにする。
【0011】
実際の装置構成は受光パルス信号をデジタルデータに変換して処理する。このため、閾値判定部は、受光パルス信号をサンプルリングして1ビット当り所定の波高値分解能ΔVをもつnビットの受光データに変換するA/Dコンバータからの変換データを入力し、A/Dコンバータの変換データが所定の下位mビットのいずれかにビット1をもつ受光データか否か判定する。
【0012】
この場合、波高値補正部は、閾値判定部で下位mビットのいずれかにビット1をもつ受光データを判定した場合に、下位mビットより大きな所定のkビットの受光データに補正する。
例えば閾値判定部は、A/Dコンバータで変換した変換データが下位2ビットのいずれかにビット1をもつ受光データか否か判定し、波高値補正部は、閾値判定部で下位2ビットのいずれかにビット1をもつ受光データを判定した場合に、5ビットをオール1ビットとする受光データに補正する。
【0013】
即ち、波高値補正部は、閾値判定部で2ビットの受光データ「01」又は「10」を判定した場合に、各受光データを5ビットの受光データ「11111」に補正する。
また別の例として、閾値判定部は、A/Dコンバータで変換した変換データが下位2ビットのいずれかにビット1をもつ受光データか否か判定し、波高値補正部は、閾値判定部で下位2ビットのいずれかにビット1をもつ受光データを判定した場合に、4ビットをオール1ビットとする受光データに補正する。即ち、波高値補正部は、閾値判定部で2ビットの受光データ「01」又は「10」を判定した場合に、各受光データを4ビットの受光データ「1111」に補正する。
【0014】
【発明の実施の形態】
図1は本発明の煙感知装置の全体的な構成図である。図1において、煙感知装置1はコンピュータルームや半導体製造設備等を設置したクリーンルーム等火災による煙をごく初期の段階で検出するために設置されており、煙感知装置1に監視区域に設置された検知配管2を接続している。検知配管2は例えばT字型の配管であり、複数の吸込穴3を備えている。
【0015】
煙感知装置1に設けた検煙部4のインレットに対しては検知配管2が接続され、アウトレット側は吸引装置7を備えたチャンバに開口されている。監視状態において吸引装置7はモータ駆動により予め定めた所定の設定流量の空気を吸引しており、このため警戒区域に設置した検知配管2の吸込穴3より吸い込まれた空気は検煙部4を通って吸引装置7から排出されている。
【0016】
吸引装置7による吸引空気の吸入流量は設計上は所定値に決められているが、モータの回転変動等により設定流量に対し実際の流量は変動しており、この吸引流量の変動に伴い、検煙部4を通過する空気中に含まれる煙粒子の通過速度も変動している。
検煙部4にはレーザダイオード(LD)5と受光素子としてのフォトダイオード(PD)6が設けられ、フォトダイオード6としては例えばPINフォトダイオードが使用される。
【0017】
検煙部4を通過する吸引した空気中に存在する煙粒子を含む空中浮遊粒子(エアロゾル)の検出は、レーザダイオード5からのレーザ光の照射による散乱光をフォトダイオード6で検出し、散乱光に応じた受光パルス信号を信号処理部8に出力して煙濃度検出のための信号処理を行う。本発明の信号処理部8にあっては、受光パルス信号に基づいた煙濃度の検出のための信号処理として単位時間当りに得られる受光パルス信号の積分値に基づいて煙濃度を検出している。
【0018】
図2は図1の検煙部4に設けた散乱光式の煙粒子検出構造の説明図である。図2において、レーザダイオード5は出射するレーザ光の電解方向が所定方向に定まったいわゆる単偏向発振を行っており、内部にレーザダイオードチップ5aを備えている。レーザダイオード5から出射されたレーザ光は投光光軸11に向かうにつれて拡散波として広がる。
【0019】
レーザダイオード5に続いては結像レンズ9が設置され、吸入した空気の気流13が通過する結像位置10にレーザダイオード5の光源像、即ちレーザダイオードチップ5aの出射面の光源像(ニアフィールドパターン)を結像し、1μm前後の微小なスポット領域を形成している。
結像レンズ9によるレーザダイオード5の光源像の結像位置10に対しては、その投光光軸11上に対し例えばθ=90°と直交する方向に受光光軸12を設定し、フォトダイオード6を設置している。フォトダイオード6の配置方向は、例えば結像位置10を過ぎて拡散するレーザ光の光軸断面方向の光強度分布を示す楕円パターン(ファーフィールドパターン)14に矢印で示す電界Eの方向と平行な方向に配置している。
【0020】
このように電界Eの方向と平行な方向にフォトダイオード6を配置することで、結像位置10の微小スポットを通過する煙粒子による散乱光を最も高い効率で受光することができる。
図3は図1の信号処理部のブロック図である。信号処理部8には制御部15が設けられ、制御部15に対し投光回路部16を介してレーザダイオード5を接続し、またフォトダイオード6の出力が受光回路部17を介して入力接続されている。更にモータを備えた吸引装置7が接続される。制御部15には煙濃度検出部18が設けられる。
【0021】
図4は図3の制御部15に設けられた煙濃度検出部18の回路ブロックであり、受光回路部17と共に示している。この煙濃度検出部18は単位時間T当りに得られる散乱光の受光パルス信号の積分値に基づいて煙濃度を検出しており、且つ検煙部に流入する煙の種類に依存した煙粒子の分布の影響を低減するように発光調整を行っている。
【0022】
受光回路部17には受光回路20と増幅回路21が設けられる。受光回路部17に設けた増幅回路21からの受光パルス信号aは煙濃度検出部18側に設けているA/Dコンバータ22に入力され、所定周波数のサンプリングクロックbによりサンプリングされ、例えば8ビットのデジタル受光データcに変換している。A/Dコンバータ22に続いてはMPU23が設けられ、MPU23のプログラム制御によって閾値判定部24、波高値補正部25、積分部26、煙濃度変換部27及びタイマ部28の機能が実現されている。
【0023】
閾値判定部24は、A/Dコンバータ22からの受光データcに対し複数の閾値を設定し、受光データの波高値に対応した閾値を判定する。波高値補正部25は閾値判定部24の判定閾値が所定値以下の場合、この判定閾値に対応する受光データの波高値をより大きな波高値に補正して積分部26に供給する。積分部26はタイマ部28からのリセット信号eで決まる一定時間Tに亘り波高値補正部25で補正された受光データの積分処理、具体的には受光データの累積加算を行って、積分データを煙濃度変換部27に出力する。
【0024】
煙濃度変換部27は、単位時間T毎に積分部26より得られた積分データを煙濃度に変換する。この積分データを煙濃度に変換するための変換テーブルは、煙粒子の粒径、検煙部の通過速度、煙粒子に対する受光パルス信号の波高値等のパラメータを決めることで理論値として準備することができる。
次に図4のMPU23に設けた閾値判定部24、波高値補正部25による本発明における受光データの補正の原理を説明する。
【0025】
図5は、線香Aと綿灯芯Bをそれぞれ燃焼して得られた煙を、図1の煙感知装置1の検煙部4に吸引して通過させ、このとき図4の受光回路部17に設けている増幅回路21から得られる受光パルス信号aを波高分析装置に入力し、煙粒子1000個中に含まれる波高値の分布を示す含有率の計測結果である。
図5において、波高値は波高値番号iとしてi=1〜64の64段階に分けて含有率を計測している。即ち、i=1となる最低波高値は64mVであり、1段階毎に32mVずつ増加し、i=64となる最大波高値は2048mVとなっている。この波高値は実際には図4に設けたA/Dコンバータ22によるアナログ信号からデジタル信号への変換特性で決まる。
【0026】
即ち、A/Dコンバータ22の1ビット当りの波高値分解能ΔVをΔV=32mVとすると、アナログ信号の波高値は波高値番号iで示されるデジタルデータに変換される。この場合、波高値番号iはi=1〜64であることから、A/D変換されたビットデータはi=1〜64を2進表現した8ビットデータ「00000001」〜「01111111」となる。
【0027】
また波高値番号i=1となる波高値64mV未満の波高値はデジタルデータ「00000000」となり、これによって受光パルス信号のノイズ成分がカットされ、64mV以上の受光パルス信号を有効波高値として扱っている。
ここで線香Aの煙は燃焼温度が比較的低いことから、粒子径の大きい煙粒子が多く含まれる。例えば波高値が最大となる2048mVの含有率は6.9%となっている。一方、綿灯芯Bは燃焼温度が比較的高いことから、粒子径の小さな煙粒子を多く含んでいる。例えば波高値が最大となる2048mVの含有率は1.7%であり、線香Aに比べると大きな粒子径の煙粒子の含有率は5分の1程度となっている。
【0028】
一方、線香A及び綿灯芯Bについて波高値が最小の64mVにあっては、粒子径の大きい煙粒子を多く含む線香Aは36.5%であり、粒子径の小さい煙粒子を多く含む綿灯芯Bは47.0%となっている。またi=2の波高値96mVにあっては、線香Aは11.5%、綿灯芯Bは13.9%、i=3の128mVでは線香Aは7.2%、綿灯芯Bも7.2%とほぼ同じに近付いている。
【0029】
図6は図5の線香Aと綿灯芯Bにおける波高値の分布をi=1〜16となる64mV〜544mVについて表している。この関係を更に分かりやすく示したものが図7である。
図7(A)は粒子径の大きい煙粒子を多く含む燃焼物Aの波高値分布であり、一方、図7(B)は粒子径の小さい煙粒子を多く含む燃焼物Bの煙についての波高値分布である。この図7(A)(B)は図5の実際の計測結果に対しそれぞれの特有の傾向を強調して表している。このため図7(A)の粒子径の大きな煙粒子を多く含む煙にあっては、波高値の増加に対する含有率の減少の傾きが小さく、広い波高値の範囲に亘って含有率が分布している。
【0030】
これに対し図7(B)の粒子径の小さい煙粒子を多く含む煙にあっては、波高値の分布は低い方に集中した狭い範囲となっている。この図(A)(B)のような波高値の分布をもつ異なった種類の煙を同一濃度として受光パルス信号の単位時間当りの積分値を検出してみると、粒子径の大きい煙粒子の分布が多い図7(A)の煙の積分値が大きく、粒子径の小さい図7(B)の煙の積分値は小さくなる。そこで本発明にあっては、図7(B)の粒子径の小さい煙の波高値による積分値を、図7(A)の粒子径の大きな煙による積分値に近付けるように補正を行う。
【0031】
図8は図5の粒子径の大きな煙である線香Aの煙濃度変換部出力を100とし、粒子径の小さい煙となる綿灯芯Bの波高値を波高値をより高い値にする補正を行った時のの補正結果である。まず補正例1は綿灯芯Bの波高値を補正しなかった場合であり、線香Aの100に対し綿灯芯Bは58.5であり、同じ煙濃度でありながら大幅な誤差を生じている。
【0032】
そこで補正例2のように、綿灯芯Bのi=2の波高値96mV以下について、i=256の波高値256mVに補正する。この補正は8ビット受光データでみると、i=2の96mVの受光データは「00000010」であり、これ以下の値としてはi=1の「00000001」が存在することから、これらをi=7の受光データ「00000111」に補正したことを意味する。このような補正例2の補正を行うと、煙濃度変換部出力は線香Aの100に対し綿灯芯Bを74.5に増加させることができ、両者の差が縮まっている。
【0033】
更に補正例3は、96mV以下の波高値をi=15となる512mVに補正している。この補正は64mVの受光データ「00000001」または96mVの受光データ「00000010」を、i=15となる512mVの受光データ「00001111」に補正したことになる。この補正例3にあっては、線香Aの100に対し綿灯芯Bを86.8に補正でき、更に差を縮めることができる。
【0034】
補正例4は綿灯芯Bについて96mV以下の波高値を、i=31となる波高値1024mVにの受光データ「00011111」に補正して場合である。この補正例4にあっては、線香Aの100に対し綿灯芯Bを99.4と補正でき、ほぼ一致させることができる。
この図8の補正例から明らかなように、補正例4における96mV以下を1024mVに補正する補正が最も最適な補正となる。このため図4のMPU23にあっては、例えば図8の補正例4の補正条件を採用する。具体的には、A/Dコンバータ22が1ビット当り図5の波高値間隔32mVに対応した分解能をもつように設定し、これによってA/Dコンバータ22は増幅回路21からの受光パルス信号aの波高値(mV)を図5の波高値番号iを2進表現した受光データcに変換する。
【0035】
閾値判定部24は図5の波高値96mV以下か否か、具体的にはA/Dコンバータ22からの8ビット受光データcの下位2ビットが「01」「10」のいずれかであるか判定している。閾値判定部24で8ビット受光データcの下位2ビットが「01」「10」のいずれかであることが判別されると、波高値補正部25が図5の波高値1024mVに対応した波高値番号iを2進表現した受光データ「00011111」に補正する。それ以外の受光データcについては、補正を行うことなく、そのまま積分部26に出力する。
【0036】
図9は図4のMPU23による波高値補正処理のタイミングチャートである。図9(A)は増幅回路21から出力される受光パルス信号aであり、この受光パルス信号aに対しては図5の波高値番号i=1,2,3,4,5,・・・に対応した波高値をもつ閾値TH1,TH2,TH3,TH4,TH5,・・・が見掛上、設定されている。図9(B)はA/Dコンバータ22に対するサンプリングクロックであり、このサンプリングクロックbのタイミングでA/Dコンバータ22が図9(A)の受光パルス信号aをサンプリングして、図9(C)のA/Dコンバータ出力cに変換する。
【0037】
図9(C)のA/Dコンバータ出力cは、サンプリングクロックbで抽出した受光パルス信号aの波高値をそのまま示しているが、実際には閾値TH1〜TH5の幅が1ビットの分解能に対応することから、各閾値のレベルに実際には正規化される。
図9(C)のA/Dコンバータ出力c即ち受光データは図4の閾値判定部24に入力され、閾値判定部24は96mVに対応した閾値TH2以下の波高値を判別し、波高値補正部25で所定の波高値、例えば図9(D)にあっては図8の補正例2の256mVに対応した閾値TH7に補正している。もちろん補正例4にあっては、閾値TH31に対応した1024mVに補正することになるが、図9(D)にあっては表現できないことから補正例2を対象としている。
【0038】
このように波高値補正が行われた図9(D)の波高値補正出力dは、リセット信号eで決まる所定時間Tに亘り積分部26で積分即ち各補正出力の波高値が累積加算され、積分値が濃度変換部27に出力されて、対応する濃度に変換される。
図10は図4のMPU23による波高値補正を行った場合の煙濃度に対する補正前と補正後の積分値Sの傾向を表している。
【0039】
図10において、特性A1は補正前の粒子径が大きな煙粒子を含む燃焼物、B1は粒子径の小さい煙粒子を含む燃焼物であり、補正がない場合には両者は大きな差をもっている。
このような場合に、粒子径の小さい煙粒子を含む燃焼物B1を粒子径の大きな煙粒子を含む燃焼物A1の特性に近付けるように、例えば図8の補正例2〜4のような波高値補正を行うと、粒子径の小さい煙粒子を含む燃焼物の特性B1はB2のように、粒子径の大きな煙粒子を含む燃焼物の特性A1に近付く。この場合、粒子径の大きな煙粒子を含む特性A1にあっても波高値の小さい部分について波高値補正が行われるため、補正によって燃焼物の特性A1もA2のように変化する。
【0040】
しかしながら、煙粒子径の大きな煙粒子を含む燃焼物にあっては、波高値補正を行っている粒子径の小さい部分での波高値の分布が少ないため、特性A1から波高値補正による特性A2変化の度合いが少なく、結果として補正後の特性B2,A2を全体として近付けることができる。
尚、上記の実施形態は、図5の線香と綿灯芯の煙を対象とした波高値の含有率の分布に基づく補正例を例にとるものであったが、これ以外の粒子径の分布に大きな違いのある燃焼物との間について同様な関係を求め、粒子径の小さい煙の波高値の小さい部分についてより高い波高値に補正する波高値補正を行うことで、同様な補正結果を得ることができる。
【0041】
また上記の実施形態は、A/Dコンバータで受光パルス信号を受光データに変換して波高値補正、積分処理を行う場合を例にとっているが、アナログ的な信号処理によっても同様に実現することができる。
また上記の実施形態は、図2のように結像レンズによってレーザダイオード5からのレーザ光を結像位置10に絞って微小なビームスポットの光学像を作り、この結像位置のビームスポットに対し外部から吸入した煙粒子の気流を通過させているが、結像レンズ9の代わりにコリメートレンズを使用してレーザダイオード5からのレーザ光を平行光に変換し、この平行光に対し所定の構成角θをもって受光素子としてのフォトダイオード6を配置した平行光学系を備えた煙感知装置についてもそのまま適用できる。
【0042】
更に本発明は、その目的と利点を損なわない範囲の適宜の変形を含み、更に上記の実施形態の数値による限定は受けない。
【0043】
【発明の効果】
以上説明してきたように本発明によれば、煙の種類により粒子径の分布に差があっても、粒子径の小さい煙の受光パルス信号の波高値の小さい領域について、より高い波高値に変換する補正を行うことで、煙の粒子径の分布の相違による積分量の誤差を抑制し、これによって煙の種類によらず、より正確に煙濃度を検出することができる。
【図面の簡単な説明】
【図1】本発明による煙感知装置の全体構成の説明図
【図2】本発明による散乱光式の煙粒子検出構造の説明図
【図3】図1の信号処理装置のブロック図
【図4】図3の煙濃度検出処理部の回路ブロック図
【図5】線香と綿灯芯の燃焼により得られた煙の波高値分布の計測結果の説明図
【図6】図5をプロットしたグラフ図
【図7】粒子径が大きい場合と小さい場合の波高値の分布の傾向を概略的に示したグラフ図
【図8】図5の綿灯芯における96mV以下の波高値を各々256mV、512mV、10214mVに補正した場合の線香を100とした場合の煙濃度変換部出力の説明図
【図9】図4における波高値補正処理のタイミングチャート
【図10】本発明による波高値補正前と補正後の煙濃度に対する積分値の関係を示した特性図
【符号の説明】
1:煙感知装置
2:検知配管
3:吸込穴
4:検煙部
5:レーザダイオード
5a:レーザダイオードチップ
6:フォトダイオード(受光素子)
7:吸引装置
8:信号処理部
9:結像レンズ
10:結像位置(検煙領域)
11:発光光軸
12,19:受光光軸
15:制御部
16:投光回路部
17:受光回路部
18:煙濃度検出部
20:受光回路
21:増幅回路
22:A/Dコンバータ
23:MPU
24:閾値判定部
25:波高値補正部
26:積分部
27:煙濃度変換回路
28:タイマ回路
[0001]
BACKGROUND OF THE INVENTION
The present invention relates to a smoke detection device that optically detects smoke particles floating in air sucked from a monitoring area using a laser beam to determine a fire.
[0002]
[Prior art]
2. Description of the Related Art Conventionally, an ultrasensitive smoke detection device has been used to detect a fire that occurs in a clean space represented by a clean room such as a computer room or a semiconductor manufacturing facility at an extremely early stage.
This ultra-sensitive smoke detection device sucks air from a pipe installed in a clean space, passes smoke particles contained in the sucked air through a smoke detection area irradiated with a laser diode, and detects smoke particles detected by a light receiving element. The number of received light pulse signals exceeding a predetermined threshold among the received light pulse signals due to the scattered light is counted per unit time, and 0.05 to 0.20% / m based on the counted number per unit time A weak smoke density in the range is detected.
[0003]
In this way, in the ultra-sensitive smoke sensing device that detects the smoke density by the pulse count of the light reception pulse signal, the number of scattered light counts per unit time changes due to the change in the flow rate of the sucked air, There is a problem that accurate smoke concentration cannot be detected. In order to solve this problem, the conventional apparatus measures the flow rate of air sucked by a flow meter, obtains a correction coefficient from the set flow rate and the detected flow rate, and corrects the count number per unit time.
[0004]
That is, when the actual detected flow rate Q increases with respect to the set flow rate Qr, the number of counts per unit time increases and the smoke density increases, so the correction coefficient K = Qr / Q is obtained, The correct smoke concentration can be detected by correcting the count value converted to the set flow rate Qr by multiplying the count value per unit time.
However, in order to correct the number of counts per unit time due to the change in the flow rate of the suction air, a flow meter is required, and the apparatus cost is considerably increased. There is also a problem that the smoke concentration cannot be accurately detected when a malfunction occurs in the flow meter.
[0005]
Therefore, the inventor of the present application does not need to measure the flow rate of the intake air, and can detect the smoke concentration based on the scattered light accurately even if the flow rate of the intake air changes. The integration unit per unit time, that is, the waveform area is obtained by integrating the received light pulse signal from the light receiving unit exceeding a certain threshold value, and the smoke density detection unit detects the smoke density based on the integration amount. (Japanese Patent Application No. 9-173968).
[0006]
[Problems to be solved by the invention]
However, in the smoke detection device that converts the smoke concentration to the smoke concentration based on the integrated value of the received pulse signal of scattered light per unit time, even if the smoke concentration is the same, the particle size of the smoke depends on the type of combustion product. Since there is a difference in distribution, there is a difference in the amount of integration per unit time. For example, in the case of smoke containing many smoke particles having a small particle diameter, the amount of scattered light of the smoke particles having a small particle diameter is weak and the integral amount of the received light pulse signal is small. On the other hand, in the case of smoke containing many smoke particles having a large particle diameter, the amount of scattered light of the smoke particles having a large particle diameter is strong, and the integral amount of the received light pulse signal is large.
[0007]
For this reason, a difference in the amount of integration per unit time due to a difference in the distribution of the smoke particle system may occur, and the detection accuracy of the smoke concentration may be lowered.
The present invention has been made in view of such problems, and even if there is a difference in the particle size distribution depending on the type of smoke, it is possible to accurately detect the smoke concentration based on the integrated amount without being affected by the difference. It is an object of the present invention to provide a smoke detection device.
[0008]
[Means for Solving the Problems]
In order to achieve this object, the present invention is configured as follows. First, according to the present invention, a light projecting unit that irradiates a smoke detection region through which intake air passes laser light emitted from a laser diode, and a light receiving element that receives a scattered light pulse generated every time smoke particles pass through the smoke detection region. A light receiving unit that outputs a light reception pulse signal, an integration unit that integrates the light reception pulse signal from the light reception unit to obtain an integration amount per unit time, and a smoke density based on the integration amount per unit time of the integration unit. The present invention is directed to a smoke sensing device that includes a smoke concentration detection unit that detects smoke and optically detects smoke particles floating in the air sucked from a monitoring area to determine a fire.
[0009]
For such a smoke sensing device, the present invention sets a plurality of threshold values for the received light pulse signal received by the light receiving unit, and determines a threshold value corresponding to the peak value of the received light pulse signal, and a threshold value determining unit When the determination threshold value is less than or equal to a predetermined value, there is provided a peak value correction unit that corrects the peak value of the received light pulse signal corresponding to the determination threshold value to a larger peak value and integrates the peak value.
[0010]
According to the inventor's consideration, the distribution of the peak values obtained from the received pulse signal of the scattered light of the smoke particles for smoke containing a large amount of smoke particles having a large particle size and smoke containing many smoke particles having a small particle size. When both are measured, the distribution of the regions with small peak values is concentrated in both cases. Therefore, the present invention corrects the peak value of the scattering pulse signal of the smoke particles concentrated in the region where the peak value is small, thereby suppressing the error of the integral amount due to the difference in the smoke particle diameter distribution, and the type of smoke. It makes it possible to detect smoke density more accurately.
[0011]
In an actual apparatus configuration, the received light pulse signal is converted into digital data and processed. For this reason, the threshold determination unit inputs the conversion data from the A / D converter that samples the light reception pulse signal and converts it into n-bit light reception data having a predetermined peak value resolution ΔV per bit. It is determined whether or not the conversion data of the converter is light reception data having bit 1 in any of the predetermined lower m bits.
[0012]
In this case, when the threshold value determination unit determines the light reception data having bit 1 in any of the lower m bits, the peak value correction unit corrects the light reception data to predetermined k bits larger than the lower m bits.
For example, the threshold value determination unit determines whether the conversion data converted by the A / D converter is light reception data having bit 1 in any of the lower 2 bits, and the peak value correction unit determines which of the lower 2 bits in the threshold value determination unit. When the received light data having the bit 1 is determined, the 5 bits are corrected to the received light data with all 1 bits.
[0013]
That is, the peak value correcting unit corrects each received light data to 5-bit received light data “11111” when the threshold determining unit determines the 2-bit received light data “01” or “10”.
As another example, the threshold value determination unit determines whether the converted data converted by the A / D converter is light reception data having bit 1 in any of the lower 2 bits, and the peak value correction unit is the threshold value determination unit. When light reception data having bit 1 in any one of the lower 2 bits is determined, 4 bits are corrected to light reception data with all 1 bits. That is, the peak value correcting unit corrects each received light data to 4-bit received light data “1111” when the threshold determining unit determines the 2-bit received light data “01” or “10”.
[0014]
DETAILED DESCRIPTION OF THE INVENTION
FIG. 1 is an overall configuration diagram of the smoke sensing device of the present invention. In FIG. 1, a smoke detection device 1 is installed in a clean room such as a computer room or a semiconductor manufacturing facility to detect smoke due to a fire at an extremely early stage, and is installed in a monitoring area in the smoke detection device 1. The detection pipe 2 is connected. The detection pipe 2 is, for example, a T-shaped pipe and includes a plurality of suction holes 3.
[0015]
A detection pipe 2 is connected to an inlet of the smoke detection unit 4 provided in the smoke detection device 1, and an outlet side is opened in a chamber provided with a suction device 7. In the monitoring state, the suction device 7 sucks air at a predetermined flow rate set in advance by driving the motor. For this reason, the air sucked from the suction hole 3 of the detection pipe 2 installed in the warning area passes through the smoke detector 4. It is discharged from the suction device 7 through.
[0016]
The suction flow rate of the suction air by the suction device 7 is determined to be a predetermined value by design, but the actual flow rate varies with the set flow rate due to fluctuations in the rotation of the motor and so on. The passage speed of the smoke particles contained in the air passing through the smoke part 4 also varies.
The smoke detector 4 is provided with a laser diode (LD) 5 and a photodiode (PD) 6 as a light receiving element. As the photodiode 6, for example, a PIN photodiode is used.
[0017]
Detection of airborne particles (aerosol) including smoke particles present in the sucked air passing through the smoke detector 4 is performed by detecting scattered light by irradiation of laser light from the laser diode 5 with the photodiode 6. A light reception pulse signal corresponding to the above is output to the signal processing unit 8 to perform signal processing for smoke density detection. In the signal processing unit 8 of the present invention, the smoke density is detected based on the integral value of the received light pulse signal obtained per unit time as signal processing for detecting the smoke density based on the received light pulse signal. .
[0018]
FIG. 2 is an explanatory diagram of a scattered light type smoke particle detection structure provided in the smoke detector 4 of FIG. In FIG. 2, the laser diode 5 performs so-called single deflection oscillation in which the electrolysis direction of the emitted laser light is determined in a predetermined direction, and includes a laser diode chip 5a therein. The laser light emitted from the laser diode 5 spreads as a diffusion wave toward the light projecting optical axis 11.
[0019]
Following the laser diode 5, an imaging lens 9 is installed, and a light source image of the laser diode 5, that is, a light source image of the emission surface of the laser diode chip 5a (near field) is passed through the imaging position 10 through which the inhaled air stream 13 passes. Pattern) is formed to form a minute spot area of about 1 μm.
For the imaging position 10 of the light source image of the laser diode 5 by the imaging lens 9, a light receiving optical axis 12 is set on the light projecting optical axis 11 in a direction orthogonal to, for example, θ = 90 °, and the photodiode 6 is installed. The arrangement direction of the photodiode 6 is parallel to the direction of the electric field E indicated by an arrow in an elliptical pattern (far field pattern) 14 indicating the light intensity distribution in the optical axis cross-sectional direction of the laser light diffused past the imaging position 10, for example. Arranged in the direction.
[0020]
By disposing the photodiode 6 in a direction parallel to the direction of the electric field E in this way, it is possible to receive the scattered light from the smoke particles passing through the minute spot at the imaging position 10 with the highest efficiency.
FIG. 3 is a block diagram of the signal processing unit of FIG. The signal processing unit 8 is provided with a control unit 15. The laser diode 5 is connected to the control unit 15 through the light projecting circuit unit 16, and the output of the photodiode 6 is input-connected through the light receiving circuit unit 17. ing. Further, a suction device 7 having a motor is connected. The control unit 15 is provided with a smoke density detection unit 18.
[0021]
FIG. 4 is a circuit block of the smoke density detection unit 18 provided in the control unit 15 of FIG. 3 and is shown together with the light receiving circuit unit 17. This smoke concentration detection unit 18 detects the smoke concentration based on the integrated value of the received light pulse signal of scattered light obtained per unit time T, and the smoke particle depending on the type of smoke flowing into the smoke detection unit. Light emission adjustment is performed so as to reduce the influence of distribution.
[0022]
The light receiving circuit unit 17 is provided with a light receiving circuit 20 and an amplifier circuit 21. The light reception pulse signal a from the amplification circuit 21 provided in the light reception circuit unit 17 is input to the A / D converter 22 provided on the smoke density detection unit 18 side, and is sampled by the sampling clock b of a predetermined frequency. It is converted into digital received light data c. An MPU 23 is provided following the A / D converter 22, and the functions of the threshold determination unit 24, the peak value correction unit 25, the integration unit 26, the smoke density conversion unit 27, and the timer unit 28 are realized by program control of the MPU 23. .
[0023]
The threshold value determination unit 24 sets a plurality of threshold values for the light reception data c from the A / D converter 22 and determines a threshold value corresponding to the peak value of the light reception data. When the determination threshold of the threshold determination unit 24 is equal to or less than a predetermined value, the peak value correction unit 25 corrects the peak value of the received light data corresponding to the determination threshold to a larger peak value and supplies the corrected peak value to the integration unit 26. The integration unit 26 performs integration processing of the light reception data corrected by the peak value correction unit 25 over a certain time T determined by the reset signal e from the timer unit 28, specifically, cumulative addition of the light reception data, and the integration data is obtained. Output to the smoke density conversion unit 27.
[0024]
The smoke density conversion unit 27 converts the integration data obtained from the integration unit 26 into a smoke density every unit time T. A conversion table for converting this integrated data into smoke concentration should be prepared as a theoretical value by determining parameters such as the particle size of the smoke particles, the passing speed of the smoke detector, and the peak value of the received pulse signal for the smoke particles. Can do.
Next, the principle of correction of received light data in the present invention by the threshold value determination unit 24 and the peak value correction unit 25 provided in the MPU 23 of FIG. 4 will be described.
[0025]
FIG. 5 shows that the smoke obtained by burning the incense stick A and the cotton lantern B is sucked and passed through the smoke detecting unit 4 of the smoke sensing device 1 of FIG. It is the measurement result of the content rate which shows the distribution of the crest value contained in 1000 smoke particles by inputting the light reception pulse signal a obtained from the provided amplification circuit 21 into the crest analysis device.
In FIG. 5, the crest value is divided into 64 steps of i = 1 to 64 as crest value number i, and the content rate is measured. In other words, the minimum peak value for i = 1 is 64 mV, increasing by 32 mV for each step, and the maximum peak value for i = 64 is 2048 mV. This peak value is actually determined by the conversion characteristic from an analog signal to a digital signal by the A / D converter 22 provided in FIG.
[0026]
That is, if the peak value resolution ΔV per bit of the A / D converter 22 is ΔV = 32 mV, the peak value of the analog signal is converted into digital data indicated by the peak value number i. In this case, since the peak value number i is i = 1 to 64, the bit data subjected to A / D conversion is 8-bit data “00000001” to “01111111” in which i = 1 to 64 is expressed in binary.
[0027]
The peak value of the peak value number i = 1, which is less than the peak value of 64 mV, becomes digital data “00000000”, and thus the noise component of the received light pulse signal is cut, and the received light pulse signal of 64 mV or higher is handled as the effective peak value. .
Here, since the smoke of the incense stick A has a relatively low combustion temperature, many smoke particles having a large particle diameter are included. For example, the content rate of 2048 mV at which the peak value is maximum is 6.9%. On the other hand, since the cotton lantern B has a relatively high combustion temperature, it contains many smoke particles having a small particle diameter. For example, the content rate of 2048 mV at which the peak value is maximum is 1.7%, and the content rate of smoke particles having a large particle diameter is about 1/5 compared to the incense stick A.
[0028]
On the other hand, for the incense stick A and the cotton lantern B, when the peak value is 64 mV, the incense stick A containing many smoke particles with a large particle diameter is 36.5%, and the cotton lantern core containing many smoke particles with a small particle diameter. B is 47.0%. When the wave height is 96 mV at i = 2, the incense stick A is 11.5%, the cotton lantern B is 13.9%, and when i = 3 is 128 mV, the incense stick A is 7.2% and the cotton wick B is also 7. Nearly the same as 2%.
[0029]
FIG. 6 shows the distribution of peak values in the incense stick A and cotton wick B in FIG. 5 for 64 mV to 544 mV where i = 1 to 16. FIG. 7 shows this relationship more clearly.
FIG. 7 (A) shows the crest value distribution of the combustion product A containing many smoke particles having a large particle size, while FIG. 7 (B) shows the wave for the smoke of the combustion product B containing many smoke particles having a small particle size. High value distribution. 7 (A) and 7 (B) show the respective tendencies with emphasis on the actual measurement results of FIG. For this reason, in the smoke containing many smoke particles having a large particle diameter in FIG. 7 (A), the slope of the decrease in the content rate with respect to the increase in the crest value is small, and the content rate is distributed over a wide range of crest values. ing.
[0030]
On the other hand, in the smoke containing many smoke particles having a small particle diameter in FIG. 7B, the distribution of the crest values is a narrow range concentrated in the lower side. When the integrated value per unit time of the received light pulse signal is detected with different types of smoke having the peak value distribution as shown in FIGS. 5A and 5B having the same concentration, smoke particles having a large particle diameter are detected. The integrated value of smoke in FIG. 7A having a large distribution is large, and the integrated value of smoke in FIG. 7B having a small particle size is small. Therefore, in the present invention, correction is performed so that the integral value due to the crest value of smoke having a small particle diameter in FIG. 7B approaches the integral value due to smoke having a large particle diameter in FIG.
[0031]
FIG. 8 shows that the smoke density conversion part output of the incense stick A, which is smoke with a large particle diameter in FIG. 5, is set to 100, and the wave height value of the cotton lantern B, which is smoke with a small particle diameter, is corrected to make the wave height value higher. It is a correction result at the time. First, the correction example 1 is a case where the peak value of the cotton wick B is not corrected, and the cotton wick B is 58.5 with respect to 100 of the incense stick A, and a large error is generated although the smoke density is the same.
[0032]
Therefore, as in correction example 2, the i = 2 pulse height value of 96 mV or less of the cotton lantern B is corrected to i = 256 wave height value of 256 mV. When this 8-bit light reception data is viewed, the 96 mV light reception data of i = 2 is “00000010”, and there are “00000001” of i = 1 as a value less than this. The received light data “00000111” is corrected. When such correction of the correction example 2 is performed, the smoke density conversion unit output can increase the cotton wick B to 74.5 with respect to 100 of the incense stick A, and the difference between the two is reduced.
[0033]
Further, in the third correction example, the peak value of 96 mV or less is corrected to 512 mV where i = 15. This correction means that the 64 mV received light data “00000001” or the 96 mV received light data “00000010” is corrected to 512 mV received light data “00001111” where i = 15. In the third correction example, the cotton wick B can be corrected to 86.8 with respect to 100 of the incense stick A, and the difference can be further reduced.
[0034]
Correction example 4 is a case where the peak value of 96 mV or less for cotton wick B is corrected to light reception data “00011111” with a peak value of 1024 mV at i = 31. In this correction example 4, the cotton wick B can be corrected to 99.4 with respect to 100 of the incense stick A, and can be substantially matched.
As is apparent from the correction example of FIG. 8, the correction that corrects 96 mV or less in the correction example 4 to 1024 mV is the most optimal correction. For this reason, in the MPU 23 of FIG. 4, for example, the correction condition of the correction example 4 of FIG. 8 is adopted. Specifically, the A / D converter 22 is set so as to have a resolution corresponding to the crest value interval of 32 mV in FIG. 5 per bit, whereby the A / D converter 22 receives the received light pulse signal a from the amplifier circuit 21. The peak value (mV) is converted into received light data c in which the peak value number i in FIG.
[0035]
The threshold determination unit 24 determines whether or not the peak value is 96 mV or less in FIG. 5, more specifically, whether the lower 2 bits of the 8-bit light reception data c from the A / D converter 22 is “01” or “10”. is doing. When the threshold value determination unit 24 determines that the lower 2 bits of the 8-bit light reception data c are either “01” or “10”, the peak value correction unit 25 performs the peak value corresponding to the peak value 1024 mV in FIG. The number i is corrected to light reception data “00011111” expressed in binary. The other received light data c is output to the integrating unit 26 without being corrected.
[0036]
FIG. 9 is a timing chart of the peak value correction process by the MPU 23 of FIG. FIG. 9A shows a light reception pulse signal a output from the amplifier circuit 21. For this light reception pulse signal a, the peak value numbers i = 1, 2, 3, 4, 5,. Threshold values TH1, TH2, TH3, TH4, TH5,... Having peak values corresponding to are apparently set. FIG. 9B shows a sampling clock for the A / D converter 22. The A / D converter 22 samples the received light pulse signal a in FIG. 9A at the timing of the sampling clock b, and FIG. To A / D converter output c.
[0037]
The A / D converter output c in FIG. 9C shows the peak value of the received light pulse signal a extracted with the sampling clock b as it is, but the width of the thresholds TH1 to TH5 actually corresponds to the resolution of 1 bit. Thus, it is actually normalized to the level of each threshold.
The A / D converter output c in FIG. 9C, that is, the received light data is input to the threshold value determination unit 24 in FIG. 4, and the threshold value determination unit 24 determines the peak value below the threshold value TH2 corresponding to 96 mV, and the peak value correction unit. 25, for example, in FIG. 9D, the threshold value TH7 corresponding to 256 mV in the correction example 2 in FIG. 8 is corrected. Of course, correction example 4 is corrected to 1024 mV corresponding to threshold value TH31, but correction example 2 is targeted because it cannot be expressed in FIG. 9D.
[0038]
The peak value correction output d of FIG. 9 (D) subjected to the peak value correction in this way is integrated by the integration unit 26 over a predetermined time T determined by the reset signal e, that is, the peak value of each correction output is cumulatively added, The integrated value is output to the density conversion unit 27 and converted to the corresponding density.
FIG. 10 shows the tendency of the integrated value S before and after the correction with respect to the smoke density when the peak value correction is performed by the MPU 23 of FIG.
[0039]
In FIG. 10, characteristic A1 is a combustion product containing smoke particles having a large particle size before correction, and B1 is a combustion product containing smoke particles having a small particle size, and there is a large difference between them when there is no correction.
In such a case, for example, the peak values as in correction examples 2 to 4 in FIG. 8 are set so as to bring the combustion product B1 containing smoke particles having a small particle size closer to the characteristics of the combustion product A1 containing smoke particles having a large particle size. When the correction is performed, the characteristic B1 of the combustion product including smoke particles having a small particle size approaches the characteristic A1 of the combustion product including smoke particles having a large particle size, as in B2. In this case, even if the characteristic A1 includes smoke particles having a large particle diameter, the correction of the crest value is performed for the portion having a small crest value, and the characteristic A1 of the combusted matter also changes as in A2 due to the correction.
[0040]
However, in the case of a combustion product containing smoke particles having a large smoke particle diameter, the distribution of the peak value in the portion where the peak value correction is performed is small, and therefore the change in the characteristic A2 from the characteristic A1 to the correction of the peak value. As a result, the corrected characteristics B2 and A2 can be brought close as a whole.
In addition, although said embodiment took the example of a correction | amendment based on distribution of the content rate of the crest value for the incense stick of FIG. 5 and the smoke of a cotton lantern as an example, it is in distribution of particle diameter other than this. Obtain the same correction result by obtaining the same relationship between the combustibles with large differences and performing the peak value correction to correct the higher peak value for the small peak part of the smoke with small particle size. Can do.
[0041]
In the above embodiment, the case where the received light pulse signal is converted into received light data by the A / D converter and the peak value correction and integration processing is performed is taken as an example, but the same can be realized by analog signal processing. it can.
In the above embodiment, as shown in FIG. 2, the laser beam from the laser diode 5 is focused to the imaging position 10 by the imaging lens to create an optical image of a minute beam spot. The air stream of smoke particles sucked from the outside is allowed to pass through, but the collimating lens is used in place of the imaging lens 9 to convert the laser light from the laser diode 5 into parallel light, and the parallel light has a predetermined configuration. The present invention can also be applied to a smoke sensing device having a parallel optical system in which a photodiode 6 as a light receiving element is disposed at an angle θ.
[0042]
Furthermore, the present invention includes appropriate modifications within a range that does not impair the object and advantages thereof, and is not limited by the numerical values of the above-described embodiments.
[0043]
【The invention's effect】
As described above, according to the present invention, even if there is a difference in the particle size distribution depending on the type of smoke, a region having a small peak value of the light reception pulse signal of smoke having a small particle size is converted to a higher peak value. By performing the correction, it is possible to suppress the error in the integral amount due to the difference in the smoke particle diameter distribution, and thereby to detect the smoke density more accurately regardless of the type of smoke.
[Brief description of the drawings]
FIG. 1 is an explanatory diagram of the overall configuration of a smoke sensing device according to the present invention. FIG. 2 is an explanatory diagram of a scattered light type smoke particle detection structure according to the present invention. FIG. 3 is a block diagram of the signal processing device of FIG. 3 is a circuit block diagram of the smoke concentration detection processing unit in FIG. 3. FIG. 5 is an explanatory diagram of the measurement result of the peak value distribution of the smoke obtained by burning the incense stick and the cotton lantern. FIG. 6 is a graph plotting FIG. FIG. 7 is a graph schematically showing the tendency of the distribution of peak values when the particle size is large and small. FIG. 9 is a timing chart of the output of the smoke density conversion unit when the incense stick is 100. FIG. 10 is a timing chart of the peak value correction processing in FIG. 4. FIG. Characteristic diagram showing the relationship of integral values Description of the code]
1: Smoke detection device 2: Detection pipe 3: Suction hole 4: Smoke detection part 5: Laser diode 5a: Laser diode chip 6: Photodiode (light receiving element)
7: Suction device 8: Signal processing unit 9: Imaging lens 10: Imaging position (smoke detection area)
11: light emitting optical axis 12, 19: light receiving optical axis 15: control unit 16: light projecting circuit unit 17: light receiving circuit unit 18: smoke density detecting unit 20: light receiving circuit 21: amplifier circuit 22: A / D converter 23: MPU
24: Threshold determination unit 25: Peak value correction unit 26: Integration unit 27: Smoke density conversion circuit 28: Timer circuit

Claims (6)

レーザダイオードから出射されたレーザ光を吸入空気が通過する検煙領域に照射する投光部と、前記検煙領域を煙粒子が通過する毎に生ずる散乱光パルスを受光素子で受光して受光パルス信号を出力する受光部と、前記受光部からの受光パルス信号を積分して単位時間当りの積分量を求める積分部と、前記積分部の単位時間当りの積分量に基づいて煙濃度を検出する煙濃度検出部とを備え、監視区域から吸引した空気中に浮遊する煙粒子を光学的に検出して火災を判断する煙感知装置に於いて、
前記受光部で受光した受光パルス信号に対し複数の閾値を設定し、前記受光パルス信号の波高値に対応した閾値を判定する閾値判定部と、
前記閾値判定部の判定閾値が所定値以下の場合、該判定閾値に対応する受光パルス信号の波高値を、より大きな波高値に補正して前記積分部で積分させる波高値補正部と、
を設けたことを特徴とする煙感知装置。
A light projecting unit that irradiates a smoke detection region through which intake air passes laser light emitted from a laser diode, and a light receiving pulse that receives a scattered light pulse generated each time smoke particles pass through the smoke detection region by a light receiving element. A light receiving unit that outputs a signal; an integration unit that integrates a light reception pulse signal from the light receiving unit to obtain an integral amount per unit time; and a smoke density that is detected based on the integral amount per unit time of the integration unit In a smoke sensing device that comprises a smoke concentration detector and optically detects smoke particles floating in the air aspirated from a monitored area to judge a fire,
A plurality of threshold values for the received light pulse signal received by the light receiving unit, and a threshold value determination unit for determining a threshold value corresponding to the peak value of the received light pulse signal;
When the determination threshold of the threshold determination unit is equal to or less than a predetermined value, the peak value correction unit that corrects the peak value of the received light pulse signal corresponding to the determination threshold to a larger peak value and integrates the peak value by the integration unit;
A smoke sensing device characterized by comprising:
請求項1記載の煙感知装置に於いて、
前記閾値判定部は、前記受光パルス信号をサンプリングして1ビット当り所定の波高値分解能ΔVをもつnビットの受光データに変換するA/Dコンバータからの変換データを入力し、該A/Dコンバータのnビット変換データが所定の下位mビットのいずれかにビット1をもつ受光データか否か判定し、
前記波高値補正部は、前記閾値判定部で下位mビットのいずれかにビット1をもつ受光データを判定した場合に、前記下位mビットより大きな所定のkビットの受光データに補正することを特徴とする煙感知装置。
The smoke sensing device according to claim 1,
The threshold determination unit inputs conversion data from an A / D converter that samples the light reception pulse signal and converts it into n-bit light reception data having a predetermined peak value resolution ΔV per bit, and the A / D converter Whether or not the n-bit converted data is received light data having bit 1 in any of the predetermined lower m bits,
The crest value correcting unit corrects the received light data having a predetermined k bits larger than the lower m bits when the threshold value determining unit determines received light data having bit 1 in any of the lower m bits. A smoke detector.
請求項2記載の煙感知装置に於いて、
前記閾値判定部は、前記A/Dコンバータで変換したnビット変換データの下位2ビットのいずれかにビット1をもつ受光データか否か判定し、
前記波高値補正部は、前記閾値判定部で下位2ビットのいずれかにビット1をもつ受光データを判定した場合に、オール1ビットとする5ビット受光データに補正することを特徴とする煙感知装置。
The smoke sensing device according to claim 2, wherein
The threshold determination unit determines whether or not the received light data has bit 1 in any of the lower 2 bits of the n-bit converted data converted by the A / D converter,
The peak value correction unit corrects the received light data having bit 1 in any one of the lower 2 bits to 5-bit light reception data, which is all 1 bits, when the threshold value determination unit determines the light detection data. apparatus.
請求項3記載の煙感知装置に於いて、前記波高値補正部は、前記閾値判定部で2ビットの受光データ「01」又は「10」を判定した場合に、各受光データを5ビットの受光データ「11111」に補正することを特徴とする煙感知装置。4. The smoke detection device according to claim 3, wherein when the threshold value determination unit determines 2-bit light reception data “01” or “10”, the peak value correction unit receives each light reception data as 5-bit light reception. A smoke sensing device, wherein the data is corrected to data “11111”. 請求項2記載の煙感知装置に於いて、
前記閾値判定部は、前記A/Dコンバータで変換したnビット変換データが下位2ビットのいずれかにビット1をもつ受光データか否か判定し、
前記波高値補正部は、前記閾値判定部で下位2ビットのいずれかにビット1をもつ受光データを判定した場合に、オール1ビットとする4ビットの受光データに補正することを特徴とする煙感知装置。
The smoke sensing device according to claim 2, wherein
The threshold determination unit determines whether the n-bit conversion data converted by the A / D converter is light reception data having bit 1 in any of the lower 2 bits,
The peak value correcting unit corrects the received light data having 4 bits in all of the lower 2 bits to 4 bits of received light data when the threshold value determining unit determines one of the lower 2 bits. Sensing device.
請求項5記載の煙感知装置に於いて、前記波高値補正部は、前記閾値判定部で2ビットの受光データ「01」又は「10」を判定した場合に、各受光データを4ビットの受光データ「1111」に補正することを特徴とする煙感知装置。6. The smoke detection device according to claim 5, wherein when the threshold value determination unit determines 2-bit light reception data “01” or “10”, the peak value correction unit receives each light reception data as 4-bit light reception. A smoke sensing device, wherein the data is corrected to data “1111”.
JP14890598A 1998-05-29 1998-05-29 Smoke detector Expired - Fee Related JP3783991B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP14890598A JP3783991B2 (en) 1998-05-29 1998-05-29 Smoke detector

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP14890598A JP3783991B2 (en) 1998-05-29 1998-05-29 Smoke detector

Publications (2)

Publication Number Publication Date
JPH11339153A JPH11339153A (en) 1999-12-10
JP3783991B2 true JP3783991B2 (en) 2006-06-07

Family

ID=15463299

Family Applications (1)

Application Number Title Priority Date Filing Date
JP14890598A Expired - Fee Related JP3783991B2 (en) 1998-05-29 1998-05-29 Smoke detector

Country Status (1)

Country Link
JP (1) JP3783991B2 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2013161007A1 (en) * 2012-04-24 2013-10-31 パイオニア株式会社 Density calculation device and method

Families Citing this family (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP6515317B2 (en) * 2014-08-06 2019-05-22 パナソニックIpマネジメント株式会社 Particle detector
CN106574898B (en) * 2014-10-31 2019-07-12 松下知识产权经营株式会社 Particle detection sensor
JP5907498B1 (en) * 2014-10-31 2016-04-26 パナソニックIpマネジメント株式会社 Particle detection sensor
WO2017183597A1 (en) * 2016-04-20 2017-10-26 三菱電機株式会社 Microbody detection device

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2013161007A1 (en) * 2012-04-24 2013-10-31 パイオニア株式会社 Density calculation device and method

Also Published As

Publication number Publication date
JPH11339153A (en) 1999-12-10

Similar Documents

Publication Publication Date Title
KR101913973B1 (en) Particle detection sensor
JP5974143B2 (en) Photodetection of particle characteristics
RU2351918C2 (en) Method of estimation of diffused light signal and detector of diffused light for method realisation
CN108956402B (en) High-sensitivity dust concentration detection method with composite multi-photosensitive-area structure
JP2020537148A (en) Calibration of particle counter components
CN110987745A (en) Particulate matter detection device and detection method
TR201811181T4 (en) Control of eggs in the presence of blood.
JP3588535B2 (en) Smoke detector
US4510438A (en) Coincidence correction in particle analysis system
JP3783991B2 (en) Smoke detector
JP3357132B2 (en) Spectrophotometric method for measuring the concentration of an analyte and a spectrophotometer for implementing the method
JPH08159949A (en) Particle detection device
JP2011128078A (en) Measuring method of dust concentration in gas, and operation method of combustion facility
JP3927197B2 (en) Smoke detector
WO2019176610A1 (en) Particle sensor, electronic apparatus comprising particle sensor, and particle information detection method
JP3193670B2 (en) Smoke detector
JP3780701B2 (en) Smoke detector
JP3312712B2 (en) Optimal threshold setting method for high-sensitivity smoke detector
JP2001174394A (en) Particle size distribution measuring device
WO2022210258A1 (en) Smoke detector
CN116106524B (en) blood analysis device
JPH11241996A (en) Crystal defect measuring apparatus and method
JPH0230659B2 (en)
JPS6211127A (en) Apparatus for detecting fine particle
GB2367358A (en) Smoke detecting apparatus

Legal Events

Date Code Title Description
A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20060206

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20060214

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20060310

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090324

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100324

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100324

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110324

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120324

Year of fee payment: 6

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130324

Year of fee payment: 7

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20140324

Year of fee payment: 8

LAPS Cancellation because of no payment of annual fees