JP3316083B2 - GaAs single crystal substrate for liquid phase epitaxial growth and liquid phase epitaxial growth method - Google Patents

GaAs single crystal substrate for liquid phase epitaxial growth and liquid phase epitaxial growth method

Info

Publication number
JP3316083B2
JP3316083B2 JP11364894A JP11364894A JP3316083B2 JP 3316083 B2 JP3316083 B2 JP 3316083B2 JP 11364894 A JP11364894 A JP 11364894A JP 11364894 A JP11364894 A JP 11364894A JP 3316083 B2 JP3316083 B2 JP 3316083B2
Authority
JP
Japan
Prior art keywords
epitaxial growth
liquid phase
gaas
phase epitaxial
type
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
JP11364894A
Other languages
Japanese (ja)
Other versions
JPH07302740A (en
Inventor
和彦 笈田
真 川崎
雅人 山田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Shin Etsu Handotai Co Ltd
Sumitomo Electric Industries Ltd
Original Assignee
Shin Etsu Handotai Co Ltd
Sumitomo Electric Industries Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Family has litigation
First worldwide family litigation filed litigation Critical https://patents.darts-ip.com/?family=14617593&utm_source=google_patent&utm_medium=platform_link&utm_campaign=public_patent_search&patent=JP3316083(B2) "Global patent litigation dataset” by Darts-ip is licensed under a Creative Commons Attribution 4.0 International License.
Application filed by Shin Etsu Handotai Co Ltd, Sumitomo Electric Industries Ltd filed Critical Shin Etsu Handotai Co Ltd
Priority to JP11364894A priority Critical patent/JP3316083B2/en
Publication of JPH07302740A publication Critical patent/JPH07302740A/en
Application granted granted Critical
Publication of JP3316083B2 publication Critical patent/JP3316083B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Landscapes

  • Liquid Deposition Of Substances Of Which Semiconductor Devices Are Composed (AREA)

Description

【発明の詳細な説明】DETAILED DESCRIPTION OF THE INVENTION

【0001】[0001]

【産業上の利用分野】本発明はGa1-X AlX As(但
し、0≦X<1)エピタキシャル成長層を液相エピタキ
シャル成長法により形成する際に用いるGaAs単結晶
基板及び該基板を用いた液相エピタキシャル成長法に関
する。
The present invention relates to a Ga 1-X Al X As (where, 0 ≦ X <1) the liquid with the epitaxial growth layer used to form a liquid phase epitaxial growth method GaAs single crystal substrate and the substrate The present invention relates to a phase epitaxial growth method.

【0002】[0002]

【発明の背景技術】{100}面を主表面とするGaA
s単結晶基板〔以下、{100}GaAs基板又はGa
As基板という。〕上に、Ga1-X AlX As(但し、
0≦X<1)エピタキシャル成長層を形成する一手法で
ある液相エピタキシャル成長法は、所定の温度(例え
ば、900℃)で、GaAs結晶、又はGaAs結晶と
Alを過飽和となるまでGa融液に溶解せしめた過飽和
Ga溶液(以下、液相成長用Ga溶液、又は成長用Ga
溶液という。)を同温度に加熱した前記GaAs基板の
主表面に接触させ、然る後、所定の温度(例えば、75
0℃)まで徐々に降温することにより、前記GaAs基
板上にGa1-X AlX As(但し、0≦X<1)を析出
成長させる方法である。
BACKGROUND OF THE INVENTION GaAs having a {100} plane as a main surface
s single crystal substrate [hereinafter referred to as {100} GaAs substrate or Ga
It is called As substrate. ], Ga 1-x Al x As (provided that
0 ≦ X <1) In a liquid phase epitaxial growth method, which is one method of forming an epitaxial growth layer, a GaAs crystal or a GaAs crystal and Al are dissolved in a Ga melt at a predetermined temperature (for example, 900 ° C.) until the GaAs crystal and Al become supersaturated. A supersaturated Ga solution (hereinafter referred to as a liquid phase growth Ga solution or a growth Ga solution)
It is called a solution. ) Is brought into contact with the main surface of the GaAs substrate heated to the same temperature, and then a predetermined temperature (for example, 75
In this method, Ga 1-x Al x As (where 0 ≦ X <1) is deposited and grown on the GaAs substrate by gradually lowering the temperature to 0 ° C.).

【0003】従来、前記面方位の規格として、面方位誤
差(θ)を0.5°まで許容した{100}GaAs基
板を用い、該基板主表面上に、前記液相エピタキシャル
成長法によりGa1-X AlX As(但し、0≦X<1)
エピタキシャル成長層(以下Ga1-X AlX As層とい
う。)を形成させていた。
Conventionally, as a standard of the plane orientation, a {100} GaAs substrate which allows a plane orientation error (θ) of up to 0.5 ° is used, and Ga 1− is formed on the main surface of the substrate by the liquid phase epitaxial growth method. X Al X As (where 0 ≦ X <1)
An epitaxial growth layer (hereinafter referred to as a Ga 1-x Al x As layer) was formed.

【0004】[0004]

【発明が解決しようとする課題】しかし、前記面方位誤
差の許容内において、面方位誤差(θ)が0.2°を超
える{100}GaAs基板を用い、該基板上に、液相
エピタキシャル成長法によりGa1-X AlX As層を成
長形成させると、Ga1-X AlX As層表面に1μmに
も達する成長段が形成される等、表面モルフォロジーが
悪化し、これは、素子製造工程における歩留まり低下の
大きな原因となっていた。
However, within the tolerance of the plane orientation error, a {100} GaAs substrate having a plane orientation error (θ) of more than 0.2 ° is used, and a liquid phase epitaxial growth method is used on the substrate. When the Ga 1-x Al x As layer is grown and formed by the method, a growth step reaching 1 μm is formed on the surface of the Ga 1-x Al x As layer, and the surface morphology is deteriorated. This was a major cause of lower yield.

【0005】そこで、本発明は、表面モルフォロジーの
良好なGa1-X AlX As層を液相エピタキシャル成長
法により形成するために、最適な{100}GaAs基
板並びに該基板を用いた液相エピタキシャル成長法を提
供することを目的とする。
Accordingly, the present invention provides an optimum {100} GaAs substrate and a liquid phase epitaxial growth method using the substrate in order to form a Ga 1-x Al x As layer having a good surface morphology by a liquid phase epitaxial growth method. The purpose is to provide.

【0006】[0006]

【課題を解決するための手段】本発明の発明者は、Ga
1-X AlX As層の表面モルフォロジーが{100}G
aAs基板の面方位誤差に大きく依存することを見い出
し、鋭意研究の結果、本発明に至った。本発明は、Ga
As基板上に、Ga1-X AlX As(但し、0≦X<
1)層を液相エピタキシャル成長法により形成するにあ
たり用いられるGaAs単結晶基板であり、前記GaA
s基板表面の結晶面方位を面方位誤差0.2°以下の
{100}面とすることを特徴とし、これにより、表面
モルフォロジーの良好な前記Ga1-X AlX As層を
得、従来技術の問題点を解決した。本発明方法は、上記
GaAs基板を用いることを特徴とする液相エピタキシ
ャル成長法に関する。なお、面方位誤差0.2°以下の
{100}GaAs単結晶基板の製造において、高頻度
で得られる面方位誤差(θ)は0.1°<θ≦0.2°
の{100}GaAs単結晶基板であり、製造上好まし
く用いられる。
SUMMARY OF THE INVENTION The inventor of the present invention provides Ga
The surface morphology of the 1-X Al X As layer is {100} G
The present inventors have found that it largely depends on the plane orientation error of the aAs substrate, and as a result of earnest research, have reached the present invention. The present invention relates to Ga
On a As substrate, Ga 1-x Al x As (where 0 ≦ X <
1) A GaAs single crystal substrate used for forming a layer by a liquid phase epitaxial growth method, wherein the GaAs
The present invention is characterized in that the crystal plane orientation of the s substrate surface is a {100} plane with a plane orientation error of 0.2 ° or less, thereby obtaining the Ga 1-x Al x As layer having a good surface morphology. Solved the problem. The method of the present invention relates to a liquid phase epitaxial growth method using the GaAs substrate. In the production of a {100} GaAs single crystal substrate having a plane orientation error of 0.2 ° or less, the plane orientation error (θ) frequently obtained is 0.1 ° <θ ≦ 0.2 °.
{100} GaAs single crystal substrate, which is preferably used in manufacturing.

【0007】[0007]

【実施例】以下、本発明の実施例について添付図面を参
照して説明する。
Embodiments of the present invention will be described below with reference to the accompanying drawings.

【0008】なお、結晶面方位の表記方法は、一般に使
用されているH.C.Gatosらの方法(Journ
al of Electrochemical Soc
iety,vol.107,No.5(1960),
P.427〜436)に基づいて行った。また、{10
0}面として、
Incidentally, the notation method of the crystal plane orientation is described in H.I. C. Gatos et al. (Journ
al of Electrochemical Soc
iety, vol. 107, no. 5 (1960),
P. 427-436). Also, $ 10
As the 0 ° plane,

【0009】[0009]

【数1】 (Equation 1)

【0010】面の6種類があるが、これらは結晶学的に
等価であるので、本実施例においては(100)面を代
表例とした。
There are six types of planes, which are crystallographically equivalent. Therefore, in this embodiment, the (100) plane is used as a representative example.

【0011】(実施例1、2及び比較例1、2)ボート
クローン法で製造したZnドープ(不純物濃度1〜5×
1019/cm3)p型GaAs単結晶を主表面の結晶面
方位が面方位誤差0.1°(実施例1)、0.2°(実
施例2)、0.3°(比較例1)及び0.5°(比較例
2)の(100)面になる様にスライスした後、該スラ
イスウェーハを常法のウェーハ加工をして、厚さ約30
0μmの上記した結晶面方位のミラーポリシュドウェー
ハを得、これらをGa1-X AlX As層成長用のGaA
s基板とした。
(Examples 1 and 2 and Comparative Examples 1 and 2) Zn-doped (impurity concentration 1-5 ×) manufactured by boat clone method
10 19 / cm 3 ) A p-type GaAs single crystal having a main surface with crystal plane orientation errors of 0.1 ° (Example 1), 0.2 ° (Example 2), and 0.3 ° (Comparative Example 1) ) And 0.5 ° (Comparative Example 2), and then sliced so as to have a (100) plane.
A mirror-polished wafer having the above-mentioned crystal plane orientation of 0 μm was obtained, and these were GaAs for growing a Ga 1-x Al x As layer.
An s substrate was used.

【0012】図1は、本発明方法により得られるエピタ
キシャルウェーハの一構造を示す断面図である。図1に
示すエピタキシャルウェーハは、p型(100)GaA
s基板10上に、厚さ150μmのp型Ga0.25Al
0.75Asクラッド層11、厚さ1μmのp型Ga0.62
0.38As活性層12及び厚さ50μmのn型Ga0.25
Al0.75Asクラッド層13の各層が順次形成された構
造となっている。
FIG. 1 is a sectional view showing one structure of an epitaxial wafer obtained by the method of the present invention. The epitaxial wafer shown in FIG. 1 is a p-type (100) GaAs
On a s substrate 10, a 150 μm thick p-type Ga 0.25 Al
0.75 As clad layer 11, 1 μm thick p-type Ga 0.62 A
l 0.38 As active layer 12 and 50 μm thick n-type Ga 0.25
The structure is such that each layer of the Al 0.75 As clad layer 13 is sequentially formed.

【0013】上記した面方位誤差0.1°、0.2°、
0.3°及び0.5°の(100)面を主表面とする4
種類のGaAs基板を液相エピタキシャル成長用基板と
して用い、図1に示した構造のエピタキシャルウェーハ
を、図2に示すスライドボート法により製造した。図2
において、前記GaAs基板10はボート本体20上面
上に固定される。ボート本体20上をスライドするスラ
イド式溶液溜21(以下、溶液溜21という。)には、
p型Ga0.25Al0.75Asクラッド層成長用Ga溶液2
2aを収容する第1溶液溜22、p型Ga0.62Al0.38
As活性層成長用Ga溶液23aを収容する第2溶液溜
23、及びn型Ga0.25Al0.75Asクラッド層成長用
Ga溶液24aを収容する第3溶液溜24が各々設けて
あり、各溶液溜は底がなく、各成長用Ga溶液が直接ボ
ート本体20に接触する様になっている。なお、p型ド
ーパント及びn型ドーパントは各々Zn及びTeであ
り、成長用Ga溶液には、GaAs結晶及びAlととも
に上記ドーパントが添加されている。
The above-mentioned plane orientation errors of 0.1 °, 0.2 °,
0.3 ° and 0.5 ° with (100) plane as main surface 4
Using various kinds of GaAs substrates as substrates for liquid phase epitaxial growth, epitaxial wafers having the structure shown in FIG. 1 were manufactured by the slide boat method shown in FIG. FIG.
In the above, the GaAs substrate 10 is fixed on the upper surface of the boat body 20. A slide-type solution reservoir 21 (hereinafter, referred to as a solution reservoir 21) that slides on the boat body 20 includes:
Ga solution for p-type Ga 0.25 Al 0.75 As cladding layer growth 2
First solution reservoir 22 containing 2a, p-type Ga 0.62 Al 0.38
A second solution reservoir 23 containing a Ga solution 23a for growing an As active layer and a third solution reservoir 24 containing a Ga solution 24a for growing an n-type Ga 0.25 Al 0.75 As clad layer are provided. There is no bottom and each Ga solution for growth comes into direct contact with the boat body 20. The p-type dopant and the n-type dopant are Zn and Te, respectively, and the dopant is added to the growth Ga solution together with the GaAs crystal and Al.

【0014】次に、上記装置を用いて、前記p型(10
0)GaAs基板10上に前記3層のエピタキシャル成
長層を形成する工程を説明する。まず、溶液溜21を操
作棒25を用いて図2(a)の位置から矢印の方向にス
ライドさせ、第1溶液溜22内の成長用Ga溶液22a
を前記GaAs基板10上にセットし、例えば900℃
から800℃まで降温しつつp型Ga0.25Al0.75As
クラッド層11をGaAs基板10上に成長させる〔図
2(b)〕。次に溶液溜21をさらに矢印の方向にスラ
イドさせ、第2溶液溜23内の成長用Ga溶液23aを
前記GaAs基板上にセットし、例えば800℃から7
95℃まで降温しつつp型Ga0.62Al0.38As活性層
12を前記p型Ga0.25Al0.75Asクラッド層11上
に成長させる〔図2(c)〕。次に、溶液溜21をさら
に矢印の方向にスライドさせ、第3溶液溜24内の成長
用Ga溶液24aを前記GaAs基板上にセットし、例
えば795℃から650℃まで降温しつつn型Ga0.25
Al0.75Asクラッド層13を前記p型Ga0.62Al
0.38As活性層12上に成長させる〔図2(d)〕。そ
の後、溶液溜21をさらに矢印の方向にスライドさせて
液相エピタキシャル成長工程を終了し〔図2(e)〕、
図1に示した構造のエピタキシャルウェーハを得た。
Next, using the above device, the p-type (10
0) The step of forming the three epitaxial growth layers on the GaAs substrate 10 will be described. First, the solution reservoir 21 is slid in the direction of the arrow from the position of FIG.
Is set on the GaAs substrate 10, for example, at 900 ° C.
P-type Ga 0.25 Al 0.75 As while cooling down to 800 ° C
A cladding layer 11 is grown on the GaAs substrate 10 (FIG. 2B). Next, the solution reservoir 21 is further slid in the direction of the arrow, and the growth Ga solution 23a in the second solution reservoir 23 is set on the GaAs substrate.
The p-type Ga 0.62 Al 0.38 As active layer 12 is grown on the p-type Ga 0.25 Al 0.75 As clad layer 11 while the temperature is lowered to 95 ° C. (FIG. 2C). Next, the solution reservoir 21 is further slid in the direction of the arrow, the growth Ga solution 24a in the third solution reservoir 24 is set on the GaAs substrate, and the temperature is reduced, for example, from 795 ° C. to 650 ° C. while n-type Ga 0.25
The Al 0.75 As clad layer 13 is made of the p-type Ga 0.62 Al
It is grown on the 0.38 As active layer 12 (FIG. 2D). Thereafter, the solution reservoir 21 is further slid in the direction of the arrow to complete the liquid phase epitaxial growth step [FIG. 2 (e)].
An epitaxial wafer having the structure shown in FIG. 1 was obtained.

【0015】図3は、面方位誤差0.1°、0.2°、
0.3°及び0.5°の(100)GaAs基板をエピ
タキシャル成長用基板とし、上記方法で得られたエピタ
キシャルウェーハ表面(n型Ga0.25Al0.75Asクラ
ッド層13の表面)の表面モルフォロジー及び表面粗さ
を示す〔図3(a):面方位誤差0.1°、図3
(b):面方位誤差0.2°、図3(c):面方位誤差
0.3°、図3(d):面方位誤差0.5°〕。
FIG. 3 shows plane orientation errors of 0.1 °, 0.2 °,
The surface morphology and surface roughness of the epitaxial wafer surface (the surface of the n-type Ga 0.25 Al 0.75 As clad layer 13) obtained by the above method using the (100) GaAs substrate of 0.3 ° and 0.5 ° as the substrate for epitaxial growth. [FIG. 3A: plane orientation error 0.1 °, FIG.
(B): plane orientation error 0.2 °, FIG. 3 (c): plane orientation error 0.3 °, FIG. 3 (d): plane orientation error 0.5 °].

【0016】なお、上記表面粗さはKosaka La
boratory Ltd製、表面粗さ計(Model
TR 100X)を用いて測定した。
The surface roughness is determined by Kosaka La.
surface roughness meter (Model
TR 100X).

【0017】図3から、n型Ga0.25Al0.75Asクラ
ッド層表面(エピタキシャル層表面)のモルフォロジー
は(100)GaAs基板の面方位誤差に大きく依存
し、面方位誤差0.2°以下では鏡面に近い平坦な成長
表面が得られるが、0.3°になると成長表面に微細な
成長段が現れはじめ、0.5°になると成長段は大とな
り、表面粗さは約1μmとなることが判明する。
FIG. 3 shows that the morphology of the n-type Ga 0.25 Al 0.75 As cladding layer surface (epitaxial layer surface) greatly depends on the plane orientation error of the (100) GaAs substrate. A near flat growth surface can be obtained, but it is found that when the angle is 0.3 °, a fine growth step starts to appear on the growth surface, and when the angle is 0.5 °, the growth step becomes large and the surface roughness becomes about 1 μm. I do.

【0018】発明者らは、さらに面方位誤差(θ)の角
度について、0.1°から0.2°の範囲において、
0.12°、0.14°、0.16°、0.18°の
(100)GaAs基板をエピタキシャル成長用基板と
して用い、図1と同じ構造のエピタキシャルウェーハを
上記と同様の液相エピタキシャル成長工程を経て作成し
た。いずれの面方位誤差の(100)GaAs基板を用
いた場合も、図3で得られた面方位誤差0.1°および
0.2°の(100)GaAs基板で得られた結果と同
等の鏡面に近い平坦成長表面が得られることが分かっ
た。
The inventors further set the angle of the plane orientation error (θ) in the range of 0.1 ° to 0.2 °.
A (100) GaAs substrate of 0.12 °, 0.14 °, 0.16 °, 0.18 ° is used as a substrate for epitaxial growth, and an epitaxial wafer having the same structure as in FIG. Created after. In the case of using a (100) GaAs substrate having any plane orientation error, the mirror surface equivalent to the results obtained with the (100) GaAs substrate having the plane orientation errors of 0.1 ° and 0.2 ° obtained in FIG. It has been found that a flat growth surface close to the above can be obtained.

【0019】従って、{100}GaAs基板上に、表
面モルフォロジーの良好なGa1-XAlX As層を液相
エピタキシャル成長法により形成するためには前記{1
00}GaAs基板の面方位誤差を0.2°以下とする
ことが肝要となる。
Therefore, in order to form a Ga 1-x Al x As layer having a good surface morphology on a {100} GaAs substrate by a liquid phase epitaxial growth method, the above-mentioned {1}
It is important that the plane orientation error of the 00} GaAs substrate be 0.2 ° or less.

【0020】(実施例3及び4)ボートグローン法で製
造したSiドープ(不純物濃度1〜2×1018/c
3)のn型GaAs単結晶を実施例1及び実施例2と
同じ方法で加工して、面方位誤差0.1°(実施例3)
及び0.2°(実施例4)の(100)GaAs基板を
得、該GaAs基板上に、液相エピタキシャル成長法に
よりGaAs成長層を形成した。
(Embodiments 3 and 4) Si-doped (impurity concentration 1-2 × 10 18 / c) manufactured by boat-grown method
m 3 ) n-type GaAs single crystal was processed in the same manner as in Example 1 and Example 2, and the plane orientation error was 0.1 ° (Example 3).
Then, a (100) GaAs substrate of 0.2 ° (Example 4) was obtained, and a GaAs growth layer was formed on the GaAs substrate by a liquid phase epitaxial growth method.

【0021】図4は、実施例3及び4に係るエピタキシ
ャルウェーハの一構造を示す断面図である。図4に示す
エピタキシャルウェーハは、n型(100)GaAs基
板30上に、厚さ80μmのn型(Siドープ)GaA
s層31及び厚さ60μmのp型(Siドープ)GaA
s層32が順次形成された構造になっている。
FIG. 4 is a sectional view showing one structure of the epitaxial wafer according to the third and fourth embodiments. The epitaxial wafer shown in FIG. 4 has an n-type (100) GaAs substrate 30 and an n-type (Si-doped) GaAs having a thickness of 80 μm.
s layer 31 and p-type (Si-doped) GaAs having a thickness of 60 μm
The structure is such that the s layer 32 is sequentially formed.

【0022】上記構造のエピタキシャルウェーハを図5
に示したスライドボート法により製造した。図5におい
て、前記n型GaAs基板30はボート本体40上面上
に固定される。ボート本体40上をスライドするスライ
ド式溶液溜41には、n型及びp型GaAs成長用Ga
溶液(GaAs結晶とSiが添加されたGa溶液)42
aを収容する溶液溜42が設けてあり、溶液溜42は底
がなく、成長用Ga溶液が直接ボート本体40に接触す
る様になっている。
FIG. 5 shows an epitaxial wafer having the above structure.
Was manufactured by the slide boat method shown in FIG. In FIG. 5, the n-type GaAs substrate 30 is fixed on the upper surface of the boat body 40. The n-type and p-type GaAs growth Ga are stored in the slide type solution reservoir 41 that slides on the boat body 40.
Solution (Ga solution to which GaAs crystal and Si are added) 42
A solution reservoir 42 for accommodating a is provided. The solution reservoir 42 has no bottom and the Ga solution for growth directly contacts the boat body 40.

【0023】次に、上記状態のスライドボートを用い
て、前記n型(100)GaAs基板30上にエピタキ
シャル成長層を形成する工程を説明する。まず、スライ
ド式溶液溜41を操作棒45を用いて図5(a)の位置
から矢印の方向にスライドさせ、溶液溜42内の成長用
Ga溶液42aを前記GaAs基板30上にセットする
〔この時の温度は980℃、図5(b)〕。この温度に
10分間保持した後、750℃まで降温しつつ、n型G
aAs層31及びp型GaAs層32をGaAs基板3
0上に成長させる。次に、スライド溶液溜41をさらに
矢印の方向にスライドさせて、液相エピタキシャル成長
工程を終了し〔図5(c)〕、図4に示した構造の実施
例3及び4に係るエピタキシャルウェーハを得た。
Next, a process of forming an epitaxial growth layer on the n-type (100) GaAs substrate 30 using the slide boat in the above state will be described. First, the slide-type solution reservoir 41 is slid in the direction of the arrow from the position of FIG. 5A using the operation rod 45, and the growth Ga solution 42a in the solution reservoir 42 is set on the GaAs substrate 30. The temperature at this time was 980 ° C., and FIG. 5 (b)]. After maintaining at this temperature for 10 minutes, the n-type G
The aGaAs layer 31 and the p-type GaAs layer 32 are
Grow on zero. Next, the slide solution reservoir 41 is further slid in the direction of the arrow to complete the liquid phase epitaxial growth step (FIG. 5C), and obtain epitaxial wafers according to Examples 3 and 4 having the structure shown in FIG. Was.

【0024】上記した方法で得られたエピタキシャル層
32の表面モルフォロジー及び表面粗さを実施例1及び
実施例2と同一の方法で評価したところ、実施例1及び
実施例2と同様の結果を得た。即ち、面方位誤差0.2
°以下の{100}GaAs基板上に、エピタキシャル
成長法によりGaAs層を成長すれば、このGaAs成
長層の表面モルフォロジーは極めて良好になることが判
明した。
When the surface morphology and surface roughness of the epitaxial layer 32 obtained by the above method were evaluated by the same method as in Examples 1 and 2, the same results as in Examples 1 and 2 were obtained. Was. That is, plane orientation error 0.2
It has been found that, when a GaAs layer is grown on a {100} GaAs substrate of less than 100 ° C. by an epitaxial growth method, the surface morphology of the GaAs growth layer becomes extremely good.

【0025】[0025]

【発明の効果】以上のべたごとく、本発明によれば、表
面モルフォロジーの良好なGa1-X AlX As層(但
し、0≦X<1)を液相エピタキシャル成長法により形
成することができる。
As described above, according to the present invention, a Ga 1-x Al x As layer (0 ≦ X <1) having a good surface morphology can be formed by a liquid phase epitaxial growth method.

【図面の簡単な説明】[Brief description of the drawings]

【図1】本発明方法により得られるエピタキシャルウェ
ーハの一構造を示す断面図である。
FIG. 1 is a sectional view showing one structure of an epitaxial wafer obtained by a method of the present invention.

【図2】実施例1、2及び比較例1、2におけるスライ
ドボート法の工程図である。
FIG. 2 is a process chart of a slide boat method in Examples 1 and 2 and Comparative Examples 1 and 2.

【図3】実施例1、2及び比較例1、2において得られ
たエピタキシャルウェーハ表面の表面モルフォロジー及
び表面粗さを示す写真を含む図面である。
FIG. 3 is a drawing including photographs showing the surface morphology and surface roughness of the epitaxial wafer surface obtained in Examples 1 and 2 and Comparative Examples 1 and 2.

【図4】実施例3及び4において得られたエピタキシャ
ルウェーハの一構造を示す断面図である。
FIG. 4 is a cross-sectional view showing one structure of an epitaxial wafer obtained in Examples 3 and 4.

【図5】実施例3及び4におけるスライドボート法の工
程図である。
FIG. 5 is a process chart of a slide boat method in Examples 3 and 4.

【符号の説明】 10 p型(100)GaAs単結晶基板 11 p型Ga0.25Al0.75Asクラッド層 12 p型Ga0.62Al0.38As活性層 13 n型Ga0.25Al0.75Asクラッド層 20 ボート本体 21 スライド式溶液溜 22 第1溶液溜 22a p型Ga0.25Al0.75Asクラッド層成長用G
a溶液 23 第2溶液溜 23a p型Ga0.62Al0.38As活性層成長用Ga溶
液 24 第3溶液溜 24a n型Ga0.25Al0.75Asクラッド層成長用G
a溶液 25 操作棒 30 n型(100)GaAs単結晶基板 31 n型(Siドープ)GaAs層 32 p型(Siドープ)GaAs層 40 ボート本体 41 スライド式溶液溜 42 溶液溜 42a 成長用Ga溶液 45 操作棒
[Description of Signs] 10 p-type (100) GaAs single crystal substrate 11 p-type Ga 0.25 Al 0.75 As clad layer 12 p-type Ga 0.62 Al 0.38 As active layer 13 n-type Ga 0.25 Al 0.75 As clad layer 20 boat body 21 slide Type solution reservoir 22 first solution reservoir 22a p-type Ga 0.25 Al 0.75 As cladding layer growth G
a solution 23 second solution reservoir 23a p-type Ga 0.62 Al 0.38 Ga solution for growing As active layer 24 third solution reservoir 24an n-type Ga 0.25 Al 0.75 As cladding layer growing G
a solution 25 operation rod 30 n-type (100) GaAs single crystal substrate 31 n-type (Si-doped) GaAs layer 32 p-type (Si-doped) GaAs layer 40 boat body 41 sliding solution reservoir 42 solution reservoir 42 a Ga solution for growth 45 Operation stick

───────────────────────────────────────────────────── フロントページの続き (72)発明者 山田 雅人 群馬県安中市磯部2丁目13番1号 信越 半導体株式会社 磯部工場内 (58)調査した分野(Int.Cl.7,DB名) H01L 21/02 H01L 21/20 ──────────────────────────────────────────────────続 き Continuing from the front page (72) Inventor Masato Yamada 2-13-1, Isobe, Annaka-shi, Gunma Shin-Etsu Semiconductor Co., Ltd. Isobe Plant (58) Field surveyed (Int. Cl. 7 , DB name) H01L 21/02 H01L 21/20

Claims (4)

(57)【特許請求の範囲】(57) [Claims] 【請求項1】 GaAs単結晶基板上にGa1-X AlX
As(但し、0≦X<1)エピタキシャル成長層を液相
エピタキシャル成長法により形成するにあたり用いられ
るGaAs単結晶基板であり、前記GaAs単結晶基板
表面の結晶面方位が面方位誤差(θ)がθ≦0.2°の
{100}面であることを特徴とする液相エピタキシャ
ル成長用GaAs単結晶基板。
1. The method according to claim 1, wherein Ga 1 -x Al x is formed on a GaAs single crystal substrate.
As (provided that 0 ≦ X <1) a GaAs single crystal substrate used for forming an epitaxial growth layer by a liquid phase epitaxial growth method, wherein the crystal plane orientation of the GaAs single crystal substrate surface has a plane orientation error (θ) of θ ≦ θ. A GaAs single crystal substrate for liquid phase epitaxial growth, characterized by a {100} plane of 0.2 °.
【請求項2】 GaAs単結晶基板上にGa1-X AlX
As(但し、0≦X<1)エピタキシャル成長層を液相
エピタキシャル成長法により形成するにあたり用いられ
るGaAs単結晶基板であり、前記GaAs単結晶基板
表面の結晶面方位が面方位誤差(θ)が0.1°<θ≦
0.2°の範囲の{100}面であることを特徴とする
液相エピタキシャル成長用GaAs単結晶基板。
2. The method according to claim 1, wherein Ga 1-x Al x is formed on a GaAs single crystal substrate.
As (however, 0 ≦ X <1) a GaAs single crystal substrate used for forming an epitaxial growth layer by a liquid phase epitaxial growth method, wherein the GaAs single crystal substrate has a crystal plane having a plane orientation error (θ) of 0. 1 ° <θ ≦
A GaAs single crystal substrate for liquid phase epitaxial growth, characterized by having a {100} plane in a range of 0.2 °.
【請求項3】 請求項1記載のGaAs単結晶基板上に
Ga1-XA1XAs(但し、0≦X<1)エピタキシャル
成長層を形成することを特徴とする液相エピタキシャル
成長法。
3. A liquid phase epitaxial growth method comprising forming a Ga 1-x A1 x As (0 ≦ X <1) epitaxial growth layer on the GaAs single crystal substrate according to claim 1.
【請求項4】 請求項2記載のGaAs単結晶基板上に
Ga1-XA1XAs(但し、0≦X<1)エピタキシャル
成長層を形成することを特徴とする液相エピタキシャル
成長法。
4. A liquid phase epitaxial growth method comprising forming a Ga 1-x A1 x As (0 ≦ X <1) epitaxial growth layer on the GaAs single crystal substrate according to claim 2.
JP11364894A 1994-04-28 1994-04-28 GaAs single crystal substrate for liquid phase epitaxial growth and liquid phase epitaxial growth method Expired - Lifetime JP3316083B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP11364894A JP3316083B2 (en) 1994-04-28 1994-04-28 GaAs single crystal substrate for liquid phase epitaxial growth and liquid phase epitaxial growth method

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP11364894A JP3316083B2 (en) 1994-04-28 1994-04-28 GaAs single crystal substrate for liquid phase epitaxial growth and liquid phase epitaxial growth method

Publications (2)

Publication Number Publication Date
JPH07302740A JPH07302740A (en) 1995-11-14
JP3316083B2 true JP3316083B2 (en) 2002-08-19

Family

ID=14617593

Family Applications (1)

Application Number Title Priority Date Filing Date
JP11364894A Expired - Lifetime JP3316083B2 (en) 1994-04-28 1994-04-28 GaAs single crystal substrate for liquid phase epitaxial growth and liquid phase epitaxial growth method

Country Status (1)

Country Link
JP (1) JP3316083B2 (en)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2001048694A (en) * 1999-08-02 2001-02-20 Sumitomo Electric Ind Ltd Gallium.arsenic single crystal wafer and gallium.arsenic liquid phase epitaxial wafer

Also Published As

Publication number Publication date
JPH07302740A (en) 1995-11-14

Similar Documents

Publication Publication Date Title
JPS6012724A (en) Growing method of compound semiconductor
JP3114809B2 (en) Semiconductor device
DE69319169T2 (en) Process for the production of heteroepitaxial thin layers and electronic components
JPH01289108A (en) Heteroepitaxy
US7258739B2 (en) Process for producing epitaxial silicon wafer and silicon wafer produced by process thereof
US6594293B1 (en) Relaxed InxGa1-xAs layers integrated with Si
JP3316083B2 (en) GaAs single crystal substrate for liquid phase epitaxial growth and liquid phase epitaxial growth method
JPH04260321A (en) Growth method of heteroepitaxial layer
US3530011A (en) Process for epitaxially growing germanium on gallium arsenide
CA1333248C (en) Method of forming crystals
US5254211A (en) Method for forming crystals
Weyher et al. Influence of substrate defects on the structure of epitaxial GaAs grown by MOCVD
JP2687445B2 (en) Heteroepitaxial growth method
JP2946280B2 (en) Semiconductor crystal growth method
JP2565908B2 (en) Compound semiconductor device
Inoue TriPyramid Growth of Epitaxial Silicon
JPH02191321A (en) Method of forming crystal
JP3062603B1 (en) Manufacturing method of single crystal member
JPH07193007A (en) Epitaxial growth method
JPH01107515A (en) Manufacture of semiconductor element
van Oirschot et al. LPE growth of DH laser structures with the double source method
KR960004904B1 (en) Growing method for ga-as on the porous silicon substrate
JP3427466B2 (en) Manufacturing method of semiconductor epitaxial wafer
JP2696928B2 (en) Heteroepitaxial growth method
JP2771635B2 (en) Ca lower 1-lower x Sr lower x F lower 2

Legal Events

Date Code Title Description
R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20080607

Year of fee payment: 6

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090607

Year of fee payment: 7

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100607

Year of fee payment: 8

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100607

Year of fee payment: 8

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110607

Year of fee payment: 9

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110607

Year of fee payment: 9

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120607

Year of fee payment: 10

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120607

Year of fee payment: 10

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130607

Year of fee payment: 11

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

EXPY Cancellation because of completion of term