JP3319055B2 - Quartz crystal type radical beam monitor - Google Patents

Quartz crystal type radical beam monitor

Info

Publication number
JP3319055B2
JP3319055B2 JP19568093A JP19568093A JP3319055B2 JP 3319055 B2 JP3319055 B2 JP 3319055B2 JP 19568093 A JP19568093 A JP 19568093A JP 19568093 A JP19568093 A JP 19568093A JP 3319055 B2 JP3319055 B2 JP 3319055B2
Authority
JP
Japan
Prior art keywords
film
radical
radicals
electrode
crystal oscillator
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP19568093A
Other languages
Japanese (ja)
Other versions
JPH0750258A (en
Inventor
隆司 三上
英明 田原
浩二 三宅
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nissin Electric Co Ltd
Original Assignee
Nissin Electric Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nissin Electric Co Ltd filed Critical Nissin Electric Co Ltd
Priority to JP19568093A priority Critical patent/JP3319055B2/en
Publication of JPH0750258A publication Critical patent/JPH0750258A/en
Application granted granted Critical
Publication of JP3319055B2 publication Critical patent/JP3319055B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Description

【発明の詳細な説明】DETAILED DESCRIPTION OF THE INVENTION

【0001】[0001]

【産業上の利用分野】本発明は、半導体デバイス等の各
種薄膜デバイスを形成する等のために基体上に成膜する
にあたり、その制御のために、基体に照射されるラジカ
ル量を評価する水晶振動子式ラジカルビームモニタに関
する。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a quartz crystal for evaluating the amount of radicals irradiated on a substrate for controlling the film formation on the substrate for forming various thin film devices such as semiconductor devices. The present invention relates to an oscillator type radical beam monitor.

【0002】[0002]

【従来の技術】半導体デバイス等の各種薄膜デバイスを
形成する等のために、基体上に膜を形成する手法とし
て、真空蒸着法やスパッタ蒸着法等が知られている。こ
のような成膜においては、膜厚、物質蒸発量、成膜速度
等を制御する目的で、水晶振動子式膜厚モニタが多用さ
れている。
2. Description of the Related Art As a technique for forming a film on a substrate for forming various thin film devices such as a semiconductor device, a vacuum deposition method, a sputter deposition method and the like are known. In such film formation, a crystal oscillator type film thickness monitor is frequently used for the purpose of controlling the film thickness, the amount of material evaporation, the film formation speed, and the like.

【0003】水晶振動子式膜厚モニタは、図3に示すよ
うに、ATカット(熱膨張係数の最も小さい方向にカッ
ト)した厚さtの水晶振動子81の両面に、通常金(A
u)や銀(Ag)からなる電極82を設け、この電極に
交流電源83を接続した基本構造を備えている。この水
晶振動子81の両面の電極82に高周波電圧を印加し、
該電圧の周波数が、水晶振動子81の厚さtと弾性定数
で決まる固有振動数fq に達すると、厚みすべりの定在
波振動が生まれる。このとき fq =v/2t(v:定在波の伝播速度) の関係が成り立つ。
As shown in FIG. 3, a quartz-crystal-type film thickness monitor is provided with gold (A) on both surfaces of an AT-cut (cut in the direction of the smallest thermal expansion coefficient) thickness t quartz crystal 81.
An electrode 82 made of u) or silver (Ag) is provided, and a basic structure is provided in which an AC power supply 83 is connected to this electrode. A high-frequency voltage is applied to the electrodes 82 on both surfaces of the quartz oscillator 81,
When the frequency of the voltage reaches a natural frequency f q determined by the thickness t and the elastic constant of the crystal resonator 81, a standing wave vibration of a thickness shear is generated. At this time, the following relationship holds: f q = v / 2t (v: propagation velocity of the standing wave).

【0004】ここで、振動子81の厚みがΔtだけ変化
したとすると、固有振動数はΔfだけ変化し、Δf/f
q =−Δt/tとなる。また、表面に密度ρ、厚さdの
膜が堆積し、厚みがΔt変化したとすると、Δf/fq
=−ρd/ρq t (ρq :水晶の密度)となる。膜の
堆積により振動数がfになったとすると、Δf=f−f
q となり、変化後の振動数は、f=fq (1−ρd/ρ
q t)となる。
If the thickness of the vibrator 81 changes by Δt, the natural frequency changes by Δf, and Δf / f
q = −Δt / t. If a film having a density ρ and a thickness d is deposited on the surface and the thickness changes by Δt, then Δf / f q
= -Ρd / ρ q t: the (ρ q density of the crystal). Assuming that the frequency becomes f due to the deposition of the film, Δf = ff
q , and the frequency after the change is f = f q (1-ρd / ρ
q t).

【0005】これにより、振動子81の周波数の減少は
電極82に堆積する膜の膜厚に比例することになり、成
膜の際の膜厚、物質蒸発量、成膜速度等のモニタとして
利用することができる。この水晶振動子を用いた膜厚モ
ニタは、光学的な手法による膜厚モニタに比べ、構造・
操作が簡便で、光学的手法に劣らない感度を有している
ことにより、工業的に広く用いられている。
As a result, the decrease in the frequency of the vibrator 81 is proportional to the film thickness of the film deposited on the electrode 82, and is used as a monitor for the film thickness during film formation, the amount of material evaporation, the film formation rate, and the like. can do. The film thickness monitor using this crystal unit has a structure and
It is widely used industrially because of its simple operation and sensitivity equal to that of the optical method.

【0006】さらにこの水晶振動子式膜厚モニタは、基
体へのラジカルビーム照射操作を含む成膜プロセスにお
いて、基体上に照射されるラジカル量をモニタすること
にも応用されている。例えば図4に示すように、予め、
水晶振動子式膜厚モニタのセンサ部9の水晶振動子91
上の電極92面に、照射されるラジカルと化合する物質
を含む膜93を形成しておき、該膜のラジカルとの反応
による状態の変化に伴う水晶振動子91の振動数の変化
から、ラジカル照射量を評価することが行われている。
例えば使用ラジカルが酸素ラジカルの場合、膜93がA
g膜とされ、この膜の酸素ラジカル照射の下での酸化に
よる重量変化に伴う振動子91の振動数変化をみて、ラ
ジカル照射量を評価することが行われている。
Further, the crystal oscillator type film thickness monitor is also applied to monitoring the amount of radicals irradiated on a substrate in a film forming process including a radical beam irradiation operation on the substrate. For example, as shown in FIG.
Quartz crystal unit 91 of sensor unit 9 of crystal unit thickness monitor
A film 93 containing a substance that is combined with the irradiated radical is formed on the surface of the upper electrode 92, and the change in the frequency of the crystal unit 91 caused by the change in the state of the film due to the reaction with the radical causes the radical Evaluation of the irradiation dose has been performed.
For example, when the radicals used are oxygen radicals,
A g film is used, and the amount of radical irradiation is evaluated by observing a change in the frequency of the vibrator 91 accompanying a change in weight due to oxidation of the film under the irradiation of oxygen radicals.

【0007】[0007]

【発明が解決しようとする課題】しかしながら、水晶振
動子上の膜の化学反応に伴う膜状態の変化を利用した従
来のラジカルビームモニタにおいては、ラジカルと該膜
の構成原子とが反応するためには、該膜の厚み方向にラ
ジカル(ラジカルであった元素)が拡散していく必要が
ある。ラジカル(ラジカルであった元素)の拡散速度、
及びその後のラジカルと該膜の構成原子の反応の速度
は、時間の関数である。従って、長時間に亘りラジカル
照射量をモニタする場合、該膜の構成原子と反応したラ
ジカル量の測定値には大きな誤差が生じる。
However, in a conventional radical beam monitor utilizing a change in film state due to a chemical reaction of a film on a quartz oscillator, a radical reacts with a constituent atom of the film. Requires that radicals (elements that were radicals) diffuse in the thickness direction of the film. Diffusion rate of radicals (elements that were radicals),
And the rate of the subsequent reaction of the radicals with the constituent atoms of the film is a function of time. Therefore, when monitoring the amount of radical irradiation for a long time, a large error occurs in the measured value of the amount of radicals reacted with the constituent atoms of the film.

【0008】また、成膜を行う容器内の真空を破らない
ロードロックタイプ等の成膜装置において、モニタの水
晶振動子を交換せずに複数回の成膜を行う場合には、同
一条件での成膜で再現性良くラジカル量を測定する事が
出来ない。また、反応生成物の堆積に伴い、該膜の膜厚
及び密度の2つの因子が同時に変化するため、該膜の構
成原子と反応したラジカル量を正確に測定することは一
層困難になる。
In a film-forming apparatus of a load lock type or the like which does not break the vacuum in a film-forming container, when film formation is performed a plurality of times without replacing the crystal oscillator of the monitor, the same conditions are used. It is not possible to measure the amount of radicals with good reproducibility in film formation. Further, the two factors of the film thickness and density change simultaneously with the deposition of the reaction product, so that it becomes more difficult to accurately measure the amount of radicals that have reacted with the constituent atoms of the film.

【0009】そこで本発明は、ラジカル照射を含むプロ
セスにより基体上に膜を形成するにあたり、該基体上に
照射されるラジカル量を、長時間に亘り安定して測定す
ることができ、従って成膜制御を長時間に亘り安定して
行うことができる、安価な水晶振動子式ラジカルビーム
モニタを提供することを課題とする。
In the present invention, when a film is formed on a substrate by a process including radical irradiation, the amount of radicals irradiated on the substrate can be stably measured over a long period of time. It is an object of the present invention to provide an inexpensive crystal oscillator type radical beam monitor capable of performing control stably for a long time.

【0010】[0010]

【課題を解決するための手段】前記課題を解決する本発
明の水晶振動子式ラジカルビームモニタは、水晶振動子
に電極を設け、該電極を介して水晶振動子に交流電場を
印加し、該電極上への物質付着による該水晶振動子の振
動周波数の変化をみることで、被成膜基体上に形成され
る膜の厚さをモニタできる水晶振動子式膜厚モニタの前
記電極に、被成膜基体に成膜時照射されるラジカルと化
合することにより気体となる物質を含む膜を形成して構
するとともに前記電極上に形成された前記膜がラジカ
ル照射を受けることで発生する気体の組成を分析する手
段を組み合わせたことを特徴とする。
A crystal oscillator type radical beam monitor according to the present invention which solves the above-mentioned problems is provided with an electrode on a crystal oscillator, applies an AC electric field to the crystal oscillator via the electrode, and By observing the change in the oscillation frequency of the quartz oscillator due to the substance attached to the electrode, the electrode of the quartz oscillator type film thickness monitor capable of monitoring the thickness of the film formed on the substrate on which the film is to be formed is provided. A film containing a substance which becomes a gas by being combined with a radical irradiated upon film formation on the film formation substrate is formed and formed, and the film formed on the electrode is
To analyze the composition of the gas generated by exposure to
It is characterized by combining stages .

【0011】また、ラジカルとラジカル被照射膜に含ま
れる物質との反応を促進するため、前記水晶振動子を加
熱するヒータを設けることも考えられる。なお、本発明
モニタを使用する場合の成膜手法としては、真空蒸着、
スパッタ等種々の方法が考えられる。
It is also conceivable to provide a heater for heating the quartz oscillator in order to promote the reaction between radicals and a substance contained in the film to be irradiated with radicals. In addition, when using the monitor of the present invention, as a film forming technique, vacuum deposition,
Various methods such as sputtering can be considered.

【0012】[0012]

【作用】本発明モニタによると、その水晶振動子上の電
極のラジカル被照射面に、ラジカルと化合することによ
り気体となる物質を含む膜が形成されている。このモニ
タにラジカルが照射されると、ラジカルは前記膜に含ま
れるラジカル被照射物質と化合して気体となり、その
分、該膜の膜厚は減少する。該膜の膜厚減少に伴う水晶
振動子の周波数の変化を検出することによりラジカル照
射量が評価される。具体的には例えば、周波数変化から
前記ラジカル被照射物質のうちラジカルと反応した分の
重量(原子数或いは分子数)を求める。一方、ラジカル
照射により該モニタから発生する気体の組成を分析する
手段(ガス組成分析器等)により分析し、ガス組成分析
手段により求められる前記気体分子の構成元素比、つま
り被照射物質とラジカルであった元素との構成比と、前
記ラジカル被照射物質のうちラジカルと反応して消失し
た分の重量(原子数或いは分子数)とから、該膜に含ま
れる物質と化合したラジカル量(数)、即ち照射された
ラジカル量(数)を評価する。
According to the monitor of the present invention, a film containing a substance which becomes a gas by being combined with radicals is formed on the surface of the electrode on the quartz crystal resonator to be irradiated with radicals. When the monitor is irradiated with radicals, the radicals combine with the radical-irradiated substances contained in the film to form a gas, and the film thickness of the film is reduced accordingly. The amount of radical irradiation is evaluated by detecting a change in the frequency of the quartz oscillator due to a decrease in the thickness of the film. Specifically, for example, the weight (the number of atoms or the number of molecules) of the substance to be irradiated with the radical is determined from the frequency change. On the other hand, the composition of the gas generated from the monitor by the radical irradiation is analyzed by a means for analyzing the gas (gas composition analyzer or the like), and the ratio of the constituent elements of the gas molecules obtained by the gas composition analyzing means, that is, the irradiation target substance and the radical The amount (number) of radicals combined with the substance contained in the film is determined from the composition ratio with the existing element and the weight (atom number or molecular number) of the substance irradiated with radicals that has disappeared by reacting with the radical. That is, the amount (number) of irradiated radicals is evaluated.

【0013】前記水晶振動子を加熱するヒータを設けて
おくときには、ラジカルとラジカル被照射物質との反応
が促進される。
When a heater for heating the quartz oscillator is provided, the reaction between the radical and the substance to be irradiated with the radical is promoted.

【0014】[0014]

【実施例】以下、本発明の実施例を図面を参照して説明
する。図1は本発明の1実施例である水晶振動子式ラジ
カルビームモニタ500を用いてラジカル量を測定する
実験装置の概略構成を示し、図2は該モニタ500のセ
ンサ部5の構成を示している。
Embodiments of the present invention will be described below with reference to the drawings. FIG. 1 shows a schematic configuration of an experimental apparatus for measuring the amount of radicals using a quartz oscillator type radical beam monitor 500 according to one embodiment of the present invention, and FIG. 2 shows a configuration of a sensor unit 5 of the monitor 500. I have.

【0015】センサ部5は図3に示す従来の水晶振動子
式膜厚モニタのセンサ部8と殆ど同一の構造である。A
Tカットされた水晶振動子51(共振周波数5MHz)
の両面に金(Au)からなる電極52を設け、この電極
を介して水晶振動子51に高周波電圧を印加するように
したものである。電極52の片方のラジカル被照射面に
は、照射されるラジカルと反応して気体となる物質を含
む膜(ラジカル被照射膜)53が形成されている。両電
極52には交流電源54が接続されている。
The sensor section 5 has almost the same structure as the sensor section 8 of the conventional crystal resonator type film thickness monitor shown in FIG. A
T-cut crystal unit 51 (resonance frequency 5 MHz)
An electrode 52 made of gold (Au) is provided on both surfaces of the device, and a high-frequency voltage is applied to the crystal unit 51 via this electrode. A film (radical irradiated film) 53 containing a substance which reacts with irradiated radicals and turns into a gas is formed on one of the radical irradiation surfaces of the electrode 52. An AC power supply 54 is connected to both electrodes 52.

【0016】このラジカル量測定実験装置によると、予
め排気装置2の運転により所定の真空度に維持された真
空容器1内で、ラジカル源4からラジカル4aがセンサ
部5の膜53上に照射され、ラジカル4aの照射量に応
じて膜53の膜厚が減少し、水晶振動子51の振動周波
数が変化する。この周波数の変化を該ラジカルビームモ
ニタ500の計測部50の測定回路にてモニタすること
により、ラジカル4aと反応した、膜53に含まれる物
質の原子数又は分子数をモニタすることができる。ま
た、ガス組成分析器3により、モニタセンサ部5から発
生する気体に含まれる元素の種類と、その原子数比を検
出する。この原子数比及びラジカル4aと反応した、膜
53に含まれる物質の原子数又は分子数とから、照射さ
れ膜53との反応に寄与したラジカル4aの量(数)を
求めることができる。
According to this experimental apparatus for measuring the amount of radicals, the radicals 4a are irradiated from the radical source 4 onto the film 53 of the sensor section 5 in the vacuum vessel 1 maintained at a predetermined degree of vacuum by the operation of the exhaust device 2 in advance. The thickness of the film 53 decreases in accordance with the irradiation amount of the radicals 4a, and the vibration frequency of the crystal unit 51 changes. By monitoring the change in the frequency with the measuring circuit of the measuring unit 50 of the radical beam monitor 500, the number of atoms or molecules of the substance contained in the film 53 that has reacted with the radical 4a can be monitored. In addition, the gas composition analyzer 3 detects the types of elements contained in the gas generated from the monitor sensor unit 5 and their atomic ratios. From the atomic ratio and the number of atoms or molecules of the substance contained in the film 53 that has reacted with the radicals 4a, the amount (number) of the radicals 4a that have been irradiated and contributed to the reaction with the film 53 can be determined.

【0017】ラジカル4aと反応した、膜53に含まれ
る物質の原子又は分子は、気体分子の1構成元素として
該膜上から消失するため、順次照射されるラジカルは該
膜の表層部分で該膜に含まれる物質と反応する。従って
時間の関数であるラジカル(ラジカルであった元素)の
拡散速度の影響を受けず、連続して長時間に亘り或いは
多数回(合計すると長時間)に亘り正確にラジカル照射
量(数)を測定することができる。
The atoms or molecules of the substance contained in the film 53 that have reacted with the radicals 4a disappear from the film as one constituent element of the gas molecules, so that the sequentially irradiated radicals are emitted at the surface layer of the film. Reacts with substances contained in. Therefore, it is not affected by the diffusion rate of radicals (elements that were radicals) as a function of time, and the radical irradiation amount (number) can be accurately calculated over a long period of time or many times (total of a long time). Can be measured.

【0018】また、ラジカル照射により膜53の密度は
変化せず、膜厚乃至膜重量のみが変化するため、正確に
ラジカル照射量(数)を測定することができる。次に、
本発明のラジカルビームモニタ500を使用し、ラジカ
ル4aとして酸素ラジカルを用いて、ラジカル照射量を
測定した具体例について説明する。真空容器1内で、ラ
ジカルビームモニタ500として、センサ部5の水晶振
動子電極52の片方の表面に、真空蒸着法にて厚さ1μ
mの炭素(C)膜53を形成したものを用い、該膜53
に向けて300mm離れた位置から、ラジカル源4を用
いて出力500Wで酸素ラジカル4aを照射した。この
間容器1内を排気装置2の運転により5×10-5Tor
rに維持した。この間1時間に亘り、ラジカル4aの照
射時間と水晶振動子51の周波数との間には直線関係が
見られ、安定した酸素ラジカル4aのモニタリングが行
われた。
The radical irradiation amount (number) can be accurately measured because the density of the film 53 is not changed by the radical irradiation, and only the film thickness or the film weight is changed. next,
A specific example in which the radical irradiation amount is measured using the radical beam monitor 500 of the present invention and oxygen radicals as the radicals 4a will be described. In the vacuum vessel 1, as a radical beam monitor 500, a thickness of 1 μm was formed on one surface of the crystal unit electrode 52 of the sensor unit 5 by a vacuum evaporation method.
m having a carbon (C) film 53 formed thereon.
Oxygen radicals 4a were irradiated at a power of 500 W using the radical source 4 from a position 300 mm away from. During this time, the inside of the container 1 is operated at 5 × 10 −5 Torr by operating the exhaust device 2.
r. During this time, a linear relationship was observed between the irradiation time of the radicals 4a and the frequency of the quartz oscillator 51 for one hour, and stable monitoring of the oxygen radicals 4a was performed.

【0019】また、比較例として、センサ部9の水晶振
動子電極92の片方の表面に真空蒸着法により厚さ1μ
mのAg膜93を形成したラジカルビームモニタを用
い、その他の条件は前記本発明実施の具体例と同様にし
て、1時間に亘り酸素ラジカル4aの照射量を測定し
た。この間酸素ラジカル4aの照射時間と水晶振動子5
1の周波数とは、ラジカル照射開始後5分間は直線関係
にあったがその後次第に不安定になり、安定した酸素ラ
ジカルのモニタリングが行われなかった。
As a comparative example, a thickness of 1 μm was applied to one surface of the crystal unit electrode 92 of the sensor unit 9 by a vacuum evaporation method.
The irradiation amount of the oxygen radicals 4a was measured for one hour using a radical beam monitor on which an Ag film 93 of m was formed in the same manner as in the specific example of the present invention. During this time, the irradiation time of the oxygen radical 4a and the quartz oscillator 5
The frequency of 1 had a linear relationship for 5 minutes after the start of radical irradiation, but then became unstable gradually, and stable monitoring of oxygen radicals was not performed.

【0020】以上の結果から、本発明のラジカルビーム
モニタ500を用いた実施例では、比較例に比べて、長
時間に亘り安定したモニタリングが行えることが分か
る。なお、本発明のラジカルビームモニタは、以上の説
明ではラジカル量測定実験装置において用いられたが、
実際には、ラジカル照射手段を含む成膜装置において用
いられる。
From the above results, it can be seen that in the embodiment using the radical beam monitor 500 of the present invention, more stable monitoring can be performed for a longer time than in the comparative example. Although the radical beam monitor of the present invention has been used in the radical amount measurement experimental apparatus in the above description,
Actually, it is used in a film forming apparatus including radical irradiation means.

【0021】また、本発明のラジカルビームモニタは、
光学的にラジカル照射量をモニタする手段に比べて、構
造が簡単であり、安価に提供することができる。。
Further, the radical beam monitor of the present invention comprises:
Compared with a means for optically monitoring the amount of radical irradiation, the structure is simpler and can be provided at low cost. .

【0022】[0022]

【発明の効果】本発明によると、ラジカル照射を含むプ
ロセスにより基体上に膜を形成するにあたり、該基体上
に照射されるラジカル量を、長時間に亘り安定して測定
することができ、従って成膜制御を長時間に亘り安定し
て行える、安価な水晶振動子式ラジカルビームモニタを
提供することができる。
According to the present invention, when a film is formed on a substrate by a process including radical irradiation, the amount of radicals irradiated on the substrate can be measured stably over a long period of time. It is possible to provide an inexpensive crystal oscillator type radical beam monitor capable of performing film formation control stably for a long time.

【図面の簡単な説明】[Brief description of the drawings]

【図1】本発明の一実施例を備えたラジカル量測定実験
装置を示す図である。
FIG. 1 is a diagram showing a radical amount measurement experiment apparatus provided with an embodiment of the present invention.

【図2】図1の装置で使用する本発明の一実施例の要部
の構成図である。
FIG. 2 is a configuration diagram of a main part of one embodiment of the present invention used in the apparatus of FIG. 1;

【図3】従来の水晶振動子式膜厚モニタの要部の構成図
である。
FIG. 3 is a configuration diagram of a main part of a conventional crystal resonator type film thickness monitor.

【図4】従来の水晶振動子式ラジカルビームモニタの要
部の構成図である。
FIG. 4 is a configuration diagram of a main part of a conventional crystal oscillator type radical beam monitor.

【符号の説明】[Explanation of symbols]

1 真空容器 2 排気装置 3 ガス組成分析器 4 ラジカル源 4a ラジカル 500 ラジカルビームモニタ 50 モニタ500の計測部 5 モニタ50のセンサ部 51 水晶振動子 52 Au電極 53 ラジカル被照射膜 DESCRIPTION OF SYMBOLS 1 Vacuum container 2 Exhaust device 3 Gas composition analyzer 4 Radical source 4a Radical 500 Radical beam monitor 50 Measurement part of monitor 500 5 Sensor part of monitor 50 51 Quartz crystal oscillator 52 Au electrode 53 Radical irradiation film

───────────────────────────────────────────────────── フロントページの続き (56)参考文献 特開 平1−318909(JP,A) 特開 昭57−106113(JP,A) (58)調査した分野(Int.Cl.7,DB名) H01L 21/203,21/363 C23C 14/00 - 14/58 G01B 17/02 ──────────────────────────────────────────────────続 き Continuation of the front page (56) References JP-A-1-318909 (JP, A) JP-A-57-106113 (JP, A) (58) Fields investigated (Int. Cl. 7 , DB name) H01L 21 / 203,21 / 363 C23C 14/00-14/58 G01B 17/02

Claims (2)

(57)【特許請求の範囲】(57) [Claims] 【請求項1】 水晶振動子に電極を設け、該電極を介し
て水晶振動子に交流電場を印加し、該電極上への物質付
着による該水晶振動子の振動周波数の変化をみること
で、被成膜基体上に形成される膜の厚さをモニタできる
水晶振動子式膜厚モニタの前記電極に、被成膜基体に成
膜時照射されるラジカルと化合することにより気体とな
る物質を含む膜を形成して構成するとともに前記電極上
に形成された前記膜がラジカル照射を受けることで発生
する気体の組成を分析する手段を組み合わせたことを特
徴とする水晶振動子式ラジカルビームモニタ。
1. An electrode is provided on a crystal oscillator, an AC electric field is applied to the crystal oscillator via the electrode, and a change in the oscillation frequency of the crystal oscillator due to the attachment of a substance on the electrode is observed. A substance which becomes a gas by being combined with radicals irradiated at the time of film formation on the film formation substrate is applied to the electrode of the crystal oscillator type film thickness monitor capable of monitoring the thickness of the film formed on the film formation substrate. on the electrode as well as constructed by forming a film comprising
Occurs when the film formed on the surface is exposed to radical irradiation
1. A crystal oscillator type radical beam monitor characterized by combining means for analyzing the composition of a gas to be changed.
【請求項2】 前記水晶振動子を加熱するための加熱ヒ
ータを備えた請求項1記載の水晶振動子式ラジカルビー
ムモニタ。
2. The crystal oscillator type radical beam monitor according to claim 1, further comprising a heater for heating said crystal oscillator.
JP19568093A 1993-08-06 1993-08-06 Quartz crystal type radical beam monitor Expired - Fee Related JP3319055B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP19568093A JP3319055B2 (en) 1993-08-06 1993-08-06 Quartz crystal type radical beam monitor

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP19568093A JP3319055B2 (en) 1993-08-06 1993-08-06 Quartz crystal type radical beam monitor

Publications (2)

Publication Number Publication Date
JPH0750258A JPH0750258A (en) 1995-02-21
JP3319055B2 true JP3319055B2 (en) 2002-08-26

Family

ID=16345221

Family Applications (1)

Application Number Title Priority Date Filing Date
JP19568093A Expired - Fee Related JP3319055B2 (en) 1993-08-06 1993-08-06 Quartz crystal type radical beam monitor

Country Status (1)

Country Link
JP (1) JP3319055B2 (en)

Families Citing this family (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO1997015699A2 (en) * 1995-10-27 1997-05-01 Specialty Coating Systems, Inc. Method and apparatus for the deposition of parylene af4 onto semiconductor wafers
FR2771810B1 (en) * 1997-11-28 2000-02-11 Sgs Thomson Microelectronics IMPROVING THE REAL-TIME THICKNESS MEASUREMENT OF A MATERIAL DEPOSITED IN AN EVAPORATION DEPOSIT INSTALLATION
JP5231914B2 (en) * 2007-09-27 2013-07-10 独立行政法人産業技術総合研究所 Oxidizing active chemical species sensor, oxidizing active chemical species abundance measuring method, and oxidizing active chemical species abundance measuring apparatus
JP5121645B2 (en) * 2008-09-25 2013-01-16 日立造船株式会社 Film thickness detector for vacuum deposition equipment
JP2012178475A (en) * 2011-02-25 2012-09-13 Ulvac Japan Ltd Plasma doping apparatus, and plasma doping method
CN106092002A (en) * 2016-06-07 2016-11-09 应达利电子股份有限公司 Quartz-crystal resonator, monitor and monitoring method for film forming thickness monitoring

Also Published As

Publication number Publication date
JPH0750258A (en) 1995-02-21

Similar Documents

Publication Publication Date Title
Grate et al. Flexural plate wave devices for chemical analysis
Penza et al. Relative humidity sensing by PVA-coated dual resonator SAW oscillator
US6945090B2 (en) Method and apparatus for monitoring molecular contamination of critical surfaces using coated SAWS
US5795993A (en) Acoustic-wave sensor for ambient monitoring of a photoresist-stripping agent
Galipeau et al. Surface acoustic wave microsensors and applications
Caliendo et al. High-frequency, high-sensitivity acoustic sensor implemented on ALN/Si substrate
Penza et al. SAW chemical sensing using poly-ynes and organometallic polymer films
Pierce et al. A temperature insensitive quartz microbalance
JP3319055B2 (en) Quartz crystal type radical beam monitor
Von Schickfus et al. Improving the SAW gas sensor: device, electronics and sensor layer
JP4476496B2 (en) High-frequency measurement circuit with intrinsic noise reduction for resonant chemical sensors
JPH08304379A (en) Crystal oscillator sensor
JP2004340766A (en) Apparatus for detecting chemical substance
Avramov et al. Investigations on plasma-polymer-coated SAW and STW resonators for chemical gas-sensing applications
KR100698439B1 (en) Surface acoustic wave gas sensor for detecting volatile chemicals
JPH05281177A (en) Gas sensor
Anisimkin et al. Gas thermal conductivity sensor based on SAW
JP2795052B2 (en) Method of forming boron element-containing film
Caliendo et al. Surface acoustic wave H/sub 2/sensor on silicon substrate
Georgieva et al. Detection of NH3 by quartz crystal microbalance coated with Ta2O5
JPH1092789A (en) Etching speed evaluation method
JPS63200028A (en) Method and apparatus for measuring weight by means of piezoelectric vibrator
Falconer et al. An activation process for increased sensitivity of a SAW gas microsensor
JPH0722482A (en) Film-thickness measuring device and thin-film forming device using film-thickness measuring device
Volrabova et al. Piezoelectric Microbalance and its use in the Study of Volatile Inhibitors

Legal Events

Date Code Title Description
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20020521

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090621

Year of fee payment: 7

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090621

Year of fee payment: 7

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100621

Year of fee payment: 8

LAPS Cancellation because of no payment of annual fees