JP3318301B2 - jig - Google Patents

jig

Info

Publication number
JP3318301B2
JP3318301B2 JP2000006045A JP2000006045A JP3318301B2 JP 3318301 B2 JP3318301 B2 JP 3318301B2 JP 2000006045 A JP2000006045 A JP 2000006045A JP 2000006045 A JP2000006045 A JP 2000006045A JP 3318301 B2 JP3318301 B2 JP 3318301B2
Authority
JP
Japan
Prior art keywords
jig
liquid crystal
thermosetting resin
impregnated
graphite
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP2000006045A
Other languages
Japanese (ja)
Other versions
JP2001194673A (en
Inventor
秀彦 野崎
章博 三浦
信吾 尾藤
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Toyo Tanso Co Ltd
Original Assignee
Toyo Tanso Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Family has litigation
First worldwide family litigation filed litigation Critical https://patents.darts-ip.com/?family=18534636&utm_source=google_patent&utm_medium=platform_link&utm_campaign=public_patent_search&patent=JP3318301(B2) "Global patent litigation dataset” by Darts-ip is licensed under a Creative Commons Attribution 4.0 International License.
Application filed by Toyo Tanso Co Ltd filed Critical Toyo Tanso Co Ltd
Priority to JP2000006045A priority Critical patent/JP3318301B2/en
Priority to KR1020000082556A priority patent/KR20010070357A/en
Priority to TW090100047A priority patent/TW492131B/en
Priority to CNB01101394XA priority patent/CN1180301C/en
Publication of JP2001194673A publication Critical patent/JP2001194673A/en
Application granted granted Critical
Publication of JP3318301B2 publication Critical patent/JP3318301B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Classifications

    • GPHYSICS
    • G02OPTICS
    • G02FOPTICAL DEVICES OR ARRANGEMENTS FOR THE CONTROL OF LIGHT BY MODIFICATION OF THE OPTICAL PROPERTIES OF THE MEDIA OF THE ELEMENTS INVOLVED THEREIN; NON-LINEAR OPTICS; FREQUENCY-CHANGING OF LIGHT; OPTICAL LOGIC ELEMENTS; OPTICAL ANALOGUE/DIGITAL CONVERTERS
    • G02F1/00Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics
    • G02F1/01Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour 
    • G02F1/13Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour  based on liquid crystals, e.g. single liquid crystal display cells
    • G02F1/1303Apparatus specially adapted to the manufacture of LCDs
    • GPHYSICS
    • G02OPTICS
    • G02FOPTICAL DEVICES OR ARRANGEMENTS FOR THE CONTROL OF LIGHT BY MODIFICATION OF THE OPTICAL PROPERTIES OF THE MEDIA OF THE ELEMENTS INVOLVED THEREIN; NON-LINEAR OPTICS; FREQUENCY-CHANGING OF LIGHT; OPTICAL LOGIC ELEMENTS; OPTICAL ANALOGUE/DIGITAL CONVERTERS
    • G02F1/00Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics
    • G02F1/01Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour 
    • G02F1/13Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour  based on liquid crystals, e.g. single liquid crystal display cells
    • G02F1/133Constructional arrangements; Operation of liquid crystal cells; Circuit arrangements
    • G02F1/1333Constructional arrangements; Manufacturing methods
    • G02F1/1335Structural association of cells with optical devices, e.g. polarisers or reflectors
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L23/00Details of semiconductor or other solid state devices
    • H01L23/34Arrangements for cooling, heating, ventilating or temperature compensation ; Temperature sensing arrangements
    • H01L23/345Arrangements for heating
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/80Methods for connecting semiconductor or other solid state bodies using means for bonding being attached to, or being formed on, the surface to be connected
    • H01L2224/80001Methods for connecting semiconductor or other solid state bodies using means for bonding being attached to, or being formed on, the surface to be connected by connecting a bonding area directly to another bonding area, i.e. connectorless bonding, e.g. bumpless bonding
    • H01L2224/808Bonding techniques
    • H01L2224/8085Bonding techniques using a polymer adhesive, e.g. an adhesive based on silicone, epoxy, polyimide, polyester
    • H01L2224/80855Hardening the adhesive by curing, i.e. thermosetting
    • H01L2224/80862Heat curing

Landscapes

  • Physics & Mathematics (AREA)
  • Nonlinear Science (AREA)
  • General Physics & Mathematics (AREA)
  • Engineering & Computer Science (AREA)
  • Chemical & Material Sciences (AREA)
  • Crystallography & Structural Chemistry (AREA)
  • Optics & Photonics (AREA)
  • Manufacturing & Machinery (AREA)
  • Mathematical Physics (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • Computer Hardware Design (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Power Engineering (AREA)
  • Liquid Crystal (AREA)
  • Ceramic Products (AREA)
  • Carbon And Carbon Compounds (AREA)

Description

【発明の詳細な説明】DETAILED DESCRIPTION OF THE INVENTION

【0001】[0001]

【発明の属する技術分野】本発明は、液晶表示板等の製
造工程において、液晶基板を加熱して液晶表示素子を基
板でシールする際に使用される治具に関する。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a jig used for heating a liquid crystal substrate and sealing a liquid crystal display element with the substrate in a process of manufacturing a liquid crystal display panel or the like.

【0002】[0002]

【従来の技術】液晶基板を熱処理する際に用いられる治
具には、均熱性、ダストの抑制及び真空吸脱着時の密着
性が要求されている。
2. Description of the Related Art A jig used for heat-treating a liquid crystal substrate is required to have uniformity of heat, suppression of dust, and adhesion during vacuum adsorption and desorption.

【0003】この均熱性及びダスト抑制を行った黒鉛性
の治具としては、例えば、特開平5−262510号公
報に開示されている黒鉛にガラス状炭素を含浸、被覆し
たものがある。ここでは、800℃での均熱性が高く、
また、ダストの発生量が少なくなり、太陽電池セルや、
液晶表示板等の製造工程において、薄膜半導体素子を基
板表面にCVD等の方法によって形成する際に用いられ
る治具に適したものであることが開示されている。
[0003] As a graphite-like jig having a uniform temperature and a reduced dust, there is, for example, a graphite jig impregnated with glassy carbon and coated as disclosed in JP-A-5-262510. Here, the heat uniformity at 800 ° C. is high,
In addition, the amount of generated dust is reduced, and solar cells and
It is disclosed that it is suitable for a jig used when a thin film semiconductor element is formed on a substrate surface by a method such as CVD in a manufacturing process of a liquid crystal display panel or the like.

【0004】ところで、液晶表示板の製造工程におい
て、液晶表示素子を基板とシール材によって形成された
セルに入れ、焼成・封じ込めを行う工程では、その温度
が200℃前後であり、この際に要求される治具の表面
の温度分布は、600×600mmの面内で±2℃以内
という条件が要求されている。
In the process of manufacturing a liquid crystal display panel, the temperature is about 200 ° C. in a process of putting a liquid crystal display element in a cell formed by a substrate and a sealing material and performing baking and sealing. The temperature distribution on the surface of the jig to be formed is required to be within ± 2 ° C. within a plane of 600 × 600 mm.

【0005】[0005]

【発明が解決しようとする課題】しかしながら、前述の
特開平5−262510号公報に開示されている黒鉛に
ガラス状炭素を含浸、被覆したものは、800℃におい
ては優れた均熱性を示すが、200℃前後では、前記温
度分布の条件を満足しないという問題がある。
However, the graphite impregnated and coated with glassy carbon disclosed in the above-mentioned Japanese Patent Application Laid-Open No. 5-262510 has excellent heat uniformity at 800 ° C. When the temperature is around 200 ° C., there is a problem that the temperature distribution condition is not satisfied.

【0006】また、液晶表示板は、液晶表示素子の基板
内へのシール時の基板と液晶基板用加熱処理用治具との
密着性により製品の平坦度が決定してしまう。ところ
が、黒鉛にガラス状炭素を含浸、被覆した場合、黒鉛に
存在する気孔を十分に封孔することができず、そのた
め、基板を治具に真空吸着した場合、治具の基板と接し
ていない面の気孔からリークしてしまい十分な密着性を
高めることが難しいという問題もある。
Further, the flatness of a liquid crystal display panel is determined by the adhesion between the substrate and the jig for heating the liquid crystal substrate when the liquid crystal display element is sealed in the substrate. However, when graphite is impregnated with glassy carbon and coated, the pores existing in the graphite cannot be sufficiently sealed, and therefore, when the substrate is vacuum-adsorbed to the jig, it does not contact the substrate of the jig. There is also a problem that it leaks from the pores of the surface and it is difficult to sufficiently enhance the adhesion.

【0007】そこで、本発明は、前記問題に鑑みなされ
たものであり、液晶表示板の製造工程において、液晶基
板を加熱処理し、液晶表示素子を基板とシール材によっ
て形成されたセルに入れ、焼成・封じ込めを行う工程に
使用され、200℃前後で、600×600mmの面内
での温度分布が±2℃以内の、液晶基板との密着性を高
めた液晶基板加熱処理用の治具を提供することを目的と
する。
In view of the above, the present invention has been made in view of the above-mentioned problems. In a manufacturing process of a liquid crystal display panel, a liquid crystal substrate is subjected to heat treatment, and a liquid crystal display element is put into a cell formed by the substrate and a sealing material. A jig for heat treatment of a liquid crystal substrate, which is used in a process of baking and confining and has a temperature distribution within a plane of 600 × 600 mm within ± 2 ° C. at around 200 ° C. and having improved adhesion to a liquid crystal substrate. The purpose is to provide.

【0008】[0008]

【課題を解決するための手段】前記課題を解決するため
に、本発明者らは鋭意研究を重ね、黒鉛基材に熱硬化性
樹脂被覆又は、含浸又は、含浸被覆処理し、この熱硬化
性樹脂を硬化した状態で止めることで、200℃前後の
表面均熱性を向上せしめ、ガス透過性を低め、被処理品
との密着性を高めることができることを見出し、本発明
を完成した。
Means for Solving the Problems In order to solve the above-mentioned problems, the present inventors have conducted intensive studies, and coated a graphite substrate with a thermosetting resin or impregnated or impregnated with a coating. By stopping the resin in a cured state, it has been found that the surface uniformity at around 200 ° C. can be improved, the gas permeability can be reduced, and the adhesion to the article to be treated can be increased, and the present invention has been completed.

【0009】すなわち、本発明の治具は、液晶基板を加
熱処理する際に使用される治具であって、硬化された熱
硬化性樹脂で、被覆又は含浸又は含浸被覆された黒鉛か
らなるものである。また、前記硬化処理は、400℃以
下の温度で処理されたものであることが好ましい。ま
た、室温における窒素ガス透過率が1.0×10-82
/s未満であるものが好ましい。
That is, the jig of the present invention is a jig used for heat-treating a liquid crystal substrate, and is made of a cured thermosetting resin and made of graphite coated or impregnated or impregnated. It is. Preferably, the curing treatment is performed at a temperature of 400 ° C. or less. Further, the nitrogen gas permeability at room temperature is 1.0 × 10 −8 m 2
/ S is preferred.

【0010】本発明で使用される黒鉛基材は、一般的な
製法で作製された高純度等方性黒鉛が好ましい。特に、
嵩密度1.7〜1.9g/cm3 、開気孔率が5〜20
%であるものが好ましい。開気孔率が5%未満の場合、
熱硬化性樹脂を含浸被覆する効果が十分に得られず、ま
た、開気孔率が20%を越える場合は、含浸される熱硬
化性樹脂量が多くなり熱伝導が低くなってしまい、表面
の均熱性が悪くなってしまうため好ましくない。
The graphite substrate used in the present invention is preferably high-purity isotropic graphite produced by a general production method. In particular,
Bulk density 1.7 to 1.9 g / cm 3 , open porosity of 5 to 20
% Is preferred. If the open porosity is less than 5%,
If the effect of impregnating and coating the thermosetting resin is not sufficiently obtained, and if the open porosity is more than 20%, the amount of the thermosetting resin to be impregnated becomes large and the heat conduction becomes low, so that the surface It is not preferable because the heat uniformity is deteriorated.

【0011】この黒鉛基材に被覆又は、含浸又は、含浸
被覆する熱硬化性樹脂は、フェノール樹脂、エポキシ樹
脂、ポリイミド樹脂、ポリカルボジイミド樹脂等の樹脂
が例示できる。ここで、被覆とは、熱硬化性樹脂の一部
が黒鉛基材中に含浸し、その他大部分が黒鉛基材表面を
被覆している状態をいい、黒鉛基材への含浸深さが0.
1mm〜1mm、表面の層厚さが1μm〜20μmの場
合を意味する。また、含浸とは、熱硬化性樹脂が黒鉛基
材内部に深く含浸し、黒鉛基材表面を薄く被覆している
状態をいい、黒鉛基材への含浸深さが0.1mm〜50
mm、表面の層厚さが1μm以下の場合を意味する。ま
た、含浸被覆とは、熱硬化性樹脂が黒鉛基材内部に深く
含浸し、また、黒鉛基材表面を厚く被覆している状態を
いい、黒鉛基材への含浸深さが0.1mm〜50mm、
表面の層厚さが20μm以下の場合を意味する。ここ
で、表面への被覆厚さが20μmを越えると、黒鉛に比
べ、熱特性に劣る熱硬化性樹脂の特性が強くなり、表面
の均熱性が悪くなるため好ましくない。
Examples of the thermosetting resin that covers, impregnates, or impregnates the graphite substrate include resins such as phenolic resins, epoxy resins, polyimide resins, and polycarbodiimide resins. Here, the term “coating” refers to a state in which a part of the thermosetting resin is impregnated in the graphite base material, and most of the other parts cover the surface of the graphite base material. .
1 mm to 1 mm, and the thickness of the surface layer is 1 μm to 20 μm. Further, impregnation refers to a state in which the thermosetting resin is deeply impregnated inside the graphite base material, and the graphite base material surface is thinly coated, and the impregnation depth into the graphite base material is 0.1 mm to 50 mm.
mm, meaning that the surface layer thickness is 1 μm or less. In addition, impregnation coating refers to a state in which the thermosetting resin is deeply impregnated inside the graphite base material, and the graphite base material surface is thickly coated, and the impregnation depth of the graphite base material is 0.1 mm to 50mm,
This means that the surface layer thickness is 20 μm or less. Here, if the coating thickness on the surface exceeds 20 μm, the properties of the thermosetting resin, which is inferior in thermal properties to graphite, become stronger and the heat uniformity of the surface becomes worse, which is not preferable.

【0012】熱硬化性樹脂を被覆又は、含浸又は、含浸
被覆する方法は、特に限定されるものではなく、例え
ば、任意の大きさ、形状に加工した前記黒鉛材からなる
治具を、熱硬化性樹脂内に浸漬、若しくは熱硬化性樹脂
を加圧含浸、また、刷毛やスプレー等で任意の面に塗布
する方法等が例示できる。そして、これらの方法を適宜
組み合わせることによって、熱硬化性樹脂を、黒鉛基材
に含浸深さ50mmから、表面への被覆厚さ20μmま
での間で、その含浸深さ、被覆厚さを調整することが可
能となる。
The method of coating, impregnating, or impregnating the thermosetting resin is not particularly limited. For example, a jig made of the graphite material processed into an arbitrary size and shape is heat-cured. Examples of the method include immersion in a conductive resin, impregnation with a thermosetting resin under pressure, and application to an arbitrary surface with a brush or a spray. Then, by appropriately combining these methods, the thermosetting resin is impregnated into the graphite substrate from a depth of 50 mm to a coating thickness of 20 μm on the surface, and the impregnation depth and the coating thickness are adjusted. It becomes possible.

【0013】熱硬化性樹脂を被覆又は、含浸又は、含浸
被覆処理後、400℃以下の温度、好ましくは200〜
300℃で熱硬化性樹脂を硬化させる。熱硬化性樹脂を
完全に炭化させてしまうと、炭化の段階で、熱硬化性樹
脂の収縮若しくはガスの発生等で、黒鉛基材の気孔を完
全に埋めることができないためである。したがって、硬
化の状態で止めることにより、ガスの透過を低くするこ
とができ、ガス透過率を1.0×10-82 /s未満と
することができる。これによって、治具として使用した
ときに、処理物である液晶基板を真空吸着した際に、液
晶基板と接する面以外で、気孔からのガス漏れがないた
め、治具と液晶基板との密着性が向上する。ここで、ガ
ス透過率が1.0×10-82 /s以上であると、治具
と液晶基板との密着性が悪くなるため、ガス透過率を
1.0×10-82 /s未満、好ましくは1.0×10
-92 /s以下とすることが好ましい。
After the thermosetting resin is coated, impregnated or impregnated with a coating, the temperature is 400 ° C. or less, preferably 200 to 400 ° C.
The thermosetting resin is cured at 300 ° C. This is because if the thermosetting resin is completely carbonized, the pores of the graphite base material cannot be completely filled in the carbonization stage due to shrinkage of the thermosetting resin or generation of gas. Therefore, by stopping in a hardened state, gas permeation can be reduced, and gas permeability can be less than 1.0 × 10 −8 m 2 / s. As a result, when used as a jig, when the liquid crystal substrate to be processed is vacuum-adsorbed, no gas leaks from the pores except at the surface in contact with the liquid crystal substrate. Is improved. Here, the gas permeability is 1.0 × 10 -8 m 2 / s or more, jigs and the adhesion between the liquid crystal substrate is deteriorated, the gas permeability 1.0 × 10 -8 m 2 / S, preferably 1.0 × 10
It is preferably at most -9 m 2 / s.

【0014】また、熱硬化性樹脂は保温性を有している
ため、完全に炭化させずに、硬化の段階で止めることに
よって、この保温性を利用することができ、表面の均熱
性を高めることができる。
Further, since the thermosetting resin has a heat retaining property, the heat retaining property can be utilized by stopping at a curing stage without completely carbonizing the resin, thereby improving the uniformity of the surface. be able to.

【0015】[0015]

【実施例】以下、実施例により本発明をさらに具体的に
説明する。 (実施例1)かさ密度1.8g/cm3 の等方性黒鉛材
料を、600×600×35mmに加工し、ポリカルボ
ジイミド樹脂液(日清紡(株)製)中に1h浸漬し、黒
鉛材中にポリカルボジイミド樹脂液を含浸し、その後2
50℃で硬化処理を行い供試体とした。この供試体表面
を大気中、200℃で、中心部および端部を接触式熱電
対にて表面の温度分布を測定した。また、供試体を通し
て、液晶基板を真空吸着し、その時の密着性を求めた。
また、ガス透過率測定用にφ30×10mmの試料を切
り出しガス透過率を測定した。また、同様にして50×
50×10mmの試料を切り出し、液中微粒子測定法に
て5μm以上の微粒子数を測定し、ダスト発生量とし
た。
The present invention will be described more specifically with reference to the following examples. Example 1 An isotropic graphite material having a bulk density of 1.8 g / cm 3 was processed into 600 × 600 × 35 mm, immersed in a polycarbodiimide resin solution (manufactured by Nisshinbo Co., Ltd.) for 1 hour, and Impregnated with a polycarbodiimide resin solution, and then
A hardening treatment was performed at 50 ° C. to obtain a specimen. The temperature distribution of the surface of the specimen was measured at 200 ° C. in the air, and the center and the end of the specimen were measured with a contact thermocouple at the surface. In addition, the liquid crystal substrate was vacuum-sucked through the specimen, and the adhesion at that time was determined.
Further, a sample of φ30 × 10 mm was cut out for measuring gas permeability, and gas permeability was measured. Similarly, 50 ×
A sample of 50 × 10 mm was cut out, and the number of fine particles having a size of 5 μm or more was measured by a method of measuring fine particles in liquid, and the amount was defined as dust generation.

【0016】(実施例2)かさ密度1.8g/cm3
等方性黒鉛材料を、600×600×35mmに加工
し、ポリカルボジイミド樹脂液(日清紡(株)製)中に
1h浸漬し、黒鉛材中にポリカルボジイミド樹脂液を含
浸した後、スプレーで表面に塗布し、その後250℃で
硬化処理を行い、供試体とした。その後、実施例1と同
様にして、表面の温度分布、液晶基板との密着性、ガス
透過率、ダスト発生量を求めた。
Example 2 An isotropic graphite material having a bulk density of 1.8 g / cm 3 was processed into 600 × 600 × 35 mm and immersed in a polycarbodiimide resin solution (manufactured by Nisshinbo Co., Ltd.) for 1 hour. After impregnating the graphite material with the polycarbodiimide resin liquid, it was applied to the surface by spraying, and then subjected to a curing treatment at 250 ° C. to obtain a specimen. Thereafter, in the same manner as in Example 1, the temperature distribution on the surface, the adhesion to the liquid crystal substrate, the gas permeability, and the amount of generated dust were determined.

【0017】(実施例3)かさ密度1.8g/cm3
等方性黒鉛材料を、600×600×35mmに加工
し、フェノール樹脂液(リグナイト(株)製)中に1h
浸漬し、黒鉛材中にフェノール樹脂液を含浸し、その後
250℃で硬化処理を行い、供試体とした。その後、実
施例1と同様にして、表面の温度分布、液晶基板との密
着性、ガス透過率、ダスト発生量を求めた。
Example 3 An isotropic graphite material having a bulk density of 1.8 g / cm 3 was processed into 600 × 600 × 35 mm and placed in a phenol resin solution (Lignite Co., Ltd.) for 1 hour.
It was immersed, a graphite material was impregnated with a phenol resin solution, and then a curing treatment was performed at 250 ° C. to obtain a specimen. Thereafter, in the same manner as in Example 1, the temperature distribution on the surface, the adhesion to the liquid crystal substrate, the gas permeability, and the amount of generated dust were determined.

【0018】(実施例4)かさ密度1.8g/cm3
等方性黒鉛材料を、600×600×35mmに加工
し、フェノール樹脂液(リグナイト(株)製)中に1h
浸漬し、黒鉛材中にフェノール樹脂液を含浸した後、ス
プレーで表面に塗布し、その後250℃で硬化処理を行
い、供試体とした。その後、実施例1と同様にして、表
面の温度分布、液晶基板との密着性、ガス透過率、ダス
ト発生量を求めた。
Example 4 An isotropic graphite material having a bulk density of 1.8 g / cm 3 was processed into 600 × 600 × 35 mm and placed in a phenol resin solution (Lignite Co., Ltd.) for 1 hour.
After immersion, the graphite material was impregnated with a phenolic resin solution, applied to the surface by spraying, and then subjected to a curing treatment at 250 ° C. to obtain a specimen. Thereafter, in the same manner as in Example 1, the temperature distribution on the surface, the adhesion to the liquid crystal substrate, the gas permeability, and the amount of generated dust were determined.

【0019】(実施例5)かさ密度1.8g/cm3
等方性黒鉛材料を、600×600×35mmに加工
し、ポリカルボジイミド樹脂液(日清紡(株)製)中に
1h浸漬し、黒鉛材中にポリカルボジイミド樹脂液を含
浸し、その後400℃で硬化処理を行い、供試体とし
た。その後、実施例1と同様にして、表面の温度分布、
液晶基板との密着性、ガス透過率、ダスト発生量を求め
た。
Example 5 An isotropic graphite material having a bulk density of 1.8 g / cm 3 was processed into 600 × 600 × 35 mm and immersed in a polycarbodiimide resin solution (manufactured by Nisshinbo Co., Ltd.) for 1 hour. A graphite material was impregnated with a polycarbodiimide resin solution, and then subjected to a curing treatment at 400 ° C. to obtain a specimen. Then, in the same manner as in Example 1, the surface temperature distribution,
The adhesion to the liquid crystal substrate, the gas permeability, and the amount of dust generated were determined.

【0020】(実施例6)かさ密度1.8g/cm3
等方性黒鉛材料を、600×600×35mmに加工
し、フェノール樹脂液(リグナイト(株)製)中に1h
浸漬し、黒鉛材中にフェノール樹脂液を含浸し、その後
350℃で硬化処理を行い、供試体とした。その後、実
施例1と同様にして、表面の温度分布、液晶基板との密
着性、ガス透過率、ダスト発生量を求めた。
Example 6 An isotropic graphite material having a bulk density of 1.8 g / cm 3 was processed into 600 × 600 × 35 mm and placed in a phenol resin solution (Lignite Co., Ltd.) for 1 hour.
It was immersed, a graphite material was impregnated with a phenol resin solution, and then a curing treatment was performed at 350 ° C. to obtain a test sample. Thereafter, in the same manner as in Example 1, the temperature distribution on the surface, the adhesion to the liquid crystal substrate, the gas permeability, and the amount of generated dust were determined.

【0021】(比較例1)かさ密度1.8g/cm3
等方性黒鉛材料を、600×600×35mmに加工
し、フェノール樹脂液(リグナイト(株)製)中に1h
浸漬し、黒鉛材中にフェノール樹脂液を含浸し、その後
250℃で硬化処理を行い、続けて800℃で焼成処理
を行い供試体とした。その後、実施例1と同様にして、
表面の温度分布、液晶基板との密着性、ガス透過率、ダ
スト発生量を求めた。
(Comparative Example 1) An isotropic graphite material having a bulk density of 1.8 g / cm 3 was processed into 600 × 600 × 35 mm and placed in a phenol resin solution (Lignite Co., Ltd.) for 1 hour.
The graphite material was immersed, and the graphite material was impregnated with the phenol resin solution. Thereafter, a hardening treatment was performed at 250 ° C., followed by a baking treatment at 800 ° C. to obtain a specimen. Then, as in Example 1,
The surface temperature distribution, adhesion to the liquid crystal substrate, gas permeability, and dust generation were determined.

【0022】(比較例2)かさ密度1.8g/cm3
等方性黒鉛材料を、600×600×35mmに加工
し、供試体とした。その後、実施例1と同様にして、表
面の温度分布、液晶基板との密着性、ガス透過率、ダス
ト発生量を求めた。
Comparative Example 2 An isotropic graphite material having a bulk density of 1.8 g / cm 3 was processed into a sample of 600 × 600 × 35 mm to obtain a specimen. Thereafter, in the same manner as in Example 1, the temperature distribution on the surface, the adhesion to the liquid crystal substrate, the gas permeability, and the amount of generated dust were determined.

【0023】なお、ガス透過率は、図1に示す微小ガス
透過率測定装置によって求めた。まず、試料3をサンプ
ルホルダー内に設置し、チャンバーA1内の空気をロー
タリーポンプ10Aで排気した後に窒素ガスを充填させ
る。一方、チャンバーB2内をロータリーポンプ10B
で平衡状態に達するまで減圧する。ロータリーポンプ1
0Aの停止とともにチャンバーA1内のガスが試料3を
通って透過することによりチャンバ−B2内の圧力が上
昇し始める。チャンバーB2内の圧力はマノメーター5
で測定する。チャンバーA1内の圧力PA (Pa)に比
べてチャンバーB2内の圧力PB (Pa)が非常に小さ
い初期の時間t(s)においてチャンバーB2の圧力P
B (Pa)の上昇速度(ΔPB /△t)を求める。チャ
ンバーB2内の容積をVB (cm3 )とすれば通気量Q
=VB (ΔPB /△t)となる。チャンバーB2内の圧
力上昇変化が直線的と見なせる範囲内においては通気量
Qは次の式で与えられる。 Q=(PB2−PB1)VB /(t2 −t1 ) ここで、PB1は時間t1 におけるチャンバーB2の圧力
(Pa)、PB2は時間t 2 におけるチャンバーB2の圧
力(Pa)、VB はチャンバーBの容積(cm3)であ
る。ここで求めたQを次式にあてはめてガス透過率Kを
求める。 K=QL/ΔPA ここで、Kはガス透過率(cm2 /s)、Qは通気量
(Pa・cm3 /s)、△Pは試料両側の圧力差(P
a)、Lは試料の厚さ(cm)、Aはガス透過面積(c
2 )である。
Incidentally, the gas permeability was measured using the fine gas shown in FIG.
It was determined by a transmittance measuring device. First, sample 3
And set the air inside the chamber A1 low.
After evacuating with a tally pump 10A, filling with nitrogen gas
You. On the other hand, the rotary pump 10B
Reduce pressure until equilibrium is reached. Rotary pump 1
With the stop of 0A, the gas in the chamber A1
Pressure through chamber-B2
Start to rise. The pressure in the chamber B2 is a manometer 5
Measure with Pressure P in chamber A1A(Pa)
Pressure P in chamber B2B(Pa) is very small
At the initial time t (s), the pressure P in the chamber B2
B(Pa) ascending speed (ΔPB/ △ t). Cha
The volume in the member B2 is VB(CmThree) And the ventilation volume Q
= VB(ΔPB/ △ t). Pressure in chamber B2
As long as the change in force rise can be considered linear, the airflow
Q is given by the following equation. Q = (PB2−PB1) VB/ (TTwo-T1) Where PB1Is the time t1Of chamber B2 at
(Pa), PB2Is the time t TwoOf chamber B2 at
Force (Pa), VBIs the volume of chamber B (cmThree)
You. By applying the Q obtained here to the following equation, the gas permeability K
Ask. K = QL / ΔPA where K is gas permeability (cmTwo/ S), Q is the ventilation volume
(Pa · cmThree/ S), ΔP is the pressure difference (P
a), L is sample thickness (cm), A is gas permeation area (c)
mTwo).

【0024】具体的には次のようにして測定する。試料
3を、パッキン(Oリング)4を有する治具を用いて装
置にセットする。次にチャンバーA1内の空気を排気し
た後、測定ガスである窒素やヘリウムをチャンバーA1
内に導入し所定の圧力PA (Pa)とする。このとき、
チャンバーB2内が平衡圧力PB (Pa)に達するのを
確認する。平衡に達してもおおむね5〜24時間脱気を
継続する。これは、チャンバー内部や試料からの脱ガス
を充分に行い、測定の際にチャンバー内部や試料からの
脱ガスによる判定への誤差を少なくするためである。ロ
ータリーポンプ10BとチャンバーBの間にある真空バ
ルブを閉じ、測定を開始する。チャンバーA1から試料
3を介して透過するガスによってチャンバーB2内の圧
力PB (Pa)が上昇し始めるので、これをマノメータ
ー5にて測定して時間tの関数としてレコーダーに記録
する。チャンバーBの容積VB は、13cm3 である。
ガス透過性が高い材料を測定する場合はチャンバーB2
の圧力上昇を遅くして測定の信頼性を上げる必要がある
ので容積1000cm3 の予備タンク6を用いる。測定
条件は下記の通りである。 ダミー試料:ステンレス(VB =1013cm3 ) 試料寸法:φ30×1mm 使用ガス:窒素(△P=300kPa)
Specifically, the measurement is performed as follows. The sample 3 is set in the apparatus using a jig having a packing (O-ring) 4. Next, after evacuating the air in the chamber A1, nitrogen or helium as a measurement gas is supplied to the chamber A1.
And a predetermined pressure P A (Pa). At this time,
It is confirmed that the pressure in the chamber B2 reaches the equilibrium pressure P B (Pa). Degassing is continued for approximately 5 to 24 hours even when equilibrium is reached. This is to sufficiently perform degassing from the inside of the chamber or the sample, and to reduce errors in determination due to degassing from the inside of the chamber or the sample during measurement. The vacuum valve between the rotary pump 10B and the chamber B is closed, and the measurement is started. Since the pressure P B (Pa) in the chamber B2 starts to increase due to the gas permeating through the sample 3 from the chamber A1, this is measured by the manometer 5 and recorded on the recorder as a function of the time t. The volume V B of the chamber B is 13 cm 3 .
When measuring a material with high gas permeability, chamber B2
Since it is necessary to increase the pressure rise of the sample and increase the reliability of the measurement, a spare tank 6 having a capacity of 1000 cm 3 is used. The measurement conditions are as follows. Dummy samples: Stainless (V B = 1013cm 3) Sample Dimensions: 0 30 × 1 mm using gas: Nitrogen (△ P = 300kPa)

【0025】以上、実施例1乃至6及び比較例1及び2
の供試体の各特性値の測定結果を表1にまとめて示す。
As described above, Examples 1 to 6 and Comparative Examples 1 and 2
Table 1 collectively shows the measurement results of the respective characteristic values of the test specimens.

【0026】[0026]

【表1】 [Table 1]

【0027】表1より、熱硬化性樹脂を含浸若しくは含
浸被覆したのち400℃以下で硬化処理した実施例1乃
至6の供試体は、ガス透過率も1×10-82 /s未満
となり、液晶基板との密着性も良く、200℃での温度
分布も±2℃以内となり、表面の均熱性に優れ、ダスト
発生量も少なく、液晶基板加熱処理用の治具としてその
要件を十分に満たしたものとなった。一方、完全に炭化
させた比較例1のものは、ガス透過率、密着性、均熱
性、ダスト発生量の全てにおいて、硬化させた状態で止
めた本実施例にかかるものに劣っていた。
According to Table 1, the test pieces of Examples 1 to 6 which were impregnated with or impregnated with a thermosetting resin and then cured at 400 ° C. or less had a gas permeability of less than 1 × 10 −8 m 2 / s. Good adhesion to liquid crystal substrate, temperature distribution at 200 ° C is within ± 2 ° C, excellent surface uniformity, small amount of dust, and sufficient requirements as a jig for liquid crystal substrate heat treatment It was satisfied. On the other hand, the completely carbonized sample of Comparative Example 1 was inferior in all of the gas permeability, adhesion, heat uniformity, and dust generation amount to the sample of the present example stopped in a cured state.

【0028】[0028]

【発明の効果】本発明は以上のように構成されており、
黒鉛基材に熱硬化性樹脂を被覆又は、含浸又は、含浸被
覆し、400℃以下の温度で硬化し、熱硬化性樹脂を硬
化の状態で止めることによって、液晶基板の加熱処理時
に使用される治具として適用することができ、液晶基板
間に液晶表示素子を封入する際の不良を大幅に減らすこ
とが可能になるとともに、その際に使用される治具とし
て高寿命になるため、液晶の製造コストを大幅に低減す
る効果を奏する。
The present invention is configured as described above.
It is used at the time of heat treatment of a liquid crystal substrate by coating or impregnating or impregnating a graphite substrate with a thermosetting resin, curing at a temperature of 400 ° C. or less, and stopping the thermosetting resin in a cured state. It can be used as a jig, greatly reducing defects when enclosing a liquid crystal display element between liquid crystal substrates, and has a long life as a jig used at that time. This has the effect of significantly reducing manufacturing costs.

【図面の簡単な説明】[Brief description of the drawings]

【図1】微少ガス透過率測定装置の模式図である。FIG. 1 is a schematic view of a minute gas permeability measuring device.

【符号の説明】[Explanation of symbols]

1 チャンバーA 2 チヤンバーB 3 試料 4 パッキン 5 マノメータ 6 予備タンク 7 圧力計 8 ピラニ真空計 9 電離真空計 10A、B ロータリーポンプ 11 ターボ分子ポンプ 12 ガス導入方向 13 ガス排気方向 Reference Signs List 1 chamber A 2 chamber B 3 sample 4 packing 5 manometer 6 spare tank 7 pressure gauge 8 Pirani vacuum gauge 9 ionization vacuum gauge 10A, B rotary pump 11 turbo molecular pump 12 gas introduction direction 13 gas exhaust direction

───────────────────────────────────────────────────── フロントページの続き (56)参考文献 特開 平5−262510(JP,A) 特開 平10−287470(JP,A) (58)調査した分野(Int.Cl.7,DB名) G02F 1/1339 505 G02F 1/13 101 C01B 31/04 ────────────────────────────────────────────────── ─── Continuation of the front page (56) References JP-A-5-262510 (JP, A) JP-A-10-287470 (JP, A) (58) Fields investigated (Int. Cl. 7 , DB name) G02F 1/1339 505 G02F 1/13 101 C01B 31/04

Claims (6)

(57)【特許請求の範囲】(57) [Claims] 【請求項1】 液晶基板を加熱処理する際に使用される
治具であって、硬化された熱硬化性樹脂で、被覆又は含
浸又は含浸被覆された黒鉛からなる治具。
1. A jig used for heat-treating a liquid crystal substrate, the jig being made of graphite coated or impregnated or impregnated with a cured thermosetting resin.
【請求項2】 液晶基板を加熱処理する際に使用される2. Used for heating a liquid crystal substrate.
治具であって、硬化された熱硬化性樹脂が、表面からのA jig in which the cured thermosetting resin
深さが0.1mm〜1mm含浸され、表面の層厚さが1Impregnated with a depth of 0.1 mm to 1 mm and a layer thickness of 1 on the surface
μm〜20μm被覆された熱硬化性樹脂が被覆された黒Black coated with thermosetting resin coated with μm to 20 μm
鉛からなる治具。A jig made of lead.
【請求項3】 液晶基板を加熱処理する際に使用される3. A method for heating a liquid crystal substrate.
治具であって、硬化された熱硬化性樹脂が、表面からのA jig in which the cured thermosetting resin
深さが0.1mm〜50mm含浸され、表面の層厚さがImpregnated with depth 0.1mm ~ 50mm, surface layer thickness
1μm以下被覆された熱硬化性樹脂が含浸された黒鉛かGraphite impregnated with thermosetting resin coated 1 μm or less
らなる治具。Jig consisting of.
【請求項4】 液晶基板を加熱処理する際に使用される4. Used for heating a liquid crystal substrate.
治具であって、硬化された熱硬化性樹脂が、表面からのA jig in which the cured thermosetting resin
深さが0.1mm〜50mm含浸され、表面の層厚さがImpregnated with depth 0.1mm ~ 50mm, surface layer thickness
20μm以下被覆された熱硬化性樹脂が含浸被覆された20 μm or less coated thermosetting resin impregnated
黒鉛からなる治具。Jig made of graphite.
【請求項5】 前記硬化処理は、400℃以下の温度で
処理された請求項1〜4のいずれかに記載の治具。
5. The jig according to claim 1, wherein said curing treatment is performed at a temperature of 400 ° C. or less.
【請求項6】 室温における窒素ガス透過率が1.0×
10-82/s未満である請求項1〜4のいずれかに記
載の治具。
6. A nitrogen gas permeability at room temperature of 1.0 ×
The jig according to claim 1, wherein the jig is less than 10 −8 m 2 / s.
JP2000006045A 2000-01-11 2000-01-11 jig Expired - Fee Related JP3318301B2 (en)

Priority Applications (4)

Application Number Priority Date Filing Date Title
JP2000006045A JP3318301B2 (en) 2000-01-11 2000-01-11 jig
KR1020000082556A KR20010070357A (en) 2000-01-11 2000-12-27 Jig
TW090100047A TW492131B (en) 2000-01-11 2001-01-02 Jig
CNB01101394XA CN1180301C (en) 2000-01-11 2001-01-11 Clamper

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2000006045A JP3318301B2 (en) 2000-01-11 2000-01-11 jig

Publications (2)

Publication Number Publication Date
JP2001194673A JP2001194673A (en) 2001-07-19
JP3318301B2 true JP3318301B2 (en) 2002-08-26

Family

ID=18534636

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2000006045A Expired - Fee Related JP3318301B2 (en) 2000-01-11 2000-01-11 jig

Country Status (4)

Country Link
JP (1) JP3318301B2 (en)
KR (1) KR20010070357A (en)
CN (1) CN1180301C (en)
TW (1) TW492131B (en)

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN104708555A (en) * 2015-02-14 2015-06-17 合肥誉联信息科技有限公司 Clamp for glass capillary
KR102254350B1 (en) 2017-11-17 2021-05-21 주식회사 엘지화학 Pressing jig of mono-cell for gas analysis and apparatus containing the same

Family Cites Families (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6050335B2 (en) * 1980-07-24 1985-11-08 日本電気ホームエレクトロニクス株式会社 heat treatment jig
JPH05262510A (en) * 1992-03-16 1993-10-12 Denki Kagaku Kogyo Kk Jig
JPH0851079A (en) * 1994-08-05 1996-02-20 Sumitomo Metal Ind Ltd Thermal processing jig
JPH08191116A (en) * 1995-01-11 1996-07-23 Hitachi Chem Co Ltd Jig for electronic component and manufacturing method thereof
JPH10287470A (en) * 1997-04-07 1998-10-27 Akechi Ceramics Kk Firing jig containing carbon fiber
JP4101325B2 (en) * 1997-06-10 2008-06-18 東洋炭素株式会社 Jig materials for glass container manufacturing

Also Published As

Publication number Publication date
KR20010070357A (en) 2001-07-25
CN1304057A (en) 2001-07-18
JP2001194673A (en) 2001-07-19
CN1180301C (en) 2004-12-15
TW492131B (en) 2002-06-21

Similar Documents

Publication Publication Date Title
Wong et al. Moisture diffusion in epoxy resins Part I. Non‐Fickian sorption processes
Elsey Outgassing of vacuum materials—I: A paper in our education series: The theory and practice of vacuum science and technology in schools and colleges
JP2001357861A (en) Thermo-hardening type liquid sealing compound for solid high-polymer type fuel cell, unit cell with seal formed out of the sealing compound and manufacturing method for unit cell, and solid high-polymer type fuel cell and its generating method
JP4855276B2 (en) Sample stand, sample to be measured, moisture permeability measuring device
Jang et al. Comprehensive moisture diffusion characteristics of epoxy molding compounds over solder reflow process temperature
WO2012073547A1 (en) Method for carburizing tantalum container
JP3318301B2 (en) jig
US11535567B2 (en) Polyimide-based composite carbon film with high thermal conductivity and preparation method therefor
JP2001172795A (en) Aluminum composite and method for surface-treating aluminum composite
CN109696390B (en) Device for testing gas permeability of film by resistance method and manufacturing and testing methods thereof
KR20180116857A (en) Electrostatic Chuck sealed with Sealant and method for preparing the same
JP3951972B2 (en) Film sample fixing method, gas cell, and gas permeability measuring apparatus
KR101210882B1 (en) Graphite crucible with glassy carbon coatings and method for manufacturing the same
US8225927B2 (en) Method to substantially enhance shelf life of hygroscopic components and to improve nano-manufacturing process tool availablity
JPH1067565A (en) Sintered silicon carbide body and its production
JP4724770B2 (en) Adsorbent
JPH02138469A (en) Material for vacuum having diamond surface, surface treatment of this material for vacuum production, of diamond film surface, vacuum vessel and its parts formed by using material for vacuum, in-vacuum driving mechanism, electron release source, in-vacuum heater and vessel of vapor deposition source
JP2000169246A (en) Silicon carbide sintered compact
JP2005347689A (en) Sucker
KR102518584B1 (en) Coating method of seperator for fuel cell and seperator for fuel cell prepared from the same
CN110217785B (en) Transfer operation method of CVD-grown graphene
Besser et al. Chemical Etch Rate of Plasma‐Enhanced Chemical Vapor Deposited SiO2 Films: Effect of Deposition Parameters
Xu et al. Activation process and mechanism of ZrCoCe getter films
JPH11217204A (en) Production of vitreous carbonaceous member
JP2005335999A (en) Porous carbon

Legal Events

Date Code Title Description
R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

LAPS Cancellation because of no payment of annual fees