JP3318540B2 - 端部ポンピングが行われるジグザグスラブレーザーゲイン媒体 - Google Patents
端部ポンピングが行われるジグザグスラブレーザーゲイン媒体Info
- Publication number
- JP3318540B2 JP3318540B2 JP17068499A JP17068499A JP3318540B2 JP 3318540 B2 JP3318540 B2 JP 3318540B2 JP 17068499 A JP17068499 A JP 17068499A JP 17068499 A JP17068499 A JP 17068499A JP 3318540 B2 JP3318540 B2 JP 3318540B2
- Authority
- JP
- Japan
- Prior art keywords
- slab
- optical amplifier
- longitudinal axis
- footprint
- end faces
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Expired - Lifetime
Links
Classifications
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01S—DEVICES USING THE PROCESS OF LIGHT AMPLIFICATION BY STIMULATED EMISSION OF RADIATION [LASER] TO AMPLIFY OR GENERATE LIGHT; DEVICES USING STIMULATED EMISSION OF ELECTROMAGNETIC RADIATION IN WAVE RANGES OTHER THAN OPTICAL
- H01S3/00—Lasers, i.e. devices using stimulated emission of electromagnetic radiation in the infrared, visible or ultraviolet wave range
- H01S3/09—Processes or apparatus for excitation, e.g. pumping
- H01S3/091—Processes or apparatus for excitation, e.g. pumping using optical pumping
- H01S3/094—Processes or apparatus for excitation, e.g. pumping using optical pumping by coherent light
- H01S3/0941—Processes or apparatus for excitation, e.g. pumping using optical pumping by coherent light of a laser diode
- H01S3/09415—Processes or apparatus for excitation, e.g. pumping using optical pumping by coherent light of a laser diode the pumping beam being parallel to the lasing mode of the pumped medium, e.g. end-pumping
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01S—DEVICES USING THE PROCESS OF LIGHT AMPLIFICATION BY STIMULATED EMISSION OF RADIATION [LASER] TO AMPLIFY OR GENERATE LIGHT; DEVICES USING STIMULATED EMISSION OF ELECTROMAGNETIC RADIATION IN WAVE RANGES OTHER THAN OPTICAL
- H01S3/00—Lasers, i.e. devices using stimulated emission of electromagnetic radiation in the infrared, visible or ultraviolet wave range
- H01S3/05—Construction or shape of optical resonators; Accommodation of active medium therein; Shape of active medium
- H01S3/06—Construction or shape of active medium
- H01S3/0602—Crystal lasers or glass lasers
- H01S3/0606—Crystal lasers or glass lasers with polygonal cross-section, e.g. slab, prism
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01S—DEVICES USING THE PROCESS OF LIGHT AMPLIFICATION BY STIMULATED EMISSION OF RADIATION [LASER] TO AMPLIFY OR GENERATE LIGHT; DEVICES USING STIMULATED EMISSION OF ELECTROMAGNETIC RADIATION IN WAVE RANGES OTHER THAN OPTICAL
- H01S3/00—Lasers, i.e. devices using stimulated emission of electromagnetic radiation in the infrared, visible or ultraviolet wave range
- H01S3/05—Construction or shape of optical resonators; Accommodation of active medium therein; Shape of active medium
- H01S3/06—Construction or shape of active medium
- H01S3/0619—Coatings, e.g. AR, HR, passivation layer
- H01S3/0625—Coatings on surfaces other than the end-faces
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01S—DEVICES USING THE PROCESS OF LIGHT AMPLIFICATION BY STIMULATED EMISSION OF RADIATION [LASER] TO AMPLIFY OR GENERATE LIGHT; DEVICES USING STIMULATED EMISSION OF ELECTROMAGNETIC RADIATION IN WAVE RANGES OTHER THAN OPTICAL
- H01S3/00—Lasers, i.e. devices using stimulated emission of electromagnetic radiation in the infrared, visible or ultraviolet wave range
- H01S3/05—Construction or shape of optical resonators; Accommodation of active medium therein; Shape of active medium
- H01S3/08—Construction or shape of optical resonators or components thereof
- H01S3/08095—Zig-zag travelling beam through the active medium
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01S—DEVICES USING THE PROCESS OF LIGHT AMPLIFICATION BY STIMULATED EMISSION OF RADIATION [LASER] TO AMPLIFY OR GENERATE LIGHT; DEVICES USING STIMULATED EMISSION OF ELECTROMAGNETIC RADIATION IN WAVE RANGES OTHER THAN OPTICAL
- H01S3/00—Lasers, i.e. devices using stimulated emission of electromagnetic radiation in the infrared, visible or ultraviolet wave range
- H01S3/09—Processes or apparatus for excitation, e.g. pumping
- H01S3/091—Processes or apparatus for excitation, e.g. pumping using optical pumping
- H01S3/094—Processes or apparatus for excitation, e.g. pumping using optical pumping by coherent light
- H01S3/09408—Pump redundancy
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01S—DEVICES USING THE PROCESS OF LIGHT AMPLIFICATION BY STIMULATED EMISSION OF RADIATION [LASER] TO AMPLIFY OR GENERATE LIGHT; DEVICES USING STIMULATED EMISSION OF ELECTROMAGNETIC RADIATION IN WAVE RANGES OTHER THAN OPTICAL
- H01S3/00—Lasers, i.e. devices using stimulated emission of electromagnetic radiation in the infrared, visible or ultraviolet wave range
- H01S3/10—Controlling the intensity, frequency, phase, polarisation or direction of the emitted radiation, e.g. switching, gating, modulating or demodulating
- H01S3/11—Mode locking; Q-switching; Other giant-pulse techniques, e.g. cavity dumping
- H01S3/1123—Q-switching
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01S—DEVICES USING THE PROCESS OF LIGHT AMPLIFICATION BY STIMULATED EMISSION OF RADIATION [LASER] TO AMPLIFY OR GENERATE LIGHT; DEVICES USING STIMULATED EMISSION OF ELECTROMAGNETIC RADIATION IN WAVE RANGES OTHER THAN OPTICAL
- H01S3/00—Lasers, i.e. devices using stimulated emission of electromagnetic radiation in the infrared, visible or ultraviolet wave range
- H01S3/14—Lasers, i.e. devices using stimulated emission of electromagnetic radiation in the infrared, visible or ultraviolet wave range characterised by the material used as the active medium
- H01S3/16—Solid materials
- H01S3/1601—Solid materials characterised by an active (lasing) ion
- H01S3/1603—Solid materials characterised by an active (lasing) ion rare earth
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01S—DEVICES USING THE PROCESS OF LIGHT AMPLIFICATION BY STIMULATED EMISSION OF RADIATION [LASER] TO AMPLIFY OR GENERATE LIGHT; DEVICES USING STIMULATED EMISSION OF ELECTROMAGNETIC RADIATION IN WAVE RANGES OTHER THAN OPTICAL
- H01S3/00—Lasers, i.e. devices using stimulated emission of electromagnetic radiation in the infrared, visible or ultraviolet wave range
- H01S3/14—Lasers, i.e. devices using stimulated emission of electromagnetic radiation in the infrared, visible or ultraviolet wave range characterised by the material used as the active medium
- H01S3/16—Solid materials
- H01S3/163—Solid materials characterised by a crystal matrix
- H01S3/164—Solid materials characterised by a crystal matrix garnet
- H01S3/1643—YAG
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01S—DEVICES USING THE PROCESS OF LIGHT AMPLIFICATION BY STIMULATED EMISSION OF RADIATION [LASER] TO AMPLIFY OR GENERATE LIGHT; DEVICES USING STIMULATED EMISSION OF ELECTROMAGNETIC RADIATION IN WAVE RANGES OTHER THAN OPTICAL
- H01S3/00—Lasers, i.e. devices using stimulated emission of electromagnetic radiation in the infrared, visible or ultraviolet wave range
- H01S3/23—Arrangements of two or more lasers not provided for in groups H01S3/02 - H01S3/22, e.g. tandem arrangements of separate active media
- H01S3/2308—Amplifier arrangements, e.g. MOPA
Landscapes
- Physics & Mathematics (AREA)
- Electromagnetism (AREA)
- Engineering & Computer Science (AREA)
- Plasma & Fusion (AREA)
- Optics & Photonics (AREA)
- Lasers (AREA)
Description
ッドステートレーザーで使用するための光学的増幅器に
関し、更に詳細には、ソリッドステートレイジング材
料、例えば稀土類でドープしたイットリウム−アルミニ
ウム−ガーネット(YAG)結晶でできた長いスラブ、
及びこのソリッドステートレイジング材料を比較的高エ
ネルギの準安定状態に励起するための複数のダイオード
アレイを含む光学的増幅器に関する。本発明の装置にお
いては、ポンピング光を増幅光と共整合させる(coa
ligned)ことにより吸収長さを比較的長くし、及
びかくして全体としての効率が高く、そのためその形体
は、吸収長さが比較的短いYbやTm等のソリッドステ
ートレイジング材料を使用する光学的増幅器に特に適し
ている。
ミニウム−ガーネット(YAG)結晶等のレイジング材
料製の長い全体に矩形の又は正方形のスラブを含む光学
的増幅器が周知である。スラブは、全体に矩形の又は正
方形の断面を備えて形成され、一対の両端面及び四つの
横面を構成する。スラブに使用される材料は、比較的高
屈折率であるように選択される。スラブは、比較的低屈
折率の冷媒で冷却される。このようにスラブと冷媒との
界面で屈折率が変化するため、スラブの一方の端面に差
し向けられた入射光ビームは、スラブに亘ってジグザグ
パターンをなして内部で全反射される。このように、こ
うした形体を持つ光学的増幅器は、ジグザグ増幅器とし
て周知である。このようなジグザグ増幅器を使用するソ
リッドステートレーザーの例は、米国特許第4,73
0,324号、米国特許第4,852,109号、及び
米国特許第5,305,345号に開示されている。
高エネルギの準安定状態まで励起するため、例えば、米
国特許第4,852,109号、米国特許第4,94
9,346号、米国特許第4,984,246号、米国
特許第5,271,031号、米国特許第5,305,
345号、米国特許第5,317,585号、米国特許
第5,351,251号に開示されているように、ダイ
オードアレイ等の様々なポンピング源が使用された。多
くの周知の光学的増幅器では、ポンピング源は、ポンピ
ング源からの光が、スラブの横面に沿って、スラブの長
さ方向軸線に対してほぼ垂直に差し向けられるように、
形成されている。このような形体を持つ光学的増幅器の
例は、米国特許第4,127,827号、米国特許第
4,852,109号、米国特許第5,271,031
号、米国特許第5,305,345号、米国特許第5,
646,773号、及び米国特許第5,651,021
号に開示されている。1996年12月12日に出願さ
れた本出願人に譲渡された現在継続中の米国特許出願第
08/766,434号には、複数のダイオードアレイ
がスラブの横面に沿って差し向けられた形体が開示され
ている。米国特許出願第08/766,434号に開示
のシステムは、全体に均等なエネルギ分布をスラブに提
供するため、スラブの長さ方向軸線に対してほぼ垂直に
差し向けられたダイオードアレイ並びに横面に対して所
定角度で差し向けられたダイオードアレイを使用する。
残念なことに、側部励起形体(side pumped
configuration)として周知のこのよう
な形体は、ポンピング光の吸収長さをほんの数mmに制限
してしまう。このような側部励起形体を、YbやTmで
ドープした材料等の比較的低吸収率のソリッドステート
レイジング材料を使用する光学的増幅器とともに使用す
る場合には、吸収効率が比較的低く、及びかくして全体
としての効率が下がる結果となる。
的は、吸収長さが比較的長く、そのため、全体としての
効率を比較的高くできる光学的増幅器を提供することで
ある。
学的増幅器において、両端面及びこれらの端面間の複数
の横面を画成する所定の断面を持ち、前記両端面間に画
成された長さ方向軸線が前記横面とほぼ平行であるソリ
ッドステートレイジング材料製の長いスラブと、励起さ
れた光を前記長さ方向軸線とほぼ平行な軸線に沿って差
し向けることを可能にするための手段であって、前記両
端面のうちの一方の端面に隣接して前記スラブに形成さ
れた第1のフットプリントを含み、前記端面のうちの一
方の端面は、前記長さ方向軸線に対して所定角度をなし
て形成されており、前記フットプリントにより、前記横
面の一つの面に対してほぼ垂直な所定角度に差し向けら
れたポンプビームを前記長さ方向軸線に沿って差し向け
ることができる手段と、一つ又はそれ以上のポンプビー
ム源と、を備えて構成されている。本願の他の発明は、
光を増幅するための光学的増幅器において、長さ方向軸
線を画定し、且つこの長さ方向軸線に対して所定の角度
をなして形成された両端面及び複数の横面を画定する、
ソリッドステートレイジング材料製の長いスラブと、差
し向けられた励起光が前記長さ方向軸線に平行に伝搬で
きるように、前記スラブに形成されかつ前記スラブの一
方の端面と隣接して前記横面に配置された第1のウィン
ドウであって、一方の端面及び前記端面と隣接した前記
横面の一部に沿って第1のコーティングを付けることに
よって形成された第1のウィンドウと、第1のポンプ源
と、を備えて構成されている。
おいて、主発振器と、光学的増幅器とを備え、この光学
的増幅器が、長さ方向軸線を画成し、且つこの長さ方向
軸線に対して所定の角度をなして形成された両端面及び
複数の横面を画定する、ソリッドステートレイジング材
料製の長いスラブと、励起された光を前記長さ方向軸線
とほぼ平行な軸線に沿って差し向けることを可能にする
ための手段であって、前記両端面のうちの一方の端面と
隣接して前記スラブに形成された第1のフットプリント
を含む手段と、前記フットプリントにより、前記横面の
一つの面に対してほぼ垂直な所定角度に差し向けられた
ポンプビームを前記長さ方向軸線に沿って差し向けるこ
とができることと、一つ又はそれ以上のポンプ源と、を
有して構成されている。本願の更に別の発明は、入力光
源を有する主発振器において、全反射器と、前記入力光
源から光を受け入れ且つ出力ビームを発生するための光
学的増幅器とを備え、この光学的増幅器が、長さ方向軸
線を画成し、この長さ方向軸線に対して所定の角度をな
して形成された両端面及び横面を持つ、ソリッドステー
トレイジング材料製の長いスラブと、励起された光を前
記長さ方向軸線とほぼ平行な軸線に沿って差し向けるこ
とを可能にするための手段であって、前記両端面のうち
の一方の端面と隣接して前記スラブに形成された第1の
フットプリントを含む手段と、前記フットプリントによ
り、前記横面の一つの面に対してほぼ垂直な所定角度に
差し向けられたポンプビームを前記長さ方向軸線に沿っ
て差し向けることができることと、一つ又はそれ以上の
ポンプ源と、前記出力ビームの一部を透過するための外
部カップラーと、を有して構成されている。
プしたイットリウム−アルミニウム−ガーネット(YA
G)スラブ等のソリッドステートレイジング材料製の長
いスラブを含む光学的増幅器に関する。吸収長さを比較
的長くするため、及びかくして全体としての効率を高め
るため、本発明による光学的増幅器は、励振エネルギを
端部から注入する、即ち端部ポンピング(end pu
mping)を行う。この場合、励振エネルギが注入さ
れた光、即ち励起された光(pumped ligh
t)は、増幅光と共整合し、そのため、吸収長さが比較
的長くなり、全体としての効率が高くなる。共整合した
ポンプ励起源を、ポンプ波長の反射防止コーティングで
形成されたフットプリント(footprints)即
ちウィンドウを含むスラブ横面に差し向ける。レイジン
グ軸線に沿ってポンプビームを内部反射させるため、端
面は長さ方向軸線に対して約45°の角度に形成されて
いる。これによって、励起された光は、スラブ内で、増
幅光に関して共軸をなして反射される。励起された光の
吸収をスラブの中央部分に限定するため、スラブは、ス
ラブの両端部分がドープされていない母材(undop
ed host material)から形成されてお
り、長さ方向軸線に沿ったスラブの中央部分がドープさ
れた(doped)母材から形成された複合材料で形成
されているのがよい。このような形体により、残留熱レ
ンズ作用(thermal lensing)が比較的
低く、実際上、複屈折を生じない。
の説明を読むことによって容易に理解されるであろう。
附した光学的増幅器に関する。本発明の重要な特徴によ
れば、光学的増幅器20は、端部ポンピングを使用す
る。このような形体では、励起された光は、増幅光とス
ラブの長さ方向軸線方向に沿って共整合し、その結果、
吸収長さが比較的長くなり、かくして全体としての効率
が比較的高くなる。本発明は、吸収係数が比較的低いソ
リッドステートレイジング材料、例えばYbドープ剤及
びTmドープ剤を使用した材料を使用する光学的増幅器
に特に適している。以下に更に詳細に説明するように、
励起された光の吸収をスラブの中央領域に限定し、反り
が生じ易いことが知られているスラブ両端の加熱を減少
することができる。
長いスラブ22及び一対のポンプ励起ビーム源(pum
ped beam source)24及び26を含
む。長いスラブ22は、全体に矩形又は正方形の断面を
持つように形成されており、一対の両端面28及び3
0、及び四つの横面32を有する。本明細書中で使用さ
れているように、長さ方向軸線即ちレイジング軸線34
は、両端面28と30との間で横面32とほぼ平行な軸
線であると定義される。主軸は、ジグザグパターンの方
向での水平方向軸線であると定義され、これに対し副軸
は、主軸に対してほぼ垂直な垂直方向軸線であると定義
される。主軸及び副軸は、両方とも、長さ方向軸線に対
して垂直である。
うに全体にジグザグパターンで内部反射させる比較的高
屈折率のソリッドステートレイジング材料で形成されて
おり、いわゆるジグザグ増幅器を形成する。このような
ジグザグ増幅器は、スラブ内で入力ビームに平均熱勾配
を加え、均質ゲイン媒体を効果的に提供することによっ
て、輝度目盛り表示(brightness scal
ing)が可能であることが知られている。スラブ22
の端部の加熱を減少するため、スラブ22は、拡散接合
された複合材料として形成されているのがよい。更に詳
細には、スラブ22の両端部34及び36は、スラブ2
2の長さ方向軸線34に沿って、イットリウム−アルミ
ニウム−ガーネット(YAG)等のドープされていない
母材から形成できる。これらの端部34及び36は、Y
bがドープされたYAG(Yb:YAG)等のドープさ
れた母材から形成されたスラブ22の中央部分38に拡
散接合でき、二つの拡散接合界面40及び42を形成す
る。このような拡散接合技術は、例えば米国特許第5,
441,803号に詳細に記載されているように当該技
術分野で周知である。同特許に触れたことにより、その
特許に開示されている内容は本明細書中に組入れたもの
とする。このような形体は、吸収長さをスラブ22の中
央部分38に限定する。吸収長さをスラブ22の中央部
分38に限定することによって、光学的ポンピングによ
る熱は中央部分38で発生し、反り易い端部分34及び
36から遠ざけられる。上文中に説明したように、励起
された光はスラブ22に亘って反射される。このように
ポンプビーム24及び26は、図1に概略に示すよう
に、両端部34及び36の夫々でスラブ22の両横面3
2に進入できる。光がスラブ22に進入できるようにす
るため、一つ又はそれ以上のフットプリント即ちウィン
ドウ41及び43が両端部34及び36に形成される。
これらのウィンドウ41及び43は、ポンプビーム24
及び26の波長に合わせて選択された反射防止コーティ
ング等のコーティングによって形成できる。図1に示す
ように、反射防止コーティングは、横面32並びに両端
面28及び30に配置されており、これによって、入力
ビーム及びポンプビームの損失を小さくする。ポンプビ
ーム24及び26は、スラブ22の両端部34及び36
の両横面32に差し向けられる。図1に示すように、ポ
ンプビーム24及び26は、両端面28及び30から全
反射され、そのため、これらのポンプビームは、長さ方
向軸線34と共整合する。上文中に論じた複合スラブ2
2を使用することによって、スラブ22の吸収長さを中
央部分38に限定する。
較的小さな角度で、例えば端面の法線に対して10°以
下の角度で差し向けられる。入力ビーム44の入射角度
を制限し、比較的高屈折率の材料を選択することによっ
て、入力光ビーム44はスラブ22に沿って図示のよう
に全体としてジグザグパターンをなして全反射され、増
幅ビーム46として反対側の端面30から出力され、結
合される。スラブに亘るジグザグパターン、案内された
ダイオード光による均等なポンピングと組み合わせた温
度勾配、及び絶縁されたスラブ縁部により、熱レンズ作
用が比較的小さく、複屈折が実際上生じない。
プ光が吸収される領域の温度が上昇するということは、
当該技術分野で周知である。上文中に説明したように、
例えばダイオードアレイからのポンプビームは、ウィン
ドウ即ちフットプリント41及び43を通して端面32
にほぼ垂直に差し向けられ且つ両端面28及び30から
反射され、ポンプビームを、長さ方向軸線に沿って差し
向ける。スラブ22を冷却するため、様々な冷却方法を
使用できる。伝導冷却システム及び対流冷却システムの
両方が適している。伝導冷却システムの一例は、例えば
カリフォルニア州サンディエゴのサーマルエレクトロン
社又はカリフォルニア州サンホセのSDL社が製造して
いる高強度衝突(high intensity im
pingement)クーラーにスラブ22を取り付け
ることである。
小にするため、図3及び図4に概略に示すインジウムや
金等の軟質金属でできた薄い伝熱材層を使用できる。組
み立て中、クーラー/インジウム/スラブアッセンブリ
を約150℃の高温で圧力下に置き、インジウムを流動
させ、接触抵抗をなくすのがよい。直接冷却又は対流冷
却を行うため、スラブ22を、不感帯即ちデッドゾーン
において、スラブ面上を流れる薄い乱流冷媒層でシール
し、米国特許第5,646,773号に詳細に論じられ
ているように熱を除去するのがよい。同特許に触れたこ
とにより、その特許に開示されている内容は本明細書中
に組入れたものとする。例示の対流冷却システムは、例
えば、本出願人に譲渡された米国特許第5,646,7
73号に開示されている。同特許に触れたことにより、
その特許に開示されている内容は本明細書中に組入れた
ものとする。
2の横面32を、全内部反射を保持する消失性のウェー
ブコーティング(evanescent wave c
oating)48として役立つ誘電体でコーティング
する。図1に示すように、消失性のウェーブコーティン
グ48は、一方の端面28、30から、反対側の端面と
隣接した拡散接合界面42を僅かに越えた領域まで延び
ているのがよい。消失性のウェーブコーティング48に
より、スラブ22を衝突クーラーに直接付着した状態に
置くことができる。MgF2又はSiO2の厚い層(2
μm乃至4μm)を消失性のウェーブコーティング48
として使用できる。
備えた高出力ダイオードアレイ56を使用し、ポンプビ
ーム24及び26を発生できる。図2に概略に示す適当
なアナモフィックレンズアッセンブリ50を使用するこ
とによって、スラブ22を効率的にポンピングできる。
アナモフィックレンズアッセンブリは、ダイオードアレ
イ56とスラブ22に設けられたウィンドウ41及び4
3との間に配置された一対のレンズ52及び54を含
む。ダイオードアレイ56は、集積した複数のダイオー
ドバー58を含み、これらのダイオードバーには個々の
マイクロレンズ60が設けられている。マイクロレンズ
60は、バー58の速軸の拡散を約1°に減少すると同
時に、遅軸の全角度拡散を7°程度にする。アナモフィ
ックレンズアッセンブリ50を使用することによって、
ダイオードアレイ56の出力をスラブ22のウィンドウ
41及び43上の入力領域上に結像でき、例えば、2×
1cmのダイオードアレイを2×2mm程度の小さな領域上
に結像できる。
センブリ50の代わりにレンズダクト(lense d
uct)を使用するのがよい。適当なレンズダクトは、
米国特許第5,307,430号に開示されている。同
特許に触れたことにより、その特許に開示されている内
容は本明細書中に組入れたものとする。
器電力増幅器(MOPA)を形成するのに使用できる。
図3に示すこの実施例では、主発振器72はスラブ22
の入力端面28に差し向けられている。主発振器は、例
えば、上文中に論じた発振器であってもよく、以下に図
4と関連して例示する発振器であってもよい。上文中に
論じたように、端面への入力ビームは、端面に対する法
線に対して10°以下でなければならない。
主発振器74を形成するのに使用できる。この実施例で
は、入力ビームは、反射器76からQスイッチ78及び
偏光子80を経由して全スラブ22の入力端面28まで
反射される。出力ビームは、外部連結された出力ビーム
86を透過する外部カップラー(outcouple
r)84に差し向けられる。
及び変更が可能であるということは明らかである。かく
して、添付の特許請求の範囲の範疇には、本発明を上文
中に詳細に説明した以外の態様で実施できるということ
が含まれるということは理解されるべきである
アッセンブリ及びダイオードアレイの概略図である。
ポンピングの概略図である。
器(MOPA)の形体で使用される、図3と同様の図で
ある。
Claims (12)
- 【請求項1】 光学的増幅器において、 両端面及びこれらの端面間の複数の横面を画成する所定
の断面を持ち、前記両端面間に画成された長さ方向軸線
が前記横面とほぼ平行であるソリッドステートレイジン
グ材料製の長いスラブと、 励起された光を前記長さ方向軸線とほぼ平行な軸線に沿
って差し向けることを可能にするための手段であって、
前記両端面のうちの一方の端面に隣接して前記スラブに
形成された第1のフットプリントを含み、前記端面のう
ちの一方の端面は、前記長さ方向軸線に対して所定角度
をなして形成されており、前記フットプリントにより、
前記横面の一つの面に対してほぼ垂直な所定角度に差し
向けられたポンプビームを前記長さ方向軸線に沿って差
し向けることができる手段と、 一つ又はそれ以上のポンプビーム源と、 を備える光学的増幅器。 - 【請求項2】 請求項1に記載の光学的増幅器におい
て、前記第1のフットプリントは、前記端面のうちの一
方の端面及びこの一方の端面と隣接した横面の一部に配
置されたコーティングを含む光学的増幅器。 - 【請求項3】 請求項1又は2に記載の光学的増幅器に
おいて、前記可能にするための手段が、前記両端面のう
ちの他方の端面と隣接して前記スラブに形成された第2
のフットプリントを含み、このフットプリントは、前記
端面の他方の端面及びこの他方の端面と隣接した横面の
一部に配置されたコーティングを含み、前記他方の端面
は、前記長さ方向軸線に対して所定角度をなして形成さ
れており、前記第2のフットプリントにより、前記横面
の他の面に対してほぼ垂直な所定角度に差し向けられた
ポンプビームを前記長さ方向軸線に沿って差し向けるこ
とができる光学的増幅器。 - 【請求項4】 請求項1ないし3のいずれかに記載の光
学的増幅器において、前記スラブは、前記スラブに沿っ
た前記励起された光の吸収を制限するための手段を含む
光学的増幅器。 - 【請求項5】 請求項1ないし4のいずれかに記載の光
学的増幅器において、前記一つ又はそれ以上ポンプビー
ム源には、一つ又はそれ以上のダイオードアレイが含ま
れる光学的増幅器。 - 【請求項6】 請求項4に記載の光学的増幅器におい
て、前記制限する手段が、二つ又はそれ以上の材料から
つくられかつ二つ又はそれ以上の部分を有する複合スラ
ブを備え、前記二つの部分が非吸収部分と吸収部分とを
画成し、前記吸収部分を形成するドープされたソリッド
ステートレイジング材料がTmがドープされたYAGで
ある光学的増幅器。 - 【請求項7】 光を増幅するための光学的増幅器におい
て、 長さ方向軸線を画定し、且つこの長さ方向軸線に対して
所定の角度をなして形成された両端面及び複数の横面を
画定する、ソリッドステートレイジング材料製の長いス
ラブと、差し向けられた励起光が前記長さ方向軸線に平行に伝搬
できるように 、前記スラブに形成されかつ前記スラブの
一方の端面と隣接して前記横面に配置された第1のウィ
ンドウであって、一方の端面及び前記端面と隣接した前
記横面の一部に沿って第1のコーティングを付けること
によって形成された第1のウィンドウと、 第1のポンプ源と、 を備える光学的増幅器。 - 【請求項8】 請求項7に記載の光学的増幅器におい
て、前記ソリッドステートレイジング材料は、増幅光を
前記スラブに沿ってジグザグパターンをなして反射させ
るように比較的高い屈折率を持つように選択されている
光学的増幅器。 - 【請求項9】 請求項8に記載の光学的増幅器におい
て、前記スラブに形成されかつ前記スラブの反対側の端
面と隣接して配置された第2のウィンドウ及び第2のポ
ンプ源を更に有し、前記ウィンドウは、一方の端面及び
前記端面と隣接した前記横面の一部に沿って第1のコー
ティングを付けることによって形成されている光学的増
幅器。 - 【請求項10】 主発振器電力増幅器において、 主発振器と、 光学的増幅器とを備え、この光学的増幅器が、 長さ方向軸線を画成し、且つこの長さ方向軸線に対して
所定の角度をなして形成された両端面及び複数の横面を
画定する、ソリッドステートレイジング材料製の長いス
ラブと、 励起された光を前記長さ方向軸線とほぼ平行な軸線に沿
って差し向けることを可能にするための手段であって、
前記両端面のうちの一方の端面と隣接して前記スラブに
形成された第1のフットプリントを含む手段と、 前記フットプリントにより、前記横面の一つの面に対し
てほぼ垂直な所定角度に差し向けられたポンプビームを
前記長さ方向軸線に沿って差し向けることができること
と、 一つ又はそれ以上のポンプ源と、を有する主発振器電力
増幅器。 - 【請求項11】 入力光源を有する主発振器において、 全反射器と、 前記入力光源から光を受け入れ且つ出力ビームを発生す
るための光学的増幅器とを備え、この光学的増幅器が、 長さ方向軸線を画成し、この長さ方向軸線に対して所定
の角度をなして形成された両端面及び横面を持つ、ソリ
ッドステートレイジング材料製の長いスラブと、 励起された光を前記長さ方向軸線とほぼ平行な軸線に沿
って差し向けることを可能にするための手段であって、
前記両端面のうちの一方の端面と隣接して前記スラブに
形成された第1のフットプリントを含む手段と、 前記フットプリントにより、前記横面の一つの面に対し
てほぼ垂直な所定角度に差し向けられたポンプビームを
前記長さ方向軸線に沿って差し向けることができること
と、 一つ又はそれ以上のポンプ源と、 前記出力ビームの一部を透過するための外部カップラー
と、を有する主発振器。 - 【請求項12】 請求項11に記載の主発振器におい
て、更に、Qスイッチ及び偏光子を備え、前記全反射
器、Qスイッチ及び偏光子が入力光源を形成する主発振
器。
Applications Claiming Priority (2)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
US09/111080 | 1998-07-07 | ||
US09/111,080 US6094297A (en) | 1998-07-07 | 1998-07-07 | End pumped zig-zag slab laser gain medium |
Publications (2)
Publication Number | Publication Date |
---|---|
JP2000036631A JP2000036631A (ja) | 2000-02-02 |
JP3318540B2 true JP3318540B2 (ja) | 2002-08-26 |
Family
ID=22336498
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP17068499A Expired - Lifetime JP3318540B2 (ja) | 1998-07-07 | 1999-06-17 | 端部ポンピングが行われるジグザグスラブレーザーゲイン媒体 |
Country Status (5)
Country | Link |
---|---|
US (2) | US6094297A (ja) |
EP (1) | EP0973236B1 (ja) |
JP (1) | JP3318540B2 (ja) |
CA (1) | CA2267817C (ja) |
DE (1) | DE69919946T2 (ja) |
Families Citing this family (48)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US6873639B2 (en) * | 1993-05-28 | 2005-03-29 | Tong Zhang | Multipass geometry and constructions for diode-pumped solid-state lasers and fiber lasers, and for optical amplifier and detector |
JP2000012935A (ja) * | 1998-06-26 | 2000-01-14 | Sony Corp | レーザー励起装置 |
US6094297A (en) * | 1998-07-07 | 2000-07-25 | Trw Inc. | End pumped zig-zag slab laser gain medium |
US6268956B1 (en) * | 1998-07-07 | 2001-07-31 | Trw Inc. | End pumped zig-zag slab laser gain medium |
US6418156B1 (en) * | 1998-11-12 | 2002-07-09 | Raytheon Company | Laser with gain medium configured to provide an integrated optical pump cavity |
US6414973B1 (en) | 1999-08-31 | 2002-07-02 | Ruey-Jen Hwu | High-power blue and green light laser generation from high powered diode lasers |
US20030026314A1 (en) * | 1999-08-31 | 2003-02-06 | Ruey-Jen Hwu | High-power blue and green light laser generation from high-powered diode lasers |
US6661567B2 (en) * | 2000-12-06 | 2003-12-09 | Bookham Technology Plc | Optical amplifier, optical amplifier hybrid assembly and method of manufacture |
US6904069B2 (en) * | 2000-12-29 | 2005-06-07 | The Regents Of The University Of California | Parasitic oscillation suppression in solid state lasers using optical coatings |
US6625193B2 (en) * | 2001-01-22 | 2003-09-23 | The Boeing Company | Side-pumped active mirror solid-state laser for high-average power |
US6700913B2 (en) | 2001-05-29 | 2004-03-02 | Northrop Grumman Corporation | Low cost high integrity diode laser array |
US6822994B2 (en) * | 2001-06-07 | 2004-11-23 | Northrop Grumman Corporation | Solid-state laser using ytterbium-YAG composite medium |
US7065121B2 (en) * | 2001-07-24 | 2006-06-20 | Gsi Group Ltd. | Waveguide architecture, waveguide devices for laser processing and beam control, and laser processing applications |
DE10137069A1 (de) * | 2001-07-28 | 2003-02-20 | Haas Laser Gmbh & Co Kg | Vorrichtung zum optischen Pumpen eines laseraktiven Festkörpers |
DE10139753A1 (de) * | 2001-08-13 | 2003-03-13 | Med Laserzentrum Luebeck Gmbh | Longitudinal gepumpter Laser mit Pumplichtführung |
US6658036B1 (en) * | 2002-06-27 | 2003-12-02 | The United States Of America As Represented By The Secretary Of The Air Force | Lasers and amplifiers based on hybrid slab active mirrors |
US7173956B2 (en) | 2003-02-12 | 2007-02-06 | Northrop Grumman Corporation | Electrically controlled uniform or graded reflectivity electro-optic mirror |
US6967766B2 (en) | 2003-04-29 | 2005-11-22 | Raytheon Company | Zigzag slab laser amplifier with integral reflective surface and method |
US7639721B2 (en) * | 2003-09-22 | 2009-12-29 | Laser Energetics, Inc. | Laser pumped tunable lasers |
US7034992B2 (en) * | 2003-10-08 | 2006-04-25 | Northrop Grumman Corporation | Brightness enhancement of diode light sources |
US7087447B2 (en) * | 2003-10-28 | 2006-08-08 | The Board Of Trustees Of The Leland Stanford Junior University | Method for fabricating zig-zag slabs for solid state lasers |
US7388895B2 (en) * | 2003-11-21 | 2008-06-17 | Tsinghua University | Corner-pumping method and gain module for high power slab laser |
WO2005088782A1 (en) * | 2004-03-15 | 2005-09-22 | Adelaide Research & Innovation Pty Ltd | Optical amplifier |
US7123634B2 (en) * | 2004-05-07 | 2006-10-17 | Northrop Grumman Corporation | Zig-zag laser amplifier with polarization controlled reflectors |
AT414285B (de) * | 2004-09-28 | 2006-11-15 | Femtolasers Produktions Gmbh | Mehrfachreflexions-verzögerungsstrecke für einen laserstrahl sowie resonator bzw. kurzpuls-laservorrichtung mit einer solchen verzögerungsstrecke |
US7280571B2 (en) * | 2004-11-23 | 2007-10-09 | Northrop Grumman Corporation | Scalable zig-zag laser amplifier |
CN100356639C (zh) * | 2005-03-29 | 2007-12-19 | 清华大学 | 用于板条形激光晶体的45°斜轴泵浦方法及泵浦模块 |
US7391558B2 (en) * | 2005-10-19 | 2008-06-24 | Raytheon Company | Laser amplifier power extraction enhancement system and method |
US7477674B2 (en) * | 2005-11-14 | 2009-01-13 | The Boeing Company | High-gain solid-state laser |
US7460566B2 (en) * | 2006-05-02 | 2008-12-02 | Northrop Grumman Corporation | Laser power reduction without mode change |
CN100399651C (zh) * | 2006-07-26 | 2008-07-02 | 中国科学院上海光学精密机械研究所 | 反射玻璃实现z形光路的板条激光器 |
US7586958B2 (en) | 2006-09-29 | 2009-09-08 | Northrop Grumman Corporation | Electro-opto switching of unpolarized lasers |
US7924895B2 (en) * | 2007-05-23 | 2011-04-12 | Bae Systems Information And Electronic Systems Integration Inc. | Monolithic diode-pumped laser cavity |
US7822091B2 (en) * | 2008-07-14 | 2010-10-26 | Lockheed Martin Corporation | Inverted composite slab sandwich laser gain medium |
JP2010034413A (ja) * | 2008-07-30 | 2010-02-12 | Hamamatsu Photonics Kk | 固体レーザ装置 |
FR2937470B1 (fr) * | 2008-10-16 | 2010-12-10 | Fibercryst | Systeme amplificateur optique pour laser impulsionnel a base d'un milieu a gain guidant et laser impulisionnel le comprenant |
GB2497106A (en) * | 2011-11-30 | 2013-06-05 | Thales Holdings Uk Plc | Laser System and path length of radiation |
CN105161963B (zh) * | 2015-09-30 | 2018-11-23 | 中国工程物理研究院激光聚变研究中心 | 一种片状激光放大器 |
CN208140648U (zh) * | 2015-10-14 | 2018-11-23 | 阿尔卑斯电气株式会社 | 流路结构体以及测定对象液体的测定装置 |
US10297968B2 (en) | 2015-11-25 | 2019-05-21 | Raytheon Company | High-gain single planar waveguide (PWG) amplifier laser system |
US11114813B2 (en) * | 2015-11-25 | 2021-09-07 | Raytheon Company | Integrated pumplight homogenizer and signal injector for high-power laser system |
US10069270B2 (en) | 2016-02-11 | 2018-09-04 | Raytheon Company | Planar waveguides with enhanced support and/or cooling features for high-power laser systems |
KR101857751B1 (ko) * | 2016-08-24 | 2018-05-15 | 한국원자력연구원 | 슬랩 고체 레이저 증폭장치 |
CN109510060B (zh) * | 2018-12-29 | 2019-10-22 | 润坤(上海)光学科技有限公司 | 一种用于板条激光器的晶体全反射面的减反射结构 |
CN109830879B (zh) * | 2019-03-27 | 2020-07-24 | 中国科学院理化技术研究所 | 一种基于双折射晶体的激光模块及激光器 |
EP4156423A1 (en) | 2021-09-28 | 2023-03-29 | CSEM Centre Suisse d'Electronique et de Microtechnique SA - Recherche et Développement | High-power compact solid-state slab laser amplifier |
CN114824998B (zh) * | 2022-06-30 | 2022-10-18 | 中国工程物理研究院应用电子学研究所 | 一种高交叠效率分布反射式直接液冷激光增益装置 |
CN117134180B (zh) * | 2023-10-26 | 2024-03-08 | 中国工程物理研究院应用电子学研究所 | 一种高功率平面波导激光放大增益模块及激光器 |
Family Cites Families (29)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US3679999A (en) * | 1970-06-12 | 1972-07-25 | Gen Electric | Laser cooling method and apparatus |
US3679996A (en) * | 1970-08-03 | 1972-07-25 | Gen Electric | Face-pumped laser device with laterally positioned pumping means |
US4127827A (en) * | 1977-04-07 | 1978-11-28 | The United States Of America As Represented By The Secretary Of The Air Force | Optimized mode-locked, frequency doubled laser |
US4191931A (en) * | 1978-02-06 | 1980-03-04 | Sanders Associates, Inc. | Cooled laser q-switch |
US5271031A (en) * | 1985-05-01 | 1993-12-14 | Spectra Physics Laser Diode Systems | High efficiency mode-matched solid-state laser with transverse pumping and cascaded amplifier stages |
US4730324A (en) * | 1986-10-02 | 1988-03-08 | General Electric Company | Method and apparatus for compensating for wave front distortion in a slab laser |
US5441803A (en) * | 1988-08-30 | 1995-08-15 | Onyx Optics | Composites made from single crystal substances |
US4852109A (en) * | 1988-12-02 | 1989-07-25 | General Electric Company | Temperature control of a solid state face pumped laser slab by an active siderail |
FR2641421A1 (fr) * | 1989-01-03 | 1990-07-06 | Comp Generale Electricite | Laser a plaque avec pompage optique par source a plage d'emission etroite |
US4949346A (en) * | 1989-08-14 | 1990-08-14 | Allied-Signal Inc. | Conductively cooled, diode-pumped solid-state slab laser |
JPH03190293A (ja) * | 1989-12-20 | 1991-08-20 | Hoya Corp | スラブ型レーザ媒体 |
JPH03203386A (ja) * | 1989-12-29 | 1991-09-05 | Hoya Corp | コンポジット・スラブ型レーザ媒体 |
US5008890A (en) * | 1990-05-01 | 1991-04-16 | Hughes Aircraft Company | Red, green, blue upconversion laser pumped by single wavelength infrared laser source |
US5119382A (en) * | 1990-12-24 | 1992-06-02 | Mcdonnell Douglas Corporation | Tetravalent chromium doped passive Q-switch |
US5235605A (en) * | 1991-02-01 | 1993-08-10 | Schwartz Electro-Optics, Inc. | Solid state laser |
US5200972A (en) * | 1991-06-17 | 1993-04-06 | The United States Of America As Represented By The Secretary Of The Navy | ND laser with co-doped ion(s) pumped by visible laser diodes |
US5317585A (en) * | 1992-08-17 | 1994-05-31 | Hughes Aircraft Company | Laser reflecting cavity with ASE suppression and heat removal |
US5299220A (en) * | 1992-09-08 | 1994-03-29 | Brown David C | Slab laser |
US5305345A (en) * | 1992-09-25 | 1994-04-19 | The United States Of America As Represented By The United States Department Of Energy | Zigzag laser with reduced optical distortion |
US5307430A (en) * | 1992-11-30 | 1994-04-26 | The United States Of America As Represented By The United States Department Of Energy | Lensing duct |
US5351251A (en) * | 1993-03-30 | 1994-09-27 | Carl Zeiss, Inc. | Laser apparatus |
WO1994024734A1 (en) * | 1993-04-21 | 1994-10-27 | The Commonwealth Of Australia | Diode pumped slab laser |
US5408480A (en) * | 1993-07-15 | 1995-04-18 | The United States Of America As Represented By The Administrator Of The National Aeronautics And Space Administration | Laser with optically driven Q-switch |
US5555254A (en) * | 1993-11-05 | 1996-09-10 | Trw Inc. | High brightness solid-state laser with zig-zag amplifier |
US5394420A (en) * | 1994-01-27 | 1995-02-28 | Trw Inc. | Multiform crystal and apparatus for fabrication |
US5717517A (en) * | 1995-01-13 | 1998-02-10 | The Research Foundation Of City College Of New York | Method for amplifying laser signals and an amplifier for use in said method |
US5608742A (en) * | 1995-08-18 | 1997-03-04 | Spectra Physics Lasers, Inc. | Diode pumped, fiber coupled laser with depolarized pump beam |
US5721749A (en) * | 1996-01-30 | 1998-02-24 | Trw Inc. | Laser pulse profile control by modulating relaxation oscillations |
US6094297A (en) * | 1998-07-07 | 2000-07-25 | Trw Inc. | End pumped zig-zag slab laser gain medium |
-
1998
- 1998-07-07 US US09/111,080 patent/US6094297A/en not_active Expired - Lifetime
-
1999
- 1999-03-31 CA CA002267817A patent/CA2267817C/en not_active Expired - Fee Related
- 1999-04-21 EP EP99107344A patent/EP0973236B1/en not_active Expired - Lifetime
- 1999-04-21 DE DE69919946T patent/DE69919946T2/de not_active Expired - Lifetime
- 1999-06-17 JP JP17068499A patent/JP3318540B2/ja not_active Expired - Lifetime
-
2000
- 2000-05-30 US US09/584,011 patent/US6256142B1/en not_active Expired - Lifetime
Also Published As
Publication number | Publication date |
---|---|
EP0973236A3 (en) | 2000-04-05 |
US6094297A (en) | 2000-07-25 |
DE69919946T2 (de) | 2005-01-27 |
JP2000036631A (ja) | 2000-02-02 |
CA2267817C (en) | 2002-02-05 |
EP0973236A2 (en) | 2000-01-19 |
US6256142B1 (en) | 2001-07-03 |
EP0973236B1 (en) | 2004-09-08 |
CA2267817A1 (en) | 2000-01-07 |
DE69919946D1 (de) | 2004-10-14 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
JP3318540B2 (ja) | 端部ポンピングが行われるジグザグスラブレーザーゲイン媒体 | |
JP3803262B2 (ja) | 光増幅器 | |
US6134258A (en) | Transverse-pumped sLAB laser/amplifier | |
US5455838A (en) | Side pumping arrangement | |
EP1454386B1 (en) | Laser containing a distributed gain medium | |
US20030138021A1 (en) | Diode-pumped solid-state thin slab laser | |
US5991315A (en) | Optically controllable cooled saturable absorber Q-switch slab | |
CN201478676U (zh) | 一种侧面泵浦的薄片激光器结构 | |
US7388895B2 (en) | Corner-pumping method and gain module for high power slab laser | |
US5774489A (en) | Transversely pumped solid state laser | |
JP2002530899A (ja) | 低ドーピングされたゲイン媒体バックグラウンドを有するレーザー | |
US6667999B2 (en) | Cooling of high power laser systems | |
EP0974177B1 (en) | Thermally improved slab laser pump cavity apparatus with integral concentrator | |
US6167069A (en) | Thermal lens elimination by gradient-reduced zone coupling of optical beams | |
US7123634B2 (en) | Zig-zag laser amplifier with polarization controlled reflectors | |
JP4627445B2 (ja) | レーザ増幅装置 | |
KR20180023132A (ko) | 슬랩 고체 레이저 증폭장치 | |
JP2005510067A (ja) | ダイオード励起固体スラブ状レーザー | |
EP1788672A2 (en) | Laser containing a distributed gain medium | |
JPH10215014A (ja) | 固体レーザ装置 |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
TRDD | Decision of grant or rejection written | ||
R150 | Certificate of patent or registration of utility model |
Ref document number: 3318540 Country of ref document: JP Free format text: JAPANESE INTERMEDIATE CODE: R150 |
|
R250 | Receipt of annual fees |
Free format text: JAPANESE INTERMEDIATE CODE: R250 |
|
S111 | Request for change of ownership or part of ownership |
Free format text: JAPANESE INTERMEDIATE CODE: R313113 |
|
S531 | Written request for registration of change of domicile |
Free format text: JAPANESE INTERMEDIATE CODE: R313531 |
|
S533 | Written request for registration of change of name |
Free format text: JAPANESE INTERMEDIATE CODE: R313533 |
|
R350 | Written notification of registration of transfer |
Free format text: JAPANESE INTERMEDIATE CODE: R350 |
|
R250 | Receipt of annual fees |
Free format text: JAPANESE INTERMEDIATE CODE: R250 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20080614 Year of fee payment: 6 |
|
R250 | Receipt of annual fees |
Free format text: JAPANESE INTERMEDIATE CODE: R250 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20080614 Year of fee payment: 6 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20090614 Year of fee payment: 7 |
|
R250 | Receipt of annual fees |
Free format text: JAPANESE INTERMEDIATE CODE: R250 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20090614 Year of fee payment: 7 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20100614 Year of fee payment: 8 |
|
R250 | Receipt of annual fees |
Free format text: JAPANESE INTERMEDIATE CODE: R250 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20100614 Year of fee payment: 8 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20110614 Year of fee payment: 9 |
|
R250 | Receipt of annual fees |
Free format text: JAPANESE INTERMEDIATE CODE: R250 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20110614 Year of fee payment: 9 |
|
S111 | Request for change of ownership or part of ownership |
Free format text: JAPANESE INTERMEDIATE CODE: R313113 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20110614 Year of fee payment: 9 |
|
R350 | Written notification of registration of transfer |
Free format text: JAPANESE INTERMEDIATE CODE: R350 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20110614 Year of fee payment: 9 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20120614 Year of fee payment: 10 |
|
R250 | Receipt of annual fees |
Free format text: JAPANESE INTERMEDIATE CODE: R250 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20120614 Year of fee payment: 10 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20130614 Year of fee payment: 11 |
|
R250 | Receipt of annual fees |
Free format text: JAPANESE INTERMEDIATE CODE: R250 |
|
R250 | Receipt of annual fees |
Free format text: JAPANESE INTERMEDIATE CODE: R250 |
|
R250 | Receipt of annual fees |
Free format text: JAPANESE INTERMEDIATE CODE: R250 |
|
R250 | Receipt of annual fees |
Free format text: JAPANESE INTERMEDIATE CODE: R250 |
|
R250 | Receipt of annual fees |
Free format text: JAPANESE INTERMEDIATE CODE: R250 |
|
R250 | Receipt of annual fees |
Free format text: JAPANESE INTERMEDIATE CODE: R250 |
|
R250 | Receipt of annual fees |
Free format text: JAPANESE INTERMEDIATE CODE: R250 |
|
R250 | Receipt of annual fees |
Free format text: JAPANESE INTERMEDIATE CODE: R250 |
|
EXPY | Cancellation because of completion of term |