JP3315944B2 - Water treatment method - Google Patents

Water treatment method

Info

Publication number
JP3315944B2
JP3315944B2 JP13723199A JP13723199A JP3315944B2 JP 3315944 B2 JP3315944 B2 JP 3315944B2 JP 13723199 A JP13723199 A JP 13723199A JP 13723199 A JP13723199 A JP 13723199A JP 3315944 B2 JP3315944 B2 JP 3315944B2
Authority
JP
Japan
Prior art keywords
water
zinc
silica
aluminum
ice
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP13723199A
Other languages
Japanese (ja)
Other versions
JP2000325950A (en
Inventor
健治郎 足立
善一 西
眞智子 小川
郁夫 酒井
清一 辻
澄男 山内
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Mitsubishi Heavy Industries Ltd
Tohzai Chemical Industry Co Ltd
Original Assignee
Mitsubishi Heavy Industries Ltd
Tohzai Chemical Industry Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Mitsubishi Heavy Industries Ltd, Tohzai Chemical Industry Co Ltd filed Critical Mitsubishi Heavy Industries Ltd
Priority to JP13723199A priority Critical patent/JP3315944B2/en
Publication of JP2000325950A publication Critical patent/JP2000325950A/en
Application granted granted Critical
Publication of JP3315944B2 publication Critical patent/JP3315944B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Landscapes

  • Separation Using Semi-Permeable Membranes (AREA)
  • Physical Water Treatments (AREA)

Description

【発明の詳細な説明】DETAILED DESCRIPTION OF THE INVENTION

【0001】[0001]

【発明の属する技術分野】本発明は、例えば、ボイラ、
空気調和設備、冷凍設備、製紙設備を代表とする水を使
用する設備に対する用水給水の処理方法に関し、詳しく
は、ボイラ、空気調和設備、冷凍設備、製紙設備内にお
けるスケールの発生を防止するための用水の処理方法に
関する。
TECHNICAL FIELD The present invention relates to a boiler,
Air conditioning equipment, refrigeration equipment, water treatment method for equipment using water represented by papermaking equipment, more specifically, to prevent the generation of scale in boilers, air conditioning equipment, refrigeration equipment, papermaking equipment It relates to a method for treating water.

【0002】[0002]

【従来の技術】従来、例えば、上記ボイラ、空気調和設
備、冷凍設備、製紙設備を代表とする水を使用する設備
に対する用水は、その硬度が高い場合には、イオン交換
塔に通じるか、沈殿剤等の薬剤を添加した後に濾過する
等の前処理を施して、用水中の硬度成分を除去すること
が行われている。
2. Description of the Related Art Conventionally, for example, water for equipment using water, such as the boiler, air conditioning equipment, refrigeration equipment, and papermaking equipment described above, when its hardness is high, passes through an ion exchange tower or precipitates. 2. Description of the Related Art A pretreatment such as filtration after adding an agent such as an agent is performed to remove a hardness component in the water.

【0003】[0003]

【発明が解決しようとする課題】上記従来の水処理にお
いては、例えば前記用水をイオン交換塔に通じて処理し
て給水する場合には、用水中のシリカは除去し難く、残
存する溶存固形物を確実に除去することは容易ではな
い。殊に、冷凍設備に用いる場合には、低温で極度に溶
解度が低下するシリカの析出を防止することが困難であ
る。また、ボイラ等の給水温度の上昇するものにおいて
は、前記用水を循環使用する関係上、溶存固形物の濃縮
は避け難く、循環水路壁への缶石の付着を防止するの
に、インヒビタ等の薬剤を循環使用中に用水に繰り返し
添加することが必要となる。また、循環中に用水をイオ
ン交換処理しようとすれば、イオン交換塔の負荷を極め
て高くするためにイオン交換体の洗浄回数が増す等、前
記用水の処理に多くの手間を要するという問題を有して
いる。さらに、冷凍設備においては、給水中に僅かのシ
リカが残存しても、冷却に伴ってその溶解度が低下して
シリカが析出することで、前記用水の結氷を誘起する核
を形成し、前記給水の過冷却を阻害するため、冷凍効率
を高めにくいという問題を有している。
In the above-mentioned conventional water treatment, for example, when the above-mentioned water is treated and supplied through an ion exchange tower, silica in the water is difficult to remove, and the remaining dissolved solid matter is hardly removed. Is not easy to remove. In particular, when used in refrigeration equipment, it is difficult to prevent precipitation of silica, whose solubility is extremely reduced at low temperatures. Further, in the case where the feed water temperature of a boiler or the like increases, the concentration of dissolved solids is inevitable due to the circulating use of the water, and in order to prevent the adhesion of scales to the circulating water channel wall, an inhibitor or the like It is necessary to repeatedly add the drug to the water during circulation use. Further, if the water is subjected to the ion exchange treatment during circulation, there is a problem that much trouble is required for the treatment of the water, such as an increase in the number of times the ion exchanger is washed in order to extremely increase the load on the ion exchange tower. are doing. Further, in the refrigeration equipment, even if a small amount of silica remains in the feed water, its solubility decreases with cooling and the silica precipitates, thereby forming nuclei that induce freezing of the water, Has a problem that it is difficult to increase the refrigeration efficiency because the supercooling is inhibited.

【0004】そこで、本発明に係る用水の処理方法は、
上記各問題に鑑み、装置を大掛かりにすることなく、僅
かな薬剤の添加により溶存するシリカを主とする固形物
を簡便に除去する手段を提供する点にある。
[0004] Therefore, a method for treating water according to the present invention comprises:
In view of the above-mentioned problems, it is an object of the present invention to provide a means for easily removing solids mainly containing dissolved silica by adding a small amount of a chemical without increasing the size of the apparatus.

【0005】[0005]

【課題を解決するための手段】〔本発明の特徴構成〕 請求項1に係わる本発明の用水の処理方法の第1特徴構
成は、供給する用水中に両性の金属水酸基塩を添加又は
両性の金属水酸基塩を生成させた後、前記用水を氷点以
下に冷却して結氷させ、結氷した氷中の沈殿物を分離し
て、用水中のシリカを除去する点にある。
[Characterizing feature of the present invention] SUMMARY OF THE INVENTION The first characteristic feature of the processing method of the water of the present invention relating to Claim 1, adding an amphoteric metal hydroxyl salts in water supplies or
After the formation of the amphoteric metal hydroxyl salt , the water is cooled below the freezing point to freeze the ice, the precipitate in the frozen ice is separated, and the silica in the water is removed.

【0006】請求項2に係わる本発明の用水の処理方法
の第2特徴構成は、上記第1特徴構成における沈殿物を
分離するのに、結氷した氷を、冷却した用水から分離す
る点にある。
A second feature of the method for treating water according to the present invention according to claim 2 is that, in order to separate the sediment in the first feature, the frozen ice is separated from the cooled water. .

【0007】請求項3に係わる本発明の用水の処理方法
の第3特徴構成は、上記第1特徴構成における沈殿物を
分離するのに、前記結氷した氷を全て融解させた後、前
記冷却した用水を濾過して前記沈殿物を分離する点にあ
る。
According to a third aspect of the method for treating water according to the present invention, in order to separate the sediment in the first aspect, all the frozen ice is melted and then cooled. The point is to separate the precipitate by filtering the water.

【0008】請求項4に係わる本発明の用水の処理方法
の第4特徴構成は、上記第2特徴構成又は第3特徴構成
において添加する金属水酸基塩、アルミニウムの水酸
基塩である点にある。
[0008] The fourth characteristic configuration of the processing method of the water of the present invention relating to claim 4, metal hydroxyl salts to be added in the second feature structure or the third characteristic feature is that an aluminum hydroxyl salts.

【0009】請求項5に係わる本発明の用水の処理方法
の第5特徴構成は、上記第4特徴構成においてアルミニ
ウムの水酸基塩を用水に、可溶の範囲内で、アルミニウ
ム換算量にて0.3ppm以上溶解させる点にある。
A fifth aspect of the method for treating water according to the present invention according to the fifth aspect is the above-mentioned fourth aspect, wherein the hydroxyl group salt of aluminum is soluble in the water for use in an amount equivalent to 0.1 in terms of aluminum. lies in Ru dissolved or 3 ppm.

【0010】請求項6に係わる本発明の用水の処理方法
の第6特徴構成は、記第2特徴構成又は第3特徴構成に
おいて添加する金属水酸基塩、亜鉛の水酸基塩である
点にある。
[0010] The sixth characteristic configuration of the processing method of the water of the present invention according to claim 6, serial metal hydroxyl salts to be added in the second feature structure or the third characteristic feature is the zinc hydroxyl salt <br/> On the point.

【0011】請求項7に係わる本発明の用水の処理方法
の第7特徴構成は、上記第6特徴構成において亜鉛の水
酸基塩を用水に、可溶の範囲内で、亜鉛換算量にて0.
5ppm以上溶解させる点にある。
A seventh aspect of the method for treating water according to the present invention according to claim 7 is that, in the sixth aspect, the hydroxyl group salt of zinc is soluble in the water for use in an amount equivalent to 0.1 as zinc.
Lies in Ru dissolved least 5 ppm.

【0012】〔特徴構成の作用及び効果〕 上記本発明に係わる用水の処理方法の第1特徴構成によ
れば、僅かの薬剤の添加と冷却とにより簡単に溶存する
シリカを分離することができる。つまり、両性の金属水
酸基塩は、析出すればシリカとの親和性が強く、シリカ
の結晶核となり易い、しかも、低温において溶解度が極
めて低いから、氷点近傍にまで冷却すれば容易に微細結
晶を析出する。従って、前記両性の金属水酸基塩を添加
又は生成させて、冷却することで、簡単に用水中のシリ
カを結晶として析出させることが可能になる。このシリ
カの析出が用水の結氷を誘起するから、用水中からシリ
カの分離が容易で、シリカ含有量の極めて低い用水を供
給することが容易となる。これは、用水中の溶存シリカ
は、種々の形態の結合体であり、その組成を明記するこ
とができず、従って、その溶解限度も明かにできない
が、シリカを多量に含有する地下水を、その氷点以下に
冷却すると、氷結した氷の中には、シリカが存在するこ
とが見出された。この氷中にシリカが存在する現象は、
前記用水中にSiO2 として40ppm以上溶存してい
る場合には顕著である。一般に、SiO2 として10p
pm程度の溶存量では、氷の中のシリカ分は検出されな
い場合が多いが、前記用水中に、アルミニウム或いは亜
鉛の水酸基塩等の両性の金属水酸基塩が共に溶存する場
合には、氷の中には前記シリカ分が存在することを発明
者は見出した。上記第1特徴構成は、この新知見に基づ
くものである。上述の両性の金属水酸基塩は、その金属
の陽イオン(アルミニウムの陽イオン或いは亜鉛の陽イ
オン等)と解離平衡状態にあり、前記金属の陽イオンを
溶存させるが、氷点近辺にまで冷却すると、前記金属水
酸基塩の溶解度が極度に低下する。その結果、前記用水
中に溶存する金属水酸基塩は過飽和となり、その析出が
起こり金属水酸化物の微細結晶を生成する。これら析出
した両性の金属水酸化物と溶存シリカ分との親和性が良
好であることから、前記金属水酸化物の微細結晶を核と
して、前記溶存シリカ分の析出が誘起される。このシリ
カ分の析出結晶を核として、過冷状態の用水が結氷する
ようになる。従って、比較的低濃度の溶存シリカであっ
ても、前記両性の金属水酸基塩との共存によって氷の中
にシリカ分が存在するようになるのである。
According to the first feature of the method for treating water according to the present invention, dissolved silica can be easily separated by adding a small amount of a chemical and cooling. In other words, the amphoteric metal hydroxide salt has a strong affinity for silica when precipitated, and easily becomes a crystal nucleus of silica.Furthermore, since the solubility is extremely low at low temperatures, fine crystals can be easily precipitated by cooling to near the freezing point. I do. Therefore, the amphoteric metal hydroxyl salt is added.
Alternatively, by producing and cooling, silica in the water for use can be easily precipitated as crystals. Since the precipitation of the silica induces freezing of the service water, the separation of the silica from the service water is easy, and it is easy to supply the service water having an extremely low silica content. This is because dissolved silica in service water is a conjugate of various forms, and its composition cannot be specified, and therefore its solubility limit cannot be determined, but groundwater containing a large amount of silica, Upon cooling to below freezing, it was found that silica was present in the frozen ice. The phenomenon that silica is present in this ice is
It is remarkable when you are dissolved as SiO 2 40 ppm or more in the water. Generally, 10p as SiO 2
At a dissolved amount of about pm, silica content in ice is often not detected, but when both amphoteric metal hydroxide salts such as aluminum or zinc hydroxide salts are dissolved in the above-mentioned water, the silica content is not detected. The present inventors have found that the above-mentioned silica content is present in the above-mentioned. The first characteristic configuration is based on this new finding. The above-mentioned amphoteric metal hydroxide salt is in a dissociation equilibrium state with the cation of the metal (such as the cation of aluminum or the cation of zinc) and dissolves the cation of the metal, but when cooled to around the freezing point, The solubility of the metal hydroxide salt is extremely reduced. As a result, the metal hydroxide salt dissolved in the service water becomes supersaturated, and its precipitation occurs to generate fine crystals of the metal hydroxide. Since the affinity between the precipitated amphoteric metal hydroxide and the dissolved silica component is good, the precipitation of the dissolved silica component is induced using the fine crystals of the metal hydroxide as nuclei. With the precipitated crystals of the silica as nuclei, supercooled water freezes. Therefore, even with a relatively low concentration of dissolved silica, silica coexists in the ice due to the coexistence with the amphoteric metal hydroxide salt.

【0013】上記本発明に係わる用水の処理方法の第2
特徴構成によれば、氷内に取り込まれた沈殿物を、氷を
分離するのであるから、第1特徴構成における作用効果
を奏する中で、用水からの分離がさらに容易である。つ
まり、金属水酸基塩の結晶がシリカの結晶化を誘起し、
誘起されて析出するシリカの結晶が結氷の核となるか
ら、沈殿物は氷の中に取り込まれることになり、氷を分
離すれば、その核となっているシリカの結晶は同時に分
離されるのである。用水を冷却して氷点に近づければ、
簡単に結氷して氷が浮上するから、析出するシリカのほ
ぼ全量を簡単に用水から分離できるようになる。
The second aspect of the method for treating water according to the present invention is as follows.
According to the characteristic configuration, the sediment taken into the ice is separated from the ice, so that the separation from the service water is further facilitated while exhibiting the operational effects of the first characteristic configuration. In other words, the crystals of the metal hydroxide salt induce crystallization of silica,
Since the precipitated silica crystals become the core of ice formation, the precipitate will be taken into the ice, and if the ice is separated, the core silica crystals will be separated at the same time. is there. If you cool the water to near freezing,
Since the ice easily floats and the ice floats, almost all of the precipitated silica can be easily separated from the water.

【0014】上記本発明に係わる用水の処理方法の第3
特徴構成によれば、上記第1特徴構成の作用効果を奏す
る中で、沈殿物を氷内に取り込ませておいて、氷を融解
した後に分離するから、確実に前記沈殿物を分離でき
る。つまり、用水が結氷する際には、その結晶核として
固形物を取り込む。沈殿物が析出すれば、これが結晶核
として取り込まれるから、氷を融解すれば、その中の沈
殿物は濾別する事で容易に用水と分別できるのである。
The third aspect of the method for treating water according to the present invention is as follows.
According to the characteristic configuration, while the operation and effect of the first characteristic configuration are exhibited, the precipitate is taken in the ice and separated after the ice is melted, so that the precipitate can be surely separated. That is, when the water freezes, solids are taken in as crystal nuclei. If a precipitate precipitates, it is taken in as a crystal nucleus. Therefore, when the ice is melted, the precipitate in the ice can be easily separated from water by filtration.

【0015】上記本発明に係わる用水の処理方法の第4
特徴構成によれば、上記第2特徴構成又は第3特徴構成
の作用効果をさらに有効にする。つまり、アルミニウム
の水酸基塩は、解離してアルミニウム陽イオンを生成す
る。このアルミニウム陽イオンは、アルミニウム水酸化
物と平衡関係にあり、温度が低下すればアルミニウム水
酸化物の溶解度が極めて低くなるから、逐次過冷却の状
態でアルミニウム水酸化物として析出させることができ
る。このアルミニウム水酸化物の微細結晶とシリカとの
親和性が高いために、シリカ結晶の析出核となり易く、
低濃度の溶存シリカであっても析出させることが可能に
なる。これは過冷却の状態で析出させれば一層効果的で
ある。
The fourth aspect of the method for treating water according to the present invention is as follows.
According to the feature configuration, the operation and effect of the second feature configuration or the third feature configuration are further made effective. That is, the hydroxyl group of aluminum dissociates to produce aluminum cations. The aluminum cation is in equilibrium with the aluminum hydroxide, and the solubility of the aluminum hydroxide becomes extremely low as the temperature decreases. Therefore, the aluminum cation can be sequentially precipitated as an aluminum hydroxide in a supercooled state. Due to the high affinity between the fine crystals of this aluminum hydroxide and silica, it is easy to become precipitation nuclei of silica crystals,
Even a low concentration of dissolved silica can be precipitated. This is more effective if it is precipitated in a supercooled state.

【0016】上記本発明に係わる用水の処理方法の第5
特徴構成によれば、上記第4特徴構成の作用効果を奏し
ながら、薬剤添加量を極めて少なくできる。つまり、元
々溶解度の低いアルミニウムの水酸基塩を用水に可溶の
範囲内で溶解させるのであるから、前記アルミニウムの
水酸基塩は少量で済むのである。用水の冷却により析出
するアルミニウム水酸化物は微細結晶であるから、少量
であっても十分の数の結晶を生成する。従って、シリカ
を、これら微細結晶を核として析出させることが可能に
なる。尚、アルミニウムの水酸基塩のが用水に可溶の
範囲を超えると、薬剤添加時点から沈殿を生ずるから、
用水を冷却する際に過冷却状態を形成し難くなるから、
シリカ結晶析出の核となるべき微細結晶を析出させ難く
なる。また、前記アルミニウムの水酸基塩のがアルミ
ニウム換算量にて0.3ppm未満になれば、アルミニ
ウム水酸化物の可溶分の割合が高くなりすぎて、冷却に
伴い析出する割合が低くなり、その添加の効果を損なう
ようになるおそれがある。従って、アルミニウムの水酸
基塩の用水へのが過剰であっても、不足であっても、
その効果が減殺されるおそれがあるのである。
The fifth aspect of the method for treating water according to the present invention.
According to the characteristic configuration, the amount of drug added can be extremely reduced while exhibiting the operation and effect of the fourth characteristic configuration. That is, since it is of Ru was originally dissolved within less aluminum soluble hydroxyl salt water of solubility, hydroxyl salts of said aluminum is the need in small amounts. Since the aluminum hydroxide precipitated by cooling the water for use is a fine crystal, a sufficient number of crystals are generated even in a small amount. Therefore, it becomes possible to precipitate silica using these fine crystals as nuclei. If the amount of the aluminum hydroxide salt exceeds the range soluble in water, precipitation occurs from the time of drug addition,
Because it becomes difficult to form a supercooled state when cooling the water,
It becomes difficult to precipitate fine crystals that should serve as nuclei for silica crystal precipitation. Further, if the amount of the aluminum hydroxide salt is less than 0.3 ppm in terms of aluminum, the ratio of the soluble component of the aluminum hydroxide becomes too high, and the ratio of precipitation with cooling becomes low. The effect of the addition may be impaired. Therefore, even if the amount of the aluminum hydroxide salt to the service water is excessive or insufficient,
The effect may be diminished.

【0017】上記本発明に係わる用水の処理方法の第6
特徴構成によれば、上記第2特徴構成又は第3特徴構成
の作用効果をさらに有効にする。つまり、亜鉛の水酸基
塩は、解離して亜鉛の陽イオンを生成する。亜鉛陽イオ
ンは、亜鉛水酸化物と平衡関係にあり、温度が低下すれ
ば亜鉛水酸化物の溶解度が極めて低くなるから、逐次過
冷却の状態で亜鉛水酸化物として析出させることができ
る。この亜鉛水酸化物の微細結晶とシリカとの親和性が
高いために、シリカ結晶の析出核となり易く、低濃度の
溶存シリカであっても析出させることが可能になる。こ
れは過冷却の状態で析出させれば一層効果的である。
The sixth aspect of the method for treating water according to the present invention.
According to the feature configuration, the operation and effect of the second feature configuration or the third feature configuration are further made effective. That is, the hydroxyl group of zinc dissociates to generate zinc cations. The zinc cation is in equilibrium with the zinc hydroxide, and if the temperature is lowered, the solubility of the zinc hydroxide becomes extremely low. Therefore, the zinc cation can be sequentially precipitated as a zinc hydroxide in a supercooled state. Due to the high affinity between the fine crystals of the zinc hydroxide and the silica, the zinc hydroxide is likely to become a precipitation nucleus of the silica crystals, and even a low concentration of dissolved silica can be precipitated. This is more effective if it is precipitated in a supercooled state.

【0018】上記本発明に係わる用水の処理方法の第7
特徴構成によれば、上記第6特徴構成の作用効果を奏し
ながら、薬剤添加量を極めて少なくできる。つまり、元
々溶解度の低い亜鉛の水酸基塩を用水に可溶の範囲内で
溶解させるのであるから、前記亜鉛の水酸基塩は少量で
済むのである。用水の冷却により析出する亜鉛水酸化物
は微細結晶であるから、少量であっても十分の数の結晶
を生成する。従って、シリカを、これら微細結晶を核と
して析出させることが可能になる。尚、亜鉛の水酸基塩
が用水に可溶の範囲を超えると、薬剤添加時点から
沈殿を生ずるから、用水を冷却する際に過冷却状態を形
成し難くなり、シリカ結晶析出の核となるべき微細結晶
を析出させ難くなるおそれがある。また、前記亜鉛の水
酸基塩のが亜鉛換算量にて0.5ppm未満になれ
ば、亜鉛水酸化物の可溶分の割合が高くなりすぎて、冷
却に伴い析出する割合が低くなり、その効果を損なうよ
うになるおそれがある。従って、亜鉛の水酸基塩の用水
へのが過剰であっても、不足であっても、その効果が
減殺されるおそれがあるのである。
The seventh aspect of the method for treating water according to the present invention.
According to the feature configuration, the amount of drug added can be extremely reduced while exhibiting the operation and effect of the sixth feature configuration. In other words, within the range of solubility of zinc hydroxide, which originally has low solubility, in water
Since it is of Ru dissolved, hydroxyl salts of said zinc is the need in small amounts. Since the zinc hydroxide precipitated by cooling the service water is a fine crystal, a sufficient number of crystals are generated even in a small amount. Therefore, it becomes possible to precipitate silica using these fine crystals as nuclei. In addition, when the amount of the hydroxyl salt of zinc exceeds the range of solubility in service water, since precipitation occurs from the time of adding the drug , it becomes difficult to form a supercooled state when cooling the service water, and it becomes a core of silica crystal precipitation. There is a possibility that it becomes difficult to precipitate fine crystals to be formed. Further, if less than 0.5ppm by volume zinc equivalent amount of hydroxyl salts of said zinc, too high ratio of solubles zinc hydroxide, the ratio is lowered to precipitate with the cooling, the The effect may be impaired. Therefore, even if the amount of the hydroxyl group salt of zinc in the water for use is excessive or insufficient, the effect may be reduced.

【0019】[0019]

【発明の実施の形態】以下、本発明に係わる用水の処理
方法の実施形態について以下に説明する。以下に説明す
る用水の処理方法は、ボイラ、空気調和設備、冷凍設
備、製紙設備を代表とする水を使用する設備に対する用
水を供給する用水の供給経路においてで氷点以下に冷却
することで前記用水中に溶存するシリカを主とする溶存
固形物を析出させて除去する用水の処理に関するものあ
り、前記供給経路内で冷却するに先立ち、氷点を超える
温度領域において、用水中にアルミニウム或いは亜鉛等
の両性の金属水酸基塩を添加又は金属水酸基塩を生成さ
るものである。その後に氷点以下に冷却することで、
前記溶存固形物を析出させて、析出した固形物を分別除
去するのである。
BEST MODE FOR CARRYING OUT THE INVENTION An embodiment of a method for treating water according to the present invention will be described below. The method of treating water described below is performed by cooling the water to a temperature below freezing in a water supply path for supplying water to equipment using water typified by boilers, air conditioning equipment, refrigeration equipment, and papermaking equipment. Related to the treatment of water for precipitating and removing dissolved solids mainly containing silica dissolved therein, prior to cooling in the supply path, in a temperature range above the freezing point, such as aluminum or zinc in the water for use. Addition of amphoteric metal hydroxide salt or formation of metal hydroxide salt
Is shall not. After that, by cooling to below freezing point,
The dissolved solid is deposited, and the deposited solid is separated and removed.

【0020】〔第一の実施の形態〕 前記析出した固形物を分別除去するのに、氷点以下に用
水を冷却して結氷した氷を除去して給水するのである。
つまり、シリカを主とする溶存固形物を含有する用水
に、アルミニウム或いは亜鉛等の両性の金属水酸基塩
を、氷点より高い温度で添加する。アルミニウムの水酸
基塩の添加量は、添加する温度における用水に可溶の限
界以下で、アルミニウム換算量にて0.3ppm以上で
ある。亜鉛の水酸基塩の添加量は、添加する温度におけ
る用水に可溶の限界以下で、亜鉛換算量にて0.5pp
m以上である。何れについても、その可溶の限界を超え
て添加すれば、添加時点に沈殿を生成するから、氷点近
傍で直ちにシリカ分の析出を招き、その後過冷却の状態
に移行するから、シリカ分等の溶存固形物の析出量を低
くするので、これより少ない添加量である方が好まし
い。また、上記下限量未満の添加量であれば、冷却後の
溶存可能量の割合が高くなり、過冷却の状態になり難く
なるから、前記金属水酸化物の微細結晶の析出量が少な
くなり、シリカ分の結晶核の数に不足を来すおそれがあ
るから、前記下限量以上であることが好ましい。このア
ルミニウム或いは亜鉛等の両性の金属水酸基塩を添加し
た後、前記用水を氷点以下に冷却する。前記用水を結氷
させる割合は、例えば前記用水の半量であってもよく、
また、前記用水量の三分の一であってもよく、固形物の
溶存量、シリカ分の組成並びに性状によって適宜定め
る。
[First Embodiment] In order to separate and remove the precipitated solid, water is cooled to a temperature below the freezing point to remove frozen ice and supply water.
That is, an amphoteric metal hydroxyl salt such as aluminum or zinc is added to a water containing a dissolved solid mainly composed of silica at a temperature higher than the freezing point. The addition amount of the aluminum hydroxide salt is below the limit of solubility in water at the temperature at which it is added, and is 0.3 ppm or more in terms of aluminum. The addition amount of the zinc hydroxide salt is below the limit of solubility in water at the addition temperature, and is 0.5 pp in terms of zinc.
m or more. In any case, if it is added beyond its solubility limit, a precipitate is formed at the time of addition, which causes precipitation of silica immediately near the freezing point, and then shifts to a supercooled state. Since the amount of dissolved solids deposited is reduced, it is preferable that the amount of addition be smaller than this. Further, if the addition amount is less than the lower limit, the ratio of the dissolved amount after cooling is high, and it is difficult to be in a supercooled state, so the amount of precipitation of fine crystals of the metal hydroxide is reduced, Since there is a possibility that the number of crystal nuclei of the silica component may be insufficient, the amount is preferably not less than the lower limit. After adding the amphoteric metal hydroxide salt such as aluminum or zinc, the water is cooled to below freezing. The rate of freezing the water may be, for example, half of the water,
In addition, it may be one-third of the amount of water for use, and is appropriately determined depending on the dissolved amount of the solid, the composition and properties of the silica component.

【0021】前記用水の冷却に伴い、先ず金属水酸化物
が過飽和となって、過冷状態となる。その結果、前記金
属水酸化物の溶存状態が不安定となり、微細結晶を析出
する。この微細結晶の析出が、これと親和性のよい同じ
く過冷状態のシリカ分の析出を誘起する。前記シリカ分
が析出すると、その結晶を核として、前記用水が結氷す
る。従って、この氷を分別すれば、溶存固形分が少ない
用水を取り出せる。結氷させた状態で、下の水のみを給
水用に取り出してもよく、氷が細かい場合にはスクリー
ン或いはフィルタで濾別してもよい。以上の方法によれ
ば、元々用水への溶解度の低い両性の金属水酸基塩を、
前記用水中に溶解させるから、前記両性の金属水酸基塩
の添加量は少なく、後は冷却し、氷を分別するだけであ
るから、操作は簡便であり、薬剤添加量も少なくて済
み、設備としても大型のものを必要としない。冷熱源と
しては、廃冷熱を利用することも容易である。
With the cooling of the service water, the metal hydroxide first becomes supersaturated and becomes supercooled. As a result, the dissolved state of the metal hydroxide becomes unstable, and fine crystals precipitate. The precipitation of the fine crystals induces the precipitation of a supercooled silica component having a good affinity for the fine crystals. When the silica component is precipitated, the water is frozen with the crystals as nuclei. Therefore, if this ice is separated, service water with a low dissolved solid content can be taken out. In the frozen state, only the lower water may be taken out for water supply, and if the ice is fine, it may be filtered by a screen or a filter. According to the above method, originally amphoteric metal hydroxyl salt having low solubility in water,
Since it is dissolved in the working water, the amount of addition of the amphoteric metal hydroxyl salt is small, and after that, it is only cooled and only ice is separated. Also does not require large ones. As the cold heat source, it is easy to use waste cold heat.

【0022】〔第二の実施の形態〕 前記析出した固形物を分別除去するのに、氷点以下に用
水を冷却して結氷させ、その後昇温して結氷した氷を再
度融解し、氷を融解した後の用水を濾過して給水するの
である。つまり、シリカを主とする溶存固形物を含有す
る用水に、アルミニウム或いは亜鉛等の両性の金属水酸
基塩を、氷点より高い温度で添加する。アルミニウムの
水酸基塩の添加量は、添加する温度における用水に可溶
の限界以下で、アルミニウム換算量にて0.3ppm以
上である。亜鉛の水酸基塩の添加量は、添加する温度に
おける用水に可溶の限界以下で、亜鉛換算量にて0.5
ppm以上である。何れについても、その可溶の限界を
超えて添加すれば、添加時点に沈殿を生成するから、氷
点近傍で直ちにシリカ分の析出を招き、その後過冷却の
状態に移行するから、シリカ分等の溶存固形物の析出量
を低くするので、これより少ない添加量である方が好ま
しい。殊に、アルミニウム水酸化物、亜鉛水酸化物は、
両者共にそれぞれアルミニウム換算量、亜鉛換算量にて
10ppmを超えて用水に添加すると、水酸化アルミニ
ウム或いは水酸化亜鉛が軟泥質沈殿として用水中に沈殿
し、分別が困難になるから、少なくともこれらアルミ水
酸化物、亜鉛水酸化物両者の添加の上限はそれぞれアル
ミニウム換算量、亜鉛換算量にて10ppmとする。ま
た、上記下限量未満の添加量であれば、冷却後の溶存可
能量の割合が高くなり、過冷却の状態になり難くなるか
ら、前記金属水酸化物の微細結晶の析出量が少なくな
り、シリカ分の結晶核の数に不足を来すおそれがあるか
ら、前記下限量以上であることが好ましい。このアルミ
ニウム或いは亜鉛等の両性の金属水酸基塩を添加した
後、前記用水を氷点以下に冷却する。適宜結氷させた
後、再度昇温して氷を融解し、濾過後の水を給水するの
である。前記用水を結氷させる割合は、例えば前記用水
の全量であってもよく、その半量であってもよく、ま
た、前記用水量の三分の一であってもよく、固形物の溶
存量、シリカ分の組成並びに性状によって適宜定める。
前記用水の全量を結氷させれば、最も多く溶存固形物を
除去できる可能性があるが、氷結量を少なくすれば冷凍
熱量が少なくて済む利点がある。
[Second Embodiment] To separate and separate the precipitated solid, the water is cooled to a temperature below the freezing point to freeze the ice, and then the temperature is raised to melt the frozen ice again to melt the ice. After that, the water is filtered and supplied. That is, an amphoteric metal hydroxyl salt such as aluminum or zinc is added to a water containing a dissolved solid mainly composed of silica at a temperature higher than the freezing point. The addition amount of the aluminum hydroxide salt is below the limit of solubility in water at the temperature at which it is added, and is 0.3 ppm or more in terms of aluminum. The amount of the zinc salt of zinc to be added is not more than the limit of solubility in service water at the temperature at which the zinc is added.
ppm or more. In any case, if it is added beyond its solubility limit, a precipitate is formed at the time of addition, which causes precipitation of silica immediately near the freezing point, and then shifts to a supercooled state. Since the amount of dissolved solids deposited is reduced, it is preferable that the amount of addition be smaller than this. In particular, aluminum hydroxide and zinc hydroxide are
If both are added to service water in excess of 10 ppm in terms of aluminum and zinc, respectively, aluminum hydroxide or zinc hydroxide precipitates in the service water as oozeous sediment, and it becomes difficult to separate them. The upper limit of the addition of both oxide and zinc hydroxide is 10 ppm in terms of aluminum and zinc, respectively. Further, if the addition amount is less than the lower limit, the ratio of the dissolved amount after cooling is high, and it is difficult to be in a supercooled state, so the amount of precipitation of fine crystals of the metal hydroxide is reduced, Since there is a possibility that the number of crystal nuclei of the silica component may be insufficient, the amount is preferably not less than the lower limit. After adding the amphoteric metal hydroxide salt such as aluminum or zinc, the water is cooled to below freezing point. After the ice is appropriately frozen, the temperature is raised again to melt the ice, and the filtered water is supplied. The rate of freezing the water, for example, may be the entire amount of the water, may be half the amount, or may be one third of the amount of the water, the dissolved amount of solids, silica It is determined appropriately according to the composition and properties of the minute.
If the whole amount of the service water is frozen, there is a possibility that most of the dissolved solids can be removed.

【0023】前記用水の冷却に伴い、先ず両性の金属水
酸化物が過飽和となって、過冷状態となる。その結果、
前記金属水酸化物の溶存状態が不安定となり、微細結晶
を析出する。この微細結晶の析出が、これと親和性のよ
い同じく過冷状態のシリカ分の析出を誘起する。前記シ
リカ分が析出すると、その結晶を核として、前記用水が
結氷する。従って、この氷を融解させれば、氷の中に取
り込まれたシリカ分を主体とする溶存固形分が沈殿す
る。沈殿した固形分をフィルタで濾別すれば、溶存固形
分の少なくなった用水が得られる。以上の方法によれ
ば、元々用水への溶解度の低い両性の金属水酸基塩を、
前記用水中に溶解させるから、前記金属水酸基塩の添加
量は少なく、後は冷却し、常温に戻すだけであるから、
操作は簡便であり、薬剤添加量も少なくて済み、設備と
しても大型のものを必要としない。冷熱源としては、廃
冷熱を利用することも容易である。
With the cooling of the water, the amphoteric metal hydroxide first becomes supersaturated and becomes supercooled. as a result,
The dissolved state of the metal hydroxide becomes unstable, and fine crystals precipitate. The precipitation of the fine crystals induces the precipitation of a supercooled silica component having a good affinity for the fine crystals. When the silica component is precipitated, the water is frozen with the crystals as nuclei. Therefore, when this ice is melted, dissolved solids mainly composed of silica taken in the ice precipitate. If the precipitated solid is filtered off with a filter, service water with a low dissolved solid content can be obtained. According to the above method, originally amphoteric metal hydroxyl salt having low solubility in water,
Since it is dissolved in the water, the amount of the metal hydroxyl salt added is small, and after that, it is only cooled and returned to normal temperature,
The operation is simple, the amount of drug added is small, and large equipment is not required. As the cold heat source, it is easy to use waste cold heat.

【0024】[0024]

〔第一実施例〕(First embodiment)

試験用水として原水をナトリウム基陽イオン交換体に接
触させてアルミニウム及び亜鉛の陽イオンを除去した試
験用水を用意して比較例とし、この実施例用に試験用水
1リットル当たりに亜鉛の水酸基塩を亜鉛換算量にて
1.2mg添加した試験用水を用意した。これらの試験
用水を夫々正確に1リットル計量し、各別に1リットル
のポリプロピレン製のビーカに満たして、−10℃に維
持した冷凍庫内に入れ、夫々庫内に冷凍保管した。半量
が氷結した時点で、前記ビーカを前記冷凍庫から取り出
し、夫々に、水と氷を分別し、水部と氷部とを夫々常温
に戻した後、固形分を最大透過径1ミクロンのフィルタ
で濾過して、夫々の濾過水を分析に供した。分析結果は
表1に示すとおりである。
As a comparative example, test water from which raw water was brought into contact with a sodium-based cation exchanger to remove aluminum and zinc cations as a test water was prepared as a comparative example. For this example, zinc hydroxide was converted to zinc per 1 liter of test water. Test water to which 1.2 mg was added in reduced amount was prepared. Each of these test waters was weighed exactly 1 liter, filled in a 1 liter polypropylene beaker, placed in a freezer maintained at -10 ° C, and stored frozen in the respective refrigerators. When half of the ice had frozen, the beaker was taken out of the freezer, water and ice were separated, and the water and ice were returned to room temperature, respectively, and the solid content was filtered with a filter having a maximum transmission diameter of 1 micron. After filtration, each filtered water was subjected to analysis. The analysis results are as shown in Table 1.

【0025】[0025]

【表1】 [Table 1]

【0026】表1に示すように、比較例においては、原
水、氷部、水部共に固形分は検出されず、実施例におい
てのみ、氷部に固形分が検出されている。同時に、シリ
カについては、比較例では氷部、水部についてほぼ均等
に検出されているに対し、実施例においては、氷部にお
ける検出量が減少し、全量が減少している。また、実施
例においては、氷結処理後には、亜鉛成分が、氷部、水
部共に検出されなくなっている。この実施例における試
験結果は、氷結処理により、亜鉛成分がおそらく亜鉛水
酸基塩として析出し、これと共に、シリカが晶出し、こ
れを核として氷結したことを窺わせる。この点を確認す
るために、実施例において分離した固形分をX線分析に
供したところ、前記固形分は、重量比でシリカを72
%、亜鉛を19%、カルシウムを7%含有していること
が判明した。従って、亜鉛の水酸基塩が溶存すること
で、シリカ、カルシウム等の溶解固形分の析出を促進
し、これを核として氷結が誘発されることが証明され
た。尚、実施例としては示していないが、同時に行った
実験によって、アルミニウムの水酸基塩の場合にも同様
の事実が判明している。
As shown in Table 1, in the comparative example, no solids were detected in the raw water, the ice portion, and the water portion, and only in the examples, solids were detected in the ice portion. At the same time, as for silica, the ice part and the water part are almost uniformly detected in the comparative example, whereas in the example, the detection amount in the ice part is reduced, and the total amount is reduced. In the embodiment, after the freezing treatment, the zinc component is not detected in both the ice portion and the water portion. The test results in this example indicate that the freezing treatment caused the zinc component to precipitate out, possibly as a zinc hydroxyl group salt, along with which the silica crystallized out and was frozen using this as a nucleus. In order to confirm this point, the solid separated in the example was subjected to X-ray analysis.
%, 19% zinc and 7% calcium. Therefore, it was proved that the dissolution of the hydroxyl group salt of zinc accelerated the precipitation of dissolved solids such as silica and calcium, and induced icing by using these as nuclei. Although not shown as an example, similar experiments have revealed the same facts in the case of aluminum hydroxide.

【0027】〔第二実施例〕 ナトリウム基陽イオン交換体に接触させてアルミニウム
及び亜鉛の陽イオンを除去した原水を用意し、その原水
に、塩化亜鉛と炭酸ソーダとを、水酸化亜鉛を生成させ
る当量比で、亜鉛として、0.5ppm、1.0pp
m、3.0ppmに相当する量を添加して、亜鉛の水酸
基塩に関する実施例用試験用水を用意し、前記原水に、
ポリ塩化アルミニウムを、水酸化アルミニウムを生成さ
せる当量比で、アルミニウムとして、0.3ppm、
0.5ppm、2.0ppmに相当する量を添加して、
アルミニウムの水酸基塩に関する実施例用試験用水を用
意した。尚、前記原水をそのまま比較例用の試験用水と
して用いた。何れの試験用水も、正確に1リットルを計
量し、夫々各別に1リットルのポリプロピレン製のビー
カに満たして、−10℃に維持した冷凍庫内に入れ、夫
々庫内に冷凍保管した。全量が氷結した後、前記ビーカ
を前記冷凍庫から取り出し、夫々を常温に戻した後、固
形分を最大透過径1ミクロンのフィルタで濾過して、夫
々の濾過水を分析に供した。分析結果は表2に示すとお
りである。
Second Embodiment Raw water from which aluminum and zinc cations have been removed by contact with a sodium-based cation exchanger is prepared, and zinc chloride and sodium carbonate are formed in the raw water to produce zinc hydroxide. at an equivalent ratio, as zinc, 0.5ppm, 1.0pp
m, an amount corresponding to 3.0 ppm was added, and test water for an example relating to a hydroxyl group of zinc was prepared.
Polyaluminum chloride, in an equivalent ratio to produce aluminum hydroxide, as A aluminum, 0.3 ppm,
0.5 ppm, adding an amount corresponding to 2.0 ppm,
Example test water for a hydroxyl salt of aluminum was prepared. The raw water was used as it was as a test water for a comparative example. Each test water was accurately weighed in 1 liter, filled in a 1 liter polypropylene beaker, placed in a freezer maintained at -10 ° C, and stored frozen in the respective refrigerators. After the whole amount was frozen, the beakers were taken out of the freezer, each was returned to room temperature, and the solid content was filtered through a filter having a maximum transmission diameter of 1 micron, and each filtered water was subjected to analysis. The analysis results are as shown in Table 2.

【0028】[0028]

【表2】 注・実-1:亜鉛を塩化亜鉛の形で炭酸ソーダと共に添
加。 添加量は水酸化亜鉛生成当量比で亜鉛として0. 5pp
m。 実-2:亜鉛を塩化亜鉛の形で炭酸ソーダと共に添加。 添加量は水酸化亜鉛生成当量比で亜鉛として1. 0pp
m。 実-3:亜鉛を塩化亜鉛の形で炭酸ソーダと共に添加。 添加量は水酸化亜鉛生成当量比で亜鉛として3. 0pp
m。 実-4:アルミニウムをポリ塩化アルミニウムの形で添
加。 添加量はアルミニウムとして0. 3ppm。 実-5:アルミニウムをポリ塩化アルミニウムの形で添
加。 添加量はアルミニウムとして0. 5ppm。 実-6:アルミニウムをポリ塩化アルミニウムの形で添
加。 添加量はアルミニウムとして2. 0ppm。
[Table 2] Note and fruit-1: Zinc is added together with sodium carbonate in the form of zinc chloride.
Addition. The addition amount was 0.5 pp as zinc in terms of zinc hydroxide production equivalent ratio.
m. Fruit-2: Zinc is added together with sodium carbonate in the form of zinc chloride. The addition amount is 1.0 pp as zinc in terms of zinc hydroxide production equivalent ratio.
m. Fruit-3: Zinc is added together with sodium carbonate in the form of zinc chloride. The addition amount was 3.0 pp as zinc in terms of zinc hydroxide production equivalent ratio.
m. Real-4: Add aluminum in the form of polyaluminum chloride
Addition. The addition amount is 0.3 ppm as aluminum. Real-5: Add aluminum in the form of polyaluminum chloride
Addition. The addition amount is 0.5 ppm as aluminum. Real-6: Add aluminum in the form of polyaluminum chloride
Addition. The addition amount is 2.0 ppm as aluminum.

【0029】表2に示すように、亜鉛水酸基塩或いはア
ルミニウム水酸基塩が水中に生成し添加されるように、
亜鉛化合物或いはアルミニウム化合物と水酸基付与化合
物を添加することにより、結氷した氷の中に固形分が生
成しており、処理後の水の中の溶存シリカは減少してい
る。少なくとも、亜鉛水酸基塩であれば、亜鉛換算量に
て1.0ppm以上、アルミニウム水酸基塩であれば、
アルミニウム換算量にて0.5ppm以上の添加によ
り、溶存するシリカの量は半減できることが判った。
As shown in Table 2, a zinc hydroxide salt or an aluminum hydroxide salt is formed and added in water.
By adding the zinc compound or aluminum compound and the hydroxyl group-providing compound, solids are formed in the frozen ice, and the amount of dissolved silica in the water after the treatment is reduced. At least, if it is a zinc hydroxyl salt, it is 1.0 ppm or more in terms of zinc, if it is an aluminum hydroxyl salt,
It was found that the amount of dissolved silica can be reduced by half by adding 0.5 ppm or more in terms of aluminum.

【0030】上記両実施例の結果は、両性の金属水酸基
塩である亜鉛の水酸基塩或いはアルミニウムの水酸基塩
を添加すれば、冷却によりシリカを主体とする溶存固形
物が析出することを示している。従って、用水中のシリ
カ分を除去することが可能であり、ボイラ、空気調和設
備、冷凍設備、製紙設備を代表とする水を使用する設備
に供給する用水を、これら設備の流水路内にシリカを主
とするスケールの形成を防止できるまでにシリカ分を含
有しないものにできることが明らかである。
The results of the above Examples show that the addition of zinc hydroxide or aluminum hydroxide which is an amphoteric metal hydroxide precipitates a dissolved solid mainly composed of silica upon cooling. . Therefore, it is possible to remove the silica content in the service water, and supply the water to be supplied to equipment using water, such as a boiler, an air conditioner, a refrigeration facility, and a papermaking facility, to the silica in the flow channel of these facilities. It is clear that the silica content can not be contained before the formation of a scale mainly composed of silica.

───────────────────────────────────────────────────── フロントページの続き (51)Int.Cl.7 識別記号 FI B01D 9/02 608 B01D 9/02 608A 615 615Z 617 617 C02F 1/44 C02F 1/44 E 5/00 610 5/00 610F 620 620C 5/02 5/02 B (72)発明者 小川 眞智子 大阪府大阪市中央区城見2丁目1番61号 東西化学産業株式会社内 (72)発明者 酒井 郁夫 兵庫県高砂市荒井町新浜二丁目1番1号 三菱重工業株式会社 高砂製作所内 (72)発明者 辻 清一 兵庫県高砂市荒井町新浜二丁目1番1号 三菱重工業株式会社 高砂製作所内 (72)発明者 山内 澄男 兵庫県高砂市荒井町新浜二丁目1番1号 三菱重工業株式会社 高砂研究所内 (56)参考文献 特開 平4−260494(JP,A) 特開 平7−185527(JP,A) (58)調査した分野(Int.Cl.7,DB名) C02F 1/22 B01D 9/02 C02F 5/00 ──────────────────────────────────────────────────続 き Continued on the front page (51) Int.Cl. 7 Identification symbol FI B01D 9/02 608 B01D 9/02 608A 615 615Z 617 617 C02F 1/44 C02F 1/44 E 5/00 610 5/00 610F 620 620C 5/02 5/02 B (72) Inventor Machiko Ogawa 2-1-161 Shiromi, Chuo-ku, Osaka City, Osaka Prefecture Inside Tozai Chemical Industry Co., Ltd. (72) Inventor Ikuo Sakai 2-chome, Araimachi, Takarai City, Hyogo Prefecture 1-1 1-1 Mitsubishi Heavy Industries, Ltd. Takasago Works (72) Inventor Seiichi Tsuji 2-1-1, Araimachi, Araimachi, Takasago-shi, Hyogo Prefecture Mitsubishi Heavy Industries, Ltd. Takasago Works (72) Inventor Sumio Yamauchi Araimachi, Takasago-shi, Hyogo Prefecture 2-1-1 Niihama Mitsubishi Heavy Industries, Ltd. Takasago Research Laboratory (56) References JP-A-4-260494 (JP, A) Open flat 7-185527 (JP, A) (58 ) investigated the field (Int.Cl. 7, DB name) C02F 1/22 B01D 9/02 C02F 5/00

Claims (7)

(57)【特許請求の範囲】(57) [Claims] 【請求項1】 水を使用する設備に対する用水の処理方
法であって、 前記用水中に両性の金属水酸基塩を添加又は両性の金属
水酸基塩を生成させた後、前記用水を氷点以下に冷却し
て結氷させ、結氷した氷中の沈殿物を分離して、用水中
のシリカを除去する用水の処理方法。
1. A method for treating water for equipment using water, comprising adding an amphoteric metal hydroxide salt to said water or adding an amphoteric metal to the water.
A method for treating water for cooling the water to a temperature below the freezing point to freeze the ice after generating a hydroxyl salt, separating a precipitate in the iced ice, and removing silica in the water.
【請求項2】 前記沈殿物を分離するのに、前記結氷し
た氷を、前記冷却した用水から分離する請求項1記載の
用水の処理方法。
2. The method of claim 1, wherein the frozen ice is separated from the cooled water to separate the precipitate.
【請求項3】 前記沈殿物を分離するのに、前記結氷し
た氷を全て融解させた後、前記冷却した用水を濾過して
前記沈殿物を分離する請求項1記載の用水の処理方法。
3. The method for treating water according to claim 1, wherein the precipitate is separated by melting all of the frozen ice and then filtering the cooled water to separate the precipitate.
【請求項4】 前記金属水酸基塩、アルミニウムの水
酸基塩である請求項2又は3に記載の用水の処理方法。
Wherein said metal hydroxyl salts, the processing method of the water according to claim 2 or 3 which is an aluminum hydroxyl salts.
【請求項5】 前記アルミニウムの水酸基塩を前記用水
に、可溶の範囲内で、アルミニウム換算量にて0.3p
pm以上溶解させる請求項4記載の用水の処理方法。
5. The method according to claim 1, wherein the aluminum hydroxide salt is
, In the range of soluble, 0.3P of aluminum equivalent amount
processing method of water according to claim 4, wherein Ru is dissolved or pm.
【請求項6】 前記金属水酸基塩、亜鉛の水酸基塩
ある請求項2又は3に記載の用水の処理方法。
6. The metal hydroxide salt is a zinc hydroxide salt .
The method for treating water according to claim 2 or 3.
【請求項7】 前記亜鉛の水酸基塩を前記用水に、可溶
の範囲内で、亜鉛換算量にて0.5ppm以上溶解させ
る請求項6記載の用水の処理方法。
7. The method of treating water for use according to claim 6, wherein the hydroxyl group salt of zinc is dissolved in the water for use in an amount of 0.5 ppm or more in terms of zinc within a range of solubility .
JP13723199A 1999-05-18 1999-05-18 Water treatment method Expired - Fee Related JP3315944B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP13723199A JP3315944B2 (en) 1999-05-18 1999-05-18 Water treatment method

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP13723199A JP3315944B2 (en) 1999-05-18 1999-05-18 Water treatment method

Publications (2)

Publication Number Publication Date
JP2000325950A JP2000325950A (en) 2000-11-28
JP3315944B2 true JP3315944B2 (en) 2002-08-19

Family

ID=15193858

Family Applications (1)

Application Number Title Priority Date Filing Date
JP13723199A Expired - Fee Related JP3315944B2 (en) 1999-05-18 1999-05-18 Water treatment method

Country Status (1)

Country Link
JP (1) JP3315944B2 (en)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2012121703A1 (en) * 2011-03-07 2012-09-13 Empire Technology Development Llc Systems, materials, and processes for isolating nanoparticles

Also Published As

Publication number Publication date
JP2000325950A (en) 2000-11-28

Similar Documents

Publication Publication Date Title
US9914652B2 (en) Water treatment process and water treatment system
JP2002534262A (en) Process for removing organic and inorganic contaminants from acidified water from which phenol has been removed by employing reverse osmosis
CN103805808A (en) Scale-inhibition copper-based catalyst alloy and preparation method thereof
Gill et al. Kinetics of growth of calcium sulfate crystals at heated metal surfaces
JP2000233101A (en) Process and apparatus for manufacturing hydrate slurry
JP3315944B2 (en) Water treatment method
JP2002054894A (en) Method and device for water treatment in open circulation cooling water system
Amjad et al. The influence of recirculating water impurities on the performance of calcium phosphate inhibiting polymers
JP3213289B2 (en) Treatment method for cold storage water for ice storage
JP4669625B2 (en) Crystallization reactor equipped with crystallization reaction component recovery means
JP4182454B2 (en) Heat exchanger scale adhesion prevention method
JP2002177988A (en) Water treatment method for circulation type cooling water system
JP2002292201A5 (en)
JPH1128455A (en) Freezing concentration method and device thereof
JP2002292202A5 (en)
JP2000070992A (en) Scaling inhibiting method and scaling inhibitor
JP2003172593A (en) Cooling water processing method and device for open-type circulating cooling water system
JP2003275748A (en) Frozen and concentrated waste water treatment device
JPH10128344A (en) Apparatus and method for treating fluorine-containing drainage
JP3016671B2 (en) Fresh water generator
JP2006007010A (en) Crystallization treatment method of fluorine-containing water
CN113862510A (en) Alloy material with scale inhibition function and preparation method thereof
JPS61234997A (en) Method of holding proper seed crystal in selective precipitation system
JP2003080292A (en) Method for preventing scale of cooling water system

Legal Events

Date Code Title Description
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20020509

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

S531 Written request for registration of change of domicile

Free format text: JAPANESE INTERMEDIATE CODE: R313531

S111 Request for change of ownership or part of ownership

Free format text: JAPANESE INTERMEDIATE CODE: R313117

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

R360 Written notification for declining of transfer of rights

Free format text: JAPANESE INTERMEDIATE CODE: R360

R370 Written measure of declining of transfer procedure

Free format text: JAPANESE INTERMEDIATE CODE: R370

S111 Request for change of ownership or part of ownership

Free format text: JAPANESE INTERMEDIATE CODE: R313117

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20080607

Year of fee payment: 6

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090607

Year of fee payment: 7

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100607

Year of fee payment: 8

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100607

Year of fee payment: 8

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110607

Year of fee payment: 9

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120607

Year of fee payment: 10

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130607

Year of fee payment: 11

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130607

Year of fee payment: 11

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

LAPS Cancellation because of no payment of annual fees