JP3312852B2 - Battery power supply - Google Patents

Battery power supply

Info

Publication number
JP3312852B2
JP3312852B2 JP25424396A JP25424396A JP3312852B2 JP 3312852 B2 JP3312852 B2 JP 3312852B2 JP 25424396 A JP25424396 A JP 25424396A JP 25424396 A JP25424396 A JP 25424396A JP 3312852 B2 JP3312852 B2 JP 3312852B2
Authority
JP
Japan
Prior art keywords
refrigerant
battery power
power supply
storage battery
cells
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
JP25424396A
Other languages
Japanese (ja)
Other versions
JPH10106521A (en
Inventor
史彦 吉井
学 垣野
宗久 生駒
隆夫 松浪
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Panasonic Corp
Panasonic Holdings Corp
Original Assignee
Panasonic Corp
Matsushita Electric Industrial Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Panasonic Corp, Matsushita Electric Industrial Co Ltd filed Critical Panasonic Corp
Priority to JP25424396A priority Critical patent/JP3312852B2/en
Publication of JPH10106521A publication Critical patent/JPH10106521A/en
Application granted granted Critical
Publication of JP3312852B2 publication Critical patent/JP3312852B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries

Landscapes

  • Secondary Cells (AREA)
  • Battery Mounting, Suspending (AREA)

Description

【発明の詳細な説明】DETAILED DESCRIPTION OF THE INVENTION

【0001】[0001]

【発明の属する技術分野】本発明は、複数の単電池を組
み合わせて所定電力量を得る蓄電池電源装置に関し、特
に集合体となる蓄電池の温度上昇を抑える構造を備えた
蓄電池電源装置に関するものである。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a storage battery power supply device for obtaining a predetermined amount of electric power by combining a plurality of cells, and more particularly to a storage battery power supply device having a structure for suppressing a rise in temperature of a storage battery as an assembly. .

【0002】[0002]

【従来の技術】複数の単電池を集積して所望の出力電圧
と電力量とを得る蓄電池電源を構成するとき、集積され
た中央部分に位置する単電池は、周囲の単電池からの熱
伝導を受け、しかも放熱が困難になるため、蓄熱による
温度上昇が甚だしくなる。このような温度上昇を抑える
ため、冷媒の流通による冷却がなされる。
2. Description of the Related Art When a plurality of cells are integrated to form a storage battery power source that obtains a desired output voltage and electric energy, a unit cell located in a central portion of the integrated cell is configured to conduct heat from surrounding cells. In addition, since heat dissipation becomes difficult, the temperature rise due to heat storage becomes significant. In order to suppress such a temperature rise, cooling is performed by circulation of a refrigerant.

【0003】[0003]

【発明が解決しようとする課題】しかしながら、ただ単
に冷媒を流通させるだけでは、冷媒が流通方向の下流側
に進むにつれて周囲の単電池からの熱を奪っていくた
め、冷媒の温度が上昇し、下流側に位置する単電池の冷
却効率が悪くなる。その結果、冷媒流通の上流側と下流
側との単電池間において温度のばらつきが生じることに
なり、単電池個々の電池性能に差が生じて、蓄電池とし
ての充放電の制御が困難になる問題点があった。
However, if the refrigerant is merely circulated, the refrigerant deprives the surrounding cells of heat as the refrigerant proceeds downstream in the flow direction, so that the temperature of the refrigerant rises. The cooling efficiency of the unit cells located on the downstream side deteriorates. As a result, temperature variations occur between the cells on the upstream and downstream sides of the refrigerant flow, resulting in differences in cell performance of the individual cells, making it difficult to control charging and discharging as a storage battery. There was a point.

【0004】本発明は、従来構成の問題点を解決すべく
創案されたもので、集積された単電池毎の温度差を抑制
する冷却構造を備えた蓄電池電源装置を提供することを
目的とするものである。
SUMMARY OF THE INVENTION The present invention has been made to solve the problems of the conventional configuration, and has as its object to provide a storage battery power supply device having a cooling structure for suppressing a temperature difference between integrated cells. Things.

【0005】[0005]

【課題を解決するための手段】本願の第1発明に係る蓄
電池電源装置は、柱状に形成された単電池もしくは単電
池の集合体を複数個接続して所定電力量を得る蓄電池電
源装置において、冷媒を流通させる冷媒管路と、片面ま
たは両面に前記単電池もしくは単電池の集合体を収容す
る凹部とが形成された熱伝導性に優れた材料からなる
却ブロックを所要数積層し、積層間の前記凹部に前記単
電池もしくは単電池の集合体を収容したことを特徴とす
る。
According to a first aspect of the present invention, there is provided a storage battery power supply device for obtaining a predetermined amount of power by connecting a plurality of unit cells or a group of unit cells formed in a column shape. A refrigerant pipe through which the refrigerant flows, and one side
Others required number laminating cold <br/> retirement block of a material excellent in thermal conductivity and a recess for accommodating the assembly of the single cell or a single cell on both sides is formed, in the recess between the lamination It is characterized by containing the unit cell or an assembly of unit cells.

【0006】上記構成によれば、単電池もしくは単電池
の集合体は、冷却ブロックに形成された凹部に収容さ
れ、冷却ブロックを積層することにより、所要数の単電
池もしくは単電池の集合体は両端の電極部を外部に露出
させて冷却ブロック内に密着して収容されることにな
る。冷却ブロックは熱伝導性に優れた材料により形成さ
れるので、単電池もしくは単電池の集合体からの熱は直
接的に冷却ブロックに奪われて均一な冷却がなされる。
冷却ブロック内には冷媒管路が形成されるので、単電池
もしくは単電池の集合体からの伝熱により温度上昇した
冷却ブロックは冷却され、冷媒管路への冷媒の流入、流
出の経路を均等に組み合わせることにより、更に冷却ブ
ロック上の温度分布の差を抑制することができる。
[0006] According to the above configuration, the unit cells or the aggregate of the unit cells are accommodated in the recesses formed in the cooling block, and the cooling blocks are stacked to form a required number of the unit cells or the aggregate of the unit cells. The electrode portions at both ends are exposed to the outside and are housed in close contact with the cooling block. Since the cooling block is formed of a material having excellent thermal conductivity, heat from the single cell or the aggregate of the single cells is directly taken away by the cooling block, and uniform cooling is performed.
Since a cooling pipe is formed in the cooling block, the cooling block whose temperature has increased due to the heat transfer from the unit cell or the assembly of the cells is cooled, and the flow of the refrigerant flowing into and out of the cooling pipe is evenly distributed. , The difference in the temperature distribution on the cooling block can be further suppressed.

【0007】上記構成において、冷媒管路は管材の埋め
込みにより形成することができ、成形材として樹脂を用
いた場合には、冷媒の種類を問わず対応させることがで
きる。
[0007] In the above configuration, the refrigerant pipe can be formed by embedding a pipe material. When a resin is used as a molding material, it can be used regardless of the type of refrigerant.

【0008】又、冷媒管路は冷却ブロックや成形材に冷
媒流路を形成することができ、成形形状として管路を形
成すれば、管材が不要でコストの低減を図ることができ
る。成形材料としてアルミニウム等の金属材料を使用し
たときには、管材を用いなくても、冷媒の種類に対応で
きる。
[0008] In addition, the refrigerant channel can form a refrigerant channel in a cooling block or a molding material. If the channel is formed as a molded shape, a tube material is unnecessary and cost can be reduced. When a metal material such as aluminum is used as a molding material, it is possible to cope with the type of refrigerant without using a tube.

【0009】更に、冷媒管路の冷媒流れ方向を水平方向
又は垂直方向で交互に変化させて構成することができ、
蓄電池電源装置全体の温度分布の均一化を図ることがで
きる。
Furthermore, the refrigerant flow direction of the refrigerant pipe can be alternately changed in the horizontal direction or the vertical direction.
The temperature distribution of the entire storage battery power supply device can be made uniform.

【0010】願の第2発明に係る蓄電池電源装置は、
単電池もしくは単電池の集合体を所要数集積して所定電
力量を得る蓄電池電源装置において、複数の単電池もし
くは単電池の集合体と、冷媒を還流させる配管構造の
媒管路とを所定位置に配置した状態で収容して、熱伝導
性に優れた材料で冷却ブロックを、所定形状に一体成形
したことを特徴とする。
[0010] battery power supply device according to the second aspect of the present Application is
In a storage battery power supply device for obtaining a predetermined amount of electric power by accumulating a required number of cells or an assembly of cells, a cooling pipe having a piping structure for circulating a refrigerant and a plurality of cells or an assembly of cells. The cooling block is integrally formed into a predetermined shape with a material having excellent thermal conductivity by accommodating the road and the road at a predetermined position .

【0011】上記2発明の構成によれば、蓄電池電源
装置を構成する複数の単電池もしくは単電池の集合体
と、冷媒を流通させる管路とは、熱伝導性に優れた材料
により一体成形される冷却ブロック内に収容される。一
体成形の手段は、単電池もしくは単電池の集合体と配管
構造の冷媒管路とを所定位置に配置した状態で所定形状
に成形する手段を採用している。これにより単電池もし
くは単電池の集合体は、熱伝導性に優れた材料により一
体成形された中に両端の電極部分を外部に露出されて包
まれるので、発熱は成形材に効率的に奪われ、成形材は
冷媒管路で冷却され、単電池個々の最大温度が低下し、
単電池間の温度差を減少させることができる。
[0011] The above, according to the second shot Ming configuration, a set of a plurality of single cells or unit cells constituting the battery power supply, a conduit for circulating coolant, together with a material excellent in heat conductivity It is housed in a cooling block to be molded. Integral means is piping multiplicity of single cells or unit cells
It employs a means to forming into a predetermined shape in a state where the refrigerant lines of the structure are arranged in a predetermined position. As a result, the unit cell or the unit cell unit is integrally formed of a material having excellent thermal conductivity, and the electrode portions at both ends are exposed to the outside and wrapped. , The molding material is cooled in the refrigerant pipe, the maximum temperature of each cell decreases,
The temperature difference between the cells can be reduced.

【0012】[0012]

【発明の実施の形態】以下、添付図面を参照して本発明
の一実施形態について説明し、本発明の理解に供する。
尚、以下の実施形態は本発明を具体化した一例であっ
て、本発明の技術的範囲を限定するものではない。
DESCRIPTION OF THE PREFERRED EMBODIMENTS An embodiment of the present invention will be described below with reference to the accompanying drawings to provide an understanding of the present invention.
The following embodiments are examples embodying the present invention and do not limit the technical scope of the present invention.

【0013】図1は、本発明の第1の実施形態に係る蓄
電池電源装置1の構成を示す斜視図で、冷媒管路の接続
や電池間の接続に対する図示は省略している。又、以下
に示す蓄電池2は、ここでは単電池を複数個直列接続し
た単電池の集合体として形成されている。
FIG. 1 is a perspective view showing a configuration of a storage battery power supply device 1 according to a first embodiment of the present invention, in which illustration of connections of refrigerant lines and connections between batteries is omitted. The storage battery 2 described below is formed as an aggregate of unit cells in which a plurality of unit cells are connected in series.

【0014】図1において、蓄電池電源装置1は、冷却
ブロックB、冷却ブロックA、A、冷却ブロックBの順
に積層された間に蓄電池2、2……が収容され、各冷却
ブロックA、Bには冷媒管路6、6……が埋設されて構
成されている。
In FIG. 1, a storage battery power supply device 1 accommodates storage batteries 2, 2,... While cooling blocks B, cooling blocks A, A, and cooling blocks B are stacked in this order. Are constructed by burying refrigerant pipes 6, 6,....

【0015】図2は冷却ブロックA及びBを積層した状
態で示す斜視図で、正面位置を断面で示している。円柱
状に形成された蓄電池2の1/2を収容する断面形状半
円の凹部4が上下両面に形成され、冷媒管路6、6……
が埋設された冷却ブロックA、Aと、蓄電池2の1/2
を収容する断面形状半円の凹部4が一方面に形成され、
他方面は平面に形成され、冷媒管路6、6……が埋設さ
れた冷却ブロックB、Bとを、図示するように冷却ブロ
ックA、Aを中央に、冷却ブロックB、Bを上下端に配
して積層したときに形成される電池収容穴3、3……に
蓄電池2、2……を収容する。
FIG. 2 is a perspective view showing a state in which the cooling blocks A and B are stacked, and shows a cross section of the front position. Recesses 4 having a semicircular cross section for accommodating a half of the storage battery 2 formed in a columnar shape are formed on both upper and lower surfaces, and refrigerant pipes 6, 6,.
Is embedded in the cooling blocks A, A and の of the storage battery 2.
Is formed on one surface of the concave portion 4 having a semicircular cross-sectional shape
The other surface is formed as a flat surface, and the cooling blocks B, B in which the refrigerant pipes 6, 6,... Are embedded are arranged with the cooling blocks A, A at the center and the cooling blocks B, B at the upper and lower ends as shown in the figure. The storage batteries 2, 2,... Are accommodated in the battery accommodation holes 3, 3,.

【0016】前記冷媒管路6の配管は、図3に示すよう
に、冷却ブロックA又はB内に配設されている。この冷
媒管路6に流通させる冷媒として、水、オイル、代替フ
ロン等を採用することができ、冷却ブロックA、B内に
収容された蓄電池2を構成する単電池個々を均等に冷却
するためには、図1に示す冷媒管路6の正面側(図示の
手前側)に出ている各冷媒管路6の端部を冷媒入口と
し、図示後方に同様に出ている管路端部を冷媒出口とす
るのが望ましい。但し、層毎に冷媒入口及び出口を設定
すると、冷媒の送給ポンプや配管、冷媒の放熱器の構成
が複雑又は大型化するので、温度上昇を許容範囲内に収
めることにすれば、複数層の配管を直列に交差接続し
て、冷媒の流れ方向が層毎に交互になるように構成する
こともできる。
The piping of the refrigerant pipe 6 is disposed in the cooling block A or B as shown in FIG. Water, oil, alternative chlorofluorocarbon, or the like can be used as the refrigerant to be circulated through the refrigerant pipe 6. In order to uniformly cool the individual cells constituting the storage battery 2 housed in the cooling blocks A and B, Is a refrigerant inlet at the end of each refrigerant pipe 6 protruding toward the front (front side in the figure) of the refrigerant pipe 6 shown in FIG. It is desirable to have an exit. However, setting the refrigerant inlet and outlet for each layer complicates or enlarges the configuration of the refrigerant supply pump, piping, and refrigerant radiator, so if the temperature rise is kept within the allowable range, multiple layers are required. May be cross-connected in series so that the flow direction of the refrigerant alternates with each layer.

【0017】次いで、本発明の第2の実施形態について
説明する。図4は第2の実施形態に係る冷却ブロックC
の斜視図で、正面位置を断面で示している。
Next, a second embodiment of the present invention will be described. FIG. 4 shows a cooling block C according to the second embodiment.
Is a perspective view of FIG.

【0018】図4において、冷却ブロックCは、円柱状
に形成された蓄電池2を収容する蓄電池収容孔7、7…
…と、冷媒管路6、6……とを一体成形により形成して
構成されている。この冷却ブロックCは、熱伝導性に優
れた材料により成形することができ、樹脂材料又は金属
材料を採用することができる。樹脂材料としては、例え
ば、2液性加熱硬化型シリコーンポッティング材が、金
属材料としては、例えば、アルミニウムが適している。
In FIG. 4, a cooling block C is provided with storage battery housing holes 7, 7,.
, And the refrigerant pipes 6, 6,... Are formed by integral molding. The cooling block C can be formed of a material having excellent heat conductivity, and a resin material or a metal material can be employed. As the resin material, for example, a two-part heat-curable silicone potting material is suitable, and as the metal material, for example, aluminum is suitable.

【0019】上記冷却ブロックC内に蓄電池2及び冷媒
管路6を収容し、蓄電池電源装置を構成する手段とし
て、次の3通りの手段を選択採用することができる。
The following three means can be selectively adopted as means for accommodating the storage battery 2 and the refrigerant pipe 6 in the cooling block C and constituting the storage battery power supply device.

【0020】第1の手段は、先に図3に示したような配
管構造の冷媒管路6を、冷媒入口及び冷媒出口のみを露
出させた状態で所定位置に埋設し、蓄電池収容穴7、7
……を貫通空洞状態にして、冷却ブロックCを成形す
る。その後、蓄電池収容穴7、7……に蓄電池2を収納
して、所要の出力電圧及び電力量になるように接続を行
うと共に、冷媒管路6、6……の配管処理を行う。この
第1の手段による成形には、樹脂材料、金属材料のいず
れでも適用できる。
The first means is to embed a refrigerant pipe 6 having a piping structure as shown in FIG. 3 at a predetermined position with only the refrigerant inlet and the refrigerant outlet being exposed, 7
.. Are formed in a through-hole state, and the cooling block C is formed. After that, the storage battery 2 is stored in the storage battery housing holes 7, 7,..., The connection is performed so that the required output voltage and electric power are obtained, and the piping of the refrigerant pipes 6, 6,. Either a resin material or a metal material can be applied to the molding by the first means.

【0021】第2の手段は、蓄電池2、2……及び冷媒
管路6、6……を所定位置に配置し、蓄電池2、2……
の両端電極部と、冷媒管路6、6……の冷媒入口及び冷
媒出口とを露出させた状態になるように埋設して、冷却
ブロックCを成形する。その後、蓄電池2、2……の電
極間を所要の出力電圧及び電力量が得られるように接続
を行うと共に、冷媒管路6、6……の配管処理を行う。
この第2の手段による成形には、樹脂材料が適用でき
る。
The second means is to arrange the storage batteries 2, 2,... And the refrigerant pipes 6, 6,.
, And a cooling block C is formed by burying the electrodes so as to expose the refrigerant inlets and the refrigerant outlets of the refrigerant pipes 6, 6,.... After that, connections are made between the electrodes of the storage batteries 2, 2,... So that a required output voltage and electric energy are obtained, and piping processing of the refrigerant pipes 6, 6,.
A resin material can be applied to the molding by the second means.

【0022】第3の手段は、蓄電池収容穴7、7……を
貫通空洞状態に形成すると共に、図5に示すように、冷
媒管路6c、6c……も貫通空洞状態に形成されるよう
に冷却ブロックCを成形する。その後、蓄電池収容穴
7、7……に蓄電池2を収納して、所要の出力電圧及び
電力量になるように直並列接続を行うと共に、冷媒管路
6c、6c……の両端部間の接続配管6b、6b……と
冷媒出入口配管6a、6aの配管加工を行う。この第3
の手段による成形では、冷却ブロックC内の冷媒管路6
cは、貫通空洞自体が管路を形成するので、管材を埋設
する必要がないが、両端部間の配管加工の処理を要す
る。この第3の手段による成形には、金属材料が適用で
きる。
The third means is to form the storage battery accommodating holes 7, 7,... In a through-hollow state, and also to form the refrigerant pipes 6c, 6c,. A cooling block C is formed. After that, the storage battery 2 is stored in the storage battery housing holes 7, 7,..., And a series-parallel connection is performed so that a required output voltage and electric power are obtained, and a connection between both ends of the refrigerant pipes 6c, 6c. Pipes 6b, 6b... And refrigerant inlet / outlet pipes 6a, 6a are processed. This third
In the molding by the means of (1), the refrigerant pipe 6 in the cooling block C
In the case of c, since the through-hole itself forms a conduit, there is no need to bury a pipe material, but processing of piping between both ends is required. A metal material can be applied to the molding by the third means.

【0023】尚、上記冷却ブロックCにより蓄電池電源
装置を構成した状態は、図1に示した蓄電池電源装置1
とほぼ同様になるので、その図示は省略する。
The state in which the cooling block C constitutes the storage battery power supply device corresponds to the storage battery power supply device 1 shown in FIG.
Since it is almost the same as that of FIG.

【0024】以上の説明では、単電池の集合体である蓄
電池2を12個集積した状態で示したが、所望の出力電
圧及び電力量が得られる数で集積し、その集積形状も搭
載スペースに合わせた変形、変化形状に連結又は成形す
ることができる。
In the above description, 12 storage batteries 2 which are an aggregate of unit cells are shown in an integrated state. However, the storage batteries 2 are integrated in such a number that a desired output voltage and electric energy can be obtained, and the integrated shape is also included in the mounting space. It can be connected or formed into a combined deformation and variation.

【0025】[0025]

【実施例】図1に示す実施形態により、単電池を6個直
列接続した蓄電池2を7個並列、6段積層で42個集積
できる冷却ブロックA及びBを2液性加熱硬化型シリコ
ーンポッティング材で形成して蓄電池電源装置1を構成
し、図6に示す蓄電池電源装置10を比較例として、使
用時の温度分布について以下の検証を実施した。
DETAILED DESCRIPTION OF THE PREFERRED EMBODIMENTS According to the embodiment shown in FIG. 1, seven storage batteries 2 in which six unit cells are connected in series, two cooling blocks A and B capable of integrating 42 storage batteries in a six-stage stack, are a two-part thermosetting silicone potting material. The storage battery power supply device 1 shown in FIG. 6 was used as a comparative example, and the following verification was performed on the temperature distribution during use using the storage battery power supply device 10 shown in FIG. 6 as a comparative example.

【0026】比較例とする蓄電池電源装置10の概略構
成を説明する。図6に示すように、本実施例と同様に、
6個の単電池を直列接続した蓄電池2を横並列で5段積
みにして42個を集積したもので、3mm厚のポリプロ
ピレン製の蓄電池保持部材11で各積層段の蓄電池2を
保持している。
A schematic configuration of a storage battery power supply device 10 as a comparative example will be described. As shown in FIG. 6, similar to the present embodiment,
The storage batteries 2 in which six unit cells are connected in series are stacked in five rows in a horizontal parallel manner, and 42 batteries are integrated. The storage battery holding members 11 made of polypropylene having a thickness of 3 mm hold the storage batteries 2 in each stacked stage. .

【0027】温度分布測定の条件は、環境温度24℃
で、各蓄電池電源装置1及び10の蓄電池群を1Ahで
充電しながら、単電池の表面温度が50℃に達した時点
で、比較例の蓄電池電源装置10の場合は、ファンを作
動させ、蓄電池2の長さ方向に3リットル/cm2 の空
気を流通させた。一方、実施例の蓄電池電源装置1の場
合は、冷媒管路6に環境温度に近似温度の水道水を冷媒
として流通させた。
The conditions for measuring the temperature distribution are as follows: an ambient temperature of 24 ° C.
Then, while charging the storage battery group of each of the storage battery power supplies 1 and 10 with 1 Ah, when the surface temperature of the unit cell reaches 50 ° C., in the case of the storage battery power supply 10 of the comparative example, the fan is operated, 2 liters / cm 2 of air was circulated in the length direction of 2 . On the other hand, in the case of the storage battery power supply device 1 of the embodiment, tap water having a temperature close to the ambient temperature was circulated through the refrigerant pipe 6 as a refrigerant.

【0028】温度測定は、ファン作動開始及び水道水供
給開始から2時間後の単電池の表面温度を測定した。測
定は、集積された最外列より2層目の蓄電池列に対して
実施し、長さ370mmの蓄電池2に対して、空気流通
の上流端から50mm(点1)、170mm(点2)、
260mm(点3)、及び340mm(点4)の各位置
での温度を熱電対を用いて測定した。
In the temperature measurement, the surface temperature of the cell was measured two hours after the start of the operation of the fan and the start of the supply of tap water. The measurement is performed on the storage battery row of the second layer from the integrated outermost row. For the storage battery 2 having a length of 370 mm, 50 mm (point 1), 170 mm (point 2), 50 mm from the upstream end of the air flow,
The temperature at each position of 260 mm (point 3) and 340 mm (point 4) was measured using a thermocouple.

【0029】上記温度分布測定結果は、表1及び図7に
示す通りである。
The results of the temperature distribution measurement are as shown in Table 1 and FIG.

【0030】[0030]

【表1】 表1及び図7からわかるように、比較例の蓄電池電源装
置10では、空気流通下流側の単電池の表面温度が40
℃を超え、上流下流間で約9℃の温度差が生じているの
に対して、実施例の蓄電池電源装置1では、約2.4℃
の温度差内にまで抑制されている。冷媒流通の最上流側
の単電池の温度が低いのは当然のこととしても、下流側
に至っても大きな温度上昇がなく、効果的に冷却がなさ
れ、単電池間の温度差が極めて少ないことが実証され
た。
[Table 1] As can be seen from Table 1 and FIG. 7, in the storage battery power supply device 10 of the comparative example, the surface temperature of the unit cell on the downstream side of the air flow was 40
° C, and a temperature difference of about 9 ° C occurs between the upstream and the downstream, whereas the storage battery power supply device 1 of the embodiment has a temperature difference of about 2.4 ° C.
The temperature difference is suppressed to within. It goes without saying that the temperature of the cell at the most upstream side of the refrigerant flow is low, but there is no large temperature rise even to the downstream side, effective cooling is performed, and the temperature difference between the cells is extremely small. Proven.

【0031】[0031]

【発明の効果】以上の説明の通り本願の第1発明によれ
ば、単電池もしくは単電池の集合体は、冷却ブロックに
形成された凹部に収容され、冷却ブロックを積層するこ
とにより、所要数の単電池もしくは単電池の集合体は両
端の電極部を外部に露出させて冷却ブロック内に密着し
て収容されることになる。冷却ブロックは熱伝導性に優
れた材料により形成されるので、単電池もしくは単電池
の集合体からの熱は直接的に冷却ブロックに奪われて均
一な冷却がなされる。冷却ブロック内には冷媒管路が形
成されるので、単電池もしくは単電池の集合体からの伝
熱により温度上昇した冷却ブロックは冷却され、冷媒管
路への冷媒の流入、流出の経路を均等に組み合わせるこ
とにより、更に冷却ブロック上の温度分布の差を抑制す
ることができる。
As described above, according to the first aspect of the present invention, a unit cell or an assembly of unit cells is housed in a recess formed in a cooling block, and the required number of cells is stacked by stacking the cooling block. The single cell or the assembly of the single cells is housed in the cooling block in close contact with the electrode portions at both ends exposed to the outside. Since the cooling block is formed of a material having excellent thermal conductivity, heat from the single cell or the aggregate of the single cells is directly taken away by the cooling block, and uniform cooling is performed. Since a cooling pipe is formed in the cooling block, the cooling block whose temperature has increased due to the heat transfer from the unit cell or the assembly of the cells is cooled, and the flow of the refrigerant into and out of the cooling pipe is evenly distributed. , The difference in the temperature distribution on the cooling block can be further suppressed.

【0032】又、上記冷媒管路は管材の埋め込みにより
形成することができ、成形材として樹脂を用いた場合に
は、冷媒の種類を問わず対応させることができる。
[0032] Also, the refrigerant lines may be formed by implantation of the tube, when the resin used as a molding material can be made to correspond regardless of the type of refrigerant.

【0033】更に、冷媒管路は冷却ブロックや成形材に
冷媒流路を形成することができ、成形形状として管路を
形成すれば、管材が不要でコストの低減を図ることがで
きる。成形材料としてアルミニウム等の金属材料を使用
したときには、管材を用いなくても、冷媒の種類に対応
できる。
Further, the refrigerant channel can form a refrigerant channel in a cooling block or a molding material. If the channel is formed as a molded shape, a tube material is unnecessary and cost can be reduced. When a metal material such as aluminum is used as a molding material, it is possible to cope with the type of refrigerant without using a tube.

【0034】更に、冷媒管路の冷媒流れ方向を水平方向
又は垂直方向で交互に変化させて構成することができ、
蓄電池電源装置全体の温度分布の均一化を図ることがで
きる。
Further, it is possible to alternately change the flow direction of the refrigerant in the refrigerant pipe in the horizontal direction or the vertical direction.
The temperature distribution of the entire storage battery power supply device can be made uniform.

【0035】又、本願の第2発明の構成によれば、蓄電
池電源装置を構成する複数の単電池もしくは単電池の集
合体と、冷媒を流通させる管路とは、熱伝導性に優れた
材料により一体成形される冷却ブロック内に収容され
る。複数の単電池もしくは単電池の集合体と、冷媒を流
通させる管路とを収容する冷却ブロックの一体成形の手
段は、単電池もしくは単電池の集合体と配管構造の冷媒
管路とを所定位置に配置した状態で所定形状に成形する
段を採用している。これにより単電池もしくは単電池
の集合体は、熱伝導性に優れた材料により一体成形され
た中に両端の電極部分を外部に露出されて包まれるの
で、発熱は成形材に効率的に奪われ、成形材は冷媒管路
で冷却され、単電池個々の最大温度が低下し、単電池間
の温度差を減少させることができる。
[0035] Further, according to the second shot Ming framework of this application, a set of a plurality of single cells or unit cells constituting the battery power source device, the pipe line for circulating refrigerant, excellent thermal conductivity It is housed in a cooling block integrally formed of a material. A set of a plurality of single cells or unit cells, means integrally molded of the cooling block which houses the conduit for circulating the refrigerant, the predetermined position and a refrigerant lines of the pipe structure an aggregate of cells or a single cell It employs a <br/> means to molded into a predetermined shape in a state of being disposed. As a result, the unit cell or the unit cell unit is integrally formed of a material having excellent thermal conductivity, and the electrode portions at both ends are exposed to the outside and wrapped. In addition, the molding material is cooled in the refrigerant pipe, so that the maximum temperature of each unit cell decreases, and the temperature difference between the unit cells can be reduced.

【図面の簡単な説明】[Brief description of the drawings]

【図1】本発明の第1の実施形態に係る蓄電池電源装置
の構成を示す斜視図である。
FIG. 1 is a perspective view illustrating a configuration of a storage battery power supply device according to a first embodiment of the present invention.

【図2】本発明の第1の実施形態に係る蓄電池電源装置
を構成する冷却ブロックの構成を示す斜視図である。
FIG. 2 is a perspective view illustrating a configuration of a cooling block included in the storage battery power supply device according to the first embodiment of the present invention.

【図3】冷媒管路の構成を示す平面図である。FIG. 3 is a plan view showing a configuration of a refrigerant pipe.

【図4】本発明の第2の実施形態に係る蓄電池電源装置
を構成する冷却ブロックの構成を示す斜視図である。
FIG. 4 is a perspective view showing a configuration of a cooling block constituting a storage battery power supply device according to a second embodiment of the present invention.

【図5】第2の実施形態における冷媒管路の構成例を示
す平面図である。
FIG. 5 is a plan view illustrating a configuration example of a refrigerant pipe according to a second embodiment.

【図6】温度分布測定の比較例とする蓄電池電源装置の
構成を示す正面図である。
FIG. 6 is a front view illustrating a configuration of a storage battery power supply device as a comparative example of temperature distribution measurement.

【図7】温度分布の測定結果を示すグラフである。FIG. 7 is a graph showing a measurement result of a temperature distribution.

【符号の説明】[Explanation of symbols]

1 蓄電池電源装置 2 蓄電池 3、7 蓄電池収容穴 4 凹部 6、6a、6b、6c 冷媒管路 REFERENCE SIGNS LIST 1 storage battery power supply device 2 storage battery 3, 7 storage battery accommodation hole 4 recess 6, 6 a, 6 b, 6 c refrigerant line

───────────────────────────────────────────────────── フロントページの続き (72)発明者 松浪 隆夫 大阪府門真市大字門真1006番地 松下電 器産業株式会社内 (56)参考文献 特開 平9−266016(JP,A) (58)調査した分野(Int.Cl.7,DB名) H01M 10/50 H01M 2/10 ──────────────────────────────────────────────────続 き Continuation of the front page (72) Inventor Takao Matsunami 1006 Kazuma Kadoma, Kadoma, Osaka Prefecture Matsushita Electric Industrial Co., Ltd. (56) References JP-A-9-266016 (JP, A) (58) Field (Int.Cl. 7 , DB name) H01M 10/50 H01M 2/10

Claims (5)

(57)【特許請求の範囲】(57) [Claims] 【請求項1】 柱状に形成された単電池もしくは単電池
の集合体を複数個接続して所定電力量を得る蓄電池電源
装置において、 冷媒を流通させる冷媒管路と、片面または両面に前記単
電池もしくは単電池の集合体を収容する凹部とが形成さ
れた熱伝導性に優れた材料からなる冷却ブロックを所要
数積層し、積層間の前記凹部に前記単電池もしくは単電
池の集合体を収容したことを特徴とする蓄電池電源装
置。
1. A battery power source device for obtaining a predetermined amount of power to connecting a plurality of assemblies of cells or a single cell which is formed in a columnar shape, and refrigerant lines for circulating refrigerant, the battery cells on one or both sides Alternatively, a required number of cooling blocks made of a material having excellent thermal conductivity formed with a recess accommodating the unit cell assembly are stacked in a required number, and the unit cell or the unit cell assembly is accommodated in the recess between the stacks. A battery power supply device characterized by the above-mentioned.
【請求項2】 冷媒管路が、管材の埋め込みにより形成
されてなることを特徴とする請求項記載の蓄電池電源
装置。
Wherein refrigerant lines is, battery power supply device according to claim 1, characterized by being formed by implantation of the tube.
【請求項3】 冷媒管路が、冷却ブロック内に冷媒流路
が形成されてなることを特徴とする請求項記載の蓄電
池電源装置。
3. A refrigerant pipe is, the storage battery power supply device according to claim 1, wherein the refrigerant flow path is formed in the cooling block.
【請求項4】 冷媒管路の冷媒流れ方向を水平方向又は
垂直方向で交互に変化させたことを特徴とする請求項
1、2又は3記載の蓄電池電源装置。
4. The method according to claim 1, wherein the flow direction of the refrigerant in the refrigerant pipe is alternately changed in a horizontal direction or a vertical direction.
4. The storage battery power supply device according to 1, 2, or 3 .
【請求項5】 単電池もしくは単電池の集合体を所要数
集積して所定電力量を得る蓄電池電源装置において、 所要数の単電池もしくは単電池の集合体と、冷媒を還流
させる配管構造の冷媒管路とを所定位置に配置した状態
収容して、熱伝導性に優れた材料で冷却ブロックを
所定形状に一体成形したことを特徴とする蓄電池電源装
置。
5. A storage battery power supply device for obtaining a predetermined amount of electric power by accumulating a required number of cells or aggregates of unit cells, comprising: a refrigerant having a piping structure for circulating a refrigerant; A state where the pipe and the pipe are arranged at a predetermined position
The cooling block is housed in a material with excellent thermal conductivity .
A battery power supply unit integrally formed in a predetermined shape .
JP25424396A 1996-09-26 1996-09-26 Battery power supply Expired - Lifetime JP3312852B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP25424396A JP3312852B2 (en) 1996-09-26 1996-09-26 Battery power supply

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP25424396A JP3312852B2 (en) 1996-09-26 1996-09-26 Battery power supply

Publications (2)

Publication Number Publication Date
JPH10106521A JPH10106521A (en) 1998-04-24
JP3312852B2 true JP3312852B2 (en) 2002-08-12

Family

ID=17262273

Family Applications (1)

Application Number Title Priority Date Filing Date
JP25424396A Expired - Lifetime JP3312852B2 (en) 1996-09-26 1996-09-26 Battery power supply

Country Status (1)

Country Link
JP (1) JP3312852B2 (en)

Families Citing this family (38)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP4231127B2 (en) * 1998-09-03 2009-02-25 パナソニック株式会社 Integrated battery temperature control method and apparatus
JP4837155B2 (en) 1998-11-27 2011-12-14 パナソニック株式会社 Storage battery
JP4079572B2 (en) 2000-04-14 2008-04-23 松下電器産業株式会社 Battery pack
DE10223782B4 (en) * 2002-05-29 2005-08-25 Daimlerchrysler Ag Battery with at least one electrochemical storage cell and a cooling device and use of a battery
KR100595676B1 (en) * 2004-07-20 2006-07-03 엘지전자 주식회사 Battery of mobile communication terminal
EP1705743B1 (en) 2005-03-25 2007-09-26 Samsung SDI Co., Ltd. Battery module
US20070009787A1 (en) * 2005-05-12 2007-01-11 Straubel Jeffrey B Method and apparatus for mounting, cooling, connecting and protecting batteries
JP4857896B2 (en) 2006-05-11 2012-01-18 トヨタ自動車株式会社 Battery pack and vehicle
JP4976846B2 (en) * 2006-12-28 2012-07-18 トヨタ自動車株式会社 Power storage device
DE102008032086A1 (en) * 2008-07-08 2010-01-14 Valeo Klimasysteme Gmbh Drive battery assembly of an electric, fuel cell or hybrid vehicle
KR101112442B1 (en) * 2008-10-14 2012-02-20 주식회사 엘지화학 Battery Module Assembly of Improved Cooling Efficiency
US20100136424A1 (en) * 2009-07-17 2010-06-03 Tesla Motors, Inc. Multi-wall battery for maintaining cell wall integrity during thermal runaway
JP2011065907A (en) * 2009-09-18 2011-03-31 Panasonic Corp Battery module, method for manufacturing the same, and temperature control system
WO2011064956A1 (en) * 2009-11-25 2011-06-03 パナソニック株式会社 Battery module
US20120021260A1 (en) 2010-01-29 2012-01-26 Panasonic Corporation Battery module
WO2011096032A1 (en) 2010-02-03 2011-08-11 パナソニック株式会社 Power source
KR101138541B1 (en) * 2010-08-27 2012-04-25 삼성전기주식회사 Supercapacitor module
KR101138504B1 (en) * 2010-08-27 2012-04-25 삼성전기주식회사 Supercapacitor module
WO2012034042A2 (en) * 2010-09-09 2012-03-15 California Institute Of Technology Electrochemical energy storage systems and methods
US20120308875A1 (en) * 2011-01-06 2012-12-06 Shinya Geshi Battery module
KR101950975B1 (en) 2011-07-11 2019-02-21 캘리포니아 인스티튜트 오브 테크놀로지 Novel separators for electrochemical systems
US9379368B2 (en) 2011-07-11 2016-06-28 California Institute Of Technology Electrochemical systems with electronically conductive layers
JP5699900B2 (en) * 2011-10-21 2015-04-15 株式会社豊田自動織機 Battery module
ITBO20120184A1 (en) * 2012-04-06 2013-10-07 Ferrari Spa ELECTRIC ENERGY STORAGE SYSTEM FOR A VEHICLE WITH ELECTRIC PROPULSION AND PRESENTING CYLINDRICAL CHEMICAL BATTERIES INSERTED IN A PLASTIC SUPPORTING MATRIX
CN102983377B (en) * 2012-12-18 2015-01-21 天津清源电动车辆有限责任公司 Heat exchange device for lithium ion battery of electric automobile
KR101458600B1 (en) * 2013-01-18 2014-11-05 엘에스엠트론 주식회사 Ultra capacitor module for heat dissipation
US10714724B2 (en) 2013-11-18 2020-07-14 California Institute Of Technology Membranes for electrochemical cells
WO2015074065A1 (en) 2013-11-18 2015-05-21 California Institute Of Technology Electrochemical separators with inserted conductive layers
KR102327559B1 (en) * 2014-12-22 2021-11-17 현대두산인프라코어 주식회사 Cooling module of an energy storage unit
KR102392920B1 (en) * 2015-06-02 2022-05-02 현대두산인프라코어(주) Cooling module of an energy storage unit
EP3157092B1 (en) 2015-10-14 2020-01-01 Samsung SDI Co., Ltd. Battery module including a cooling plate with embedded cooling tubes
GB2543744B (en) 2015-10-14 2018-07-25 Jaguar Land Rover Ltd An apparatus comprising battery cells and a method of assembling
WO2017096258A1 (en) 2015-12-02 2017-06-08 California Institute Of Technology Three-dimensional ion transport networks and current collectors for electrochemical cells
JP7094080B2 (en) * 2017-05-26 2022-07-01 昭和電工株式会社 Cylindrical battery cooling heat exchanger
KR102358425B1 (en) * 2018-09-18 2022-02-03 주식회사 엘지에너지솔루션 Battery module
CN109449532B (en) * 2018-11-06 2020-07-03 深圳市韦尔控制系统有限公司 Cooling system for driving type battery
DE102019207207A1 (en) * 2019-05-17 2020-11-19 Volkswagen Aktiengesellschaft Battery module for a motor vehicle
CN114188045A (en) * 2021-10-27 2022-03-15 中广核研究院有限公司 Plate fuel assembly and reactor core

Also Published As

Publication number Publication date
JPH10106521A (en) 1998-04-24

Similar Documents

Publication Publication Date Title
JP3312852B2 (en) Battery power supply
JP6148404B2 (en) Strips of electrochemical cells for manufacturing battery modules for electric or hybrid vehicles, and manufacture of such modules
US10312559B2 (en) Battery system
US6953638B2 (en) Fluid-cooled battery pack system
US7572549B2 (en) Prismatic battery made of multiple individual cells
US11509008B2 (en) Heat exchanger with thermoelectric module and system for managing heat of battery including same
JP2020510965A (en) Cooling jacket with non-uniform flow path for cooling battery cell surface and battery module including the same
US20180069279A1 (en) Battery system
US20220209330A1 (en) Temperature control system for lithium ion battery cells
CN211428223U (en) Isolated battery module liquid cooling system
US7258939B2 (en) Cooling system for fuel cell vehicle and a cooling pipe thereof
US20230231221A1 (en) Tab Cooling for Batteries
CN216288626U (en) Liquid cooling board and battery package
CN218498175U (en) Battery module and battery pack
JP2013187079A (en) Heat exchanger plate for battery pack and method of manufacturing the same
JP7504847B2 (en) Battery stack manufacturing method
JP2003217628A (en) Fuel cell unit
CN219303776U (en) Battery pack
CN219040563U (en) Blade battery thermal management device with multiple sections of independent adjustment
JPH06231774A (en) Cooling plate of fuel cell
CN218448137U (en) Battery device
US20240194971A1 (en) Heat management device for an electrical and/or electronic component
CN109786884A (en) Fast charging type lithium battery pack and its heat management and cooling device
WO2024087016A1 (en) Battery cooling plate and battery module
CN115275482A (en) Battery pack

Legal Events

Date Code Title Description
FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090531

Year of fee payment: 7

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100531

Year of fee payment: 8

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110531

Year of fee payment: 9

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110531

Year of fee payment: 9

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120531

Year of fee payment: 10

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120531

Year of fee payment: 10

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130531

Year of fee payment: 11

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130531

Year of fee payment: 11

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20140531

Year of fee payment: 12

EXPY Cancellation because of completion of term