JP3311464B2 - Signal measurement device - Google Patents
Signal measurement deviceInfo
- Publication number
- JP3311464B2 JP3311464B2 JP02879494A JP2879494A JP3311464B2 JP 3311464 B2 JP3311464 B2 JP 3311464B2 JP 02879494 A JP02879494 A JP 02879494A JP 2879494 A JP2879494 A JP 2879494A JP 3311464 B2 JP3311464 B2 JP 3311464B2
- Authority
- JP
- Japan
- Prior art keywords
- signal
- measurement
- calibration
- measurement data
- measured
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Expired - Fee Related
Links
Landscapes
- Testing Or Calibration Of Command Recording Devices (AREA)
- Measurement Of Current Or Voltage (AREA)
- Testing Or Measuring Of Semiconductors Or The Like (AREA)
- Analogue/Digital Conversion (AREA)
Description
【0001】[0001]
【産業上の利用分野】本発明は測定精度を向上させた信
号測定装置に関し、特に長時間校正を行えない場合でも
被測定信号を高精度で測定できる信号測定装置に関す
る。BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a signal measuring apparatus having improved measurement accuracy, and more particularly to a signal measuring apparatus capable of measuring a signal under measurement with high accuracy even when calibration cannot be performed for a long time.
【0002】[0002]
【従来の技術】オシロスコープなどの信号測定装置は、
経年変化や温度変化によって入力信号(被測定信号)の
測定精度に誤差が生じてくる。そこで測定精度を維持す
るために、利得、動作利得(利得の線形性)、周波数特
性等の測定装置の測定特性の校正を必要に応じて繰り返
す必要がある。特に近年のデジタル化された信号測定装
置はマイクロプロセッサ(超小型演算処理装置)を装備
し、操作者が任意に校正を行う場合又は装置自身が所定
の時間経過や温度変化等の度に自己校正する機能を具え
るものが一般化している。2. Description of the Related Art A signal measuring device such as an oscilloscope is
An error occurs in the measurement accuracy of the input signal (signal to be measured) due to aging or temperature change. Therefore, in order to maintain the measurement accuracy, it is necessary to repeat the calibration of the measurement characteristics of the measurement device such as the gain, the operating gain (linearity of the gain), and the frequency characteristics as necessary. In particular, digitized signal measuring devices in recent years are equipped with a microprocessor (microminiature processing unit), and when the operator arbitrarily performs calibration, or the device itself performs self-calibration every time a predetermined time elapses or temperature changes. Those that have the function to perform are becoming common.
【0003】図1は、自己校正機能付き信号測定装置の
一例のブロック図である。測定する被測定信号(入力信
号)は、プローブ等により入力端子(BNCコネクタ)
10に供給される。垂直入力回路12は入力インピーダ
ンスを高くする回路で、入力端子10からの被測定信号
を受ける。デジタル処理回路は、RAMなどのメモリ、
アナログ・デジタル(A/D)変換器、マイクロプロセ
ッサ、これらを接続するバス等で構成される。A/D変
換器は、被測定信号をアナログ・デジタル変換し測定デ
ータを生成する。この測定データは、メモリに記憶され
る。マイクロプロセッサは、これらの制御や測定データ
の演算処理を行う。垂直出力回路16は、デジタル処理
回路14からのデジタル・データをデジタル・アナログ
変換して信号の垂直方向の変化を示すアナログ信号を表
示装置18に供給する。トリガ回路20は、被測定信号
が任意に設定可能な所定レベルを越えるとトリガ信号を
発生する。これによって、所望の被測定信号が入力され
たことが検出される。掃引発生回路24は、トリガ信号
に同期して掃引信号を発生する。水平増幅回路26は、
掃引信号を増幅して表示装置18に供給する。これらに
より、被測定信号が表示装置18に表示される。FIG. 1 is a block diagram of an example of a signal measuring device having a self-calibration function. The measured signal (input signal) to be measured is input terminal (BNC connector) by a probe etc.
10 is supplied. The vertical input circuit 12 is a circuit for increasing the input impedance, and receives a signal to be measured from the input terminal 10. Digital processing circuits include memories such as RAM,
It is composed of an analog / digital (A / D) converter, a microprocessor, and a bus connecting these components. The A / D converter converts the signal under measurement from analog to digital to generate measurement data. This measurement data is stored in the memory. The microprocessor performs these controls and arithmetic processing of the measurement data. The vertical output circuit 16 converts the digital data from the digital processing circuit 14 from digital to analog, and supplies an analog signal indicating a vertical change of the signal to the display device 18. The trigger circuit 20 generates a trigger signal when the signal under measurement exceeds a predetermined level that can be arbitrarily set. Thus, it is detected that a desired signal to be measured has been input. The sweep generation circuit 24 generates a sweep signal in synchronization with the trigger signal. The horizontal amplification circuit 26
The sweep signal is amplified and supplied to the display device 18. As a result, the signal under measurement is displayed on the display device 18.
【0004】校正回路30は高精度の直流信号源を有
し、この信号源が生成する高精度直流信号を基に校正の
基準となる直流信号や所定周波数(例えば1MHz)の
矩形波信号などの複数の校正信号(基準信号)を発生さ
せる。これら校正信号は、測定装置前面の入力端子(B
NCコネクタ)10、垂直入力回路12、掃引発生回路
24等に供給される。値が既知のこれら校正信号の値を
測定すれば、利得(垂直軸)、動作利得、掃引速度(水
平軸)、周波数特性などの測定特性の誤差が判明し、夫
々の回路を校正することができる。例えば1Vの直流電
圧をスイッチ11を切り換えて入力端子10に入力した
ときに、1Vとして測定されるように利得を校正する。
温度センサ34は、温度変化を検出するために設けら
れ、所定値以上の温度変化が生じた場合に自動的に自己
校正モードに入るようにする信号測定装置もある。The calibration circuit 30 has a high-precision DC signal source. Based on the high-precision DC signal generated by this signal source, a DC signal serving as a reference for calibration or a rectangular wave signal of a predetermined frequency (for example, 1 MHz) is generated. A plurality of calibration signals (reference signals) are generated. These calibration signals are input to the input terminal (B
(NC connector) 10, a vertical input circuit 12, a sweep generation circuit 24, and the like. By measuring the values of these calibration signals whose values are known, errors in measurement characteristics such as gain (vertical axis), operating gain, sweep speed (horizontal axis), and frequency characteristics can be found, and each circuit can be calibrated. it can. For example, when a DC voltage of 1 V is input to the input terminal 10 by switching the switch 11, the gain is calibrated so as to be measured as 1V.
The temperature sensor 34 is provided for detecting a temperature change, and there is also a signal measuring device that automatically enters a self-calibration mode when a temperature change of a predetermined value or more occurs.
【0005】[0005]
【発明が解決しようとする課題】所定の時間経過や温度
変化等の度に自動的に自己校正動作を行う信号測定装置
は、操作者が特に意識せずとも測定精度が一定の範囲で
保持される点で非常に有用である。しかしこのような測
定装置の場合、校正が実施された直後では測定精度が高
いが、次の校正が行われまでに測定精度が低下していく
ことなる。また、校正モードに入るとその期間中は測定
不能になる。よって、例えば数時間に一回偶発的にしか
発生しない事象の信号を測定する場合には、校正モード
に入らずに被測定信号を待ち続ける必要があり、この間
に測定精度は低下していく。理想的には、被測定信号を
受ける直前に測定装置を校正すれば良い。しかし、数時
間に1回偶発的に発生する(発生時点が予測不能な)事
象の信号を測定するような場合には、被測定信号の発生
直前に校正を行うのは不可能である。A signal measuring device which automatically performs a self-calibration operation every time a predetermined time elapses or a temperature change, etc., maintains the measurement accuracy within a certain range without the operator's particular consciousness. It is very useful in that However, in the case of such a measuring device, the measurement accuracy is high immediately after the calibration is performed, but the measurement accuracy decreases as the next calibration is performed. When the calibration mode is entered, measurement cannot be performed during that period. Therefore, for example, when measuring a signal of an event that occurs only accidentally once every several hours, it is necessary to continue to wait for the signal to be measured without entering the calibration mode, and the measurement accuracy decreases during this time. Ideally, the measuring device should be calibrated just before receiving the signal under measurement. However, when measuring a signal of an event that occurs accidentally once every several hours (the occurrence time is unpredictable), it is impossible to perform calibration immediately before the generation of the signal to be measured.
【0006】また、電源投入後の例えば30分程度の期
間は、測定装置の温度上昇のために頻繁に校正を実施し
ない限り測定精度が保証されなかった。つまり、頻繁に
校正モードに入るために測定をたびたび中断するか、精
度を考えずに測定しなければならなかった。さもなく
ば、測定装置の温度が安定するまで測定の開始を待って
いる必要があった。In addition, during a period of, for example, about 30 minutes after the power is turned on, measurement accuracy cannot be guaranteed unless calibration is frequently performed due to a rise in temperature of the measuring apparatus. In other words, the measurement has to be interrupted frequently to enter the calibration mode frequently, or the measurement has to be performed without considering accuracy. Otherwise, it was necessary to wait for the start of the measurement until the temperature of the measuring device was stabilized.
【0007】そこで本発明の目的は、長時間校正を行え
ない場合又は頻繁に校正が必要な場合でも、被測定信号
を校正直後に測定したのとほぼ同等な精度で測定できる
信号測定装置を提供することである。本発明の他の目的
は、従来からある自己校正機能を用いてより高い精度で
被測定信号を測定できる信号測定装置を提供することで
ある。Accordingly, an object of the present invention is to provide a signal measuring apparatus capable of measuring a signal under measurement with almost the same accuracy as that measured immediately after calibration, even when calibration cannot be performed for a long time or when frequent calibration is required. It is to be. Another object of the present invention is to provide a signal measuring device capable of measuring a signal under measurement with higher accuracy using a conventional self-calibration function.
【0008】[0008]
【課題を解決するための手段】本発明の信号測定装置
は、例えば数時間に1回程度、偶発的に発生する事象を
測定するのに最適である。入力検出手段20は、被測定
信号の入力を検出する。アナログ・デジタル変換手段
は、被測定信号をアナログ・デジタル変換して測定デー
タを生成する。RAMなどの記憶手段は、測定データを
記憶する。校正信号発生手段30は、校正信号を発生す
る。この信号測定装置は、次のように動作する。記憶手
段が測定データを記憶するのに続いて被測定信号の測定
を終了すると、校正信号発生手段30が出力する校正信
号を測定して信号測定装置の測定特性誤差を求め、この
測定特性誤差を用いて記憶手段が既に記憶している被測
定信号の測定データの誤差を校正する。測定データの誤
差の校正は、例えばマイクロプロセッサ等の演算回路が
演算によって行う。さらに続いて校正信号を測定して従
来と同様な信号測定装置の回路の自己校正を行っても良
い。The signal measuring apparatus of the present invention is most suitable for measuring an accidentally occurring event, for example, about once every several hours. The input detecting means 20 detects the input of the signal under measurement. The analog-to-digital conversion means converts the signal under measurement from analog to digital to generate measurement data. A storage unit such as a RAM stores the measurement data. The calibration signal generator 30 generates a calibration signal. This signal measuring device operates as follows. The storage means stores the measurement data and then measures the signal under measurement.
Is completed , the calibration signal output by the calibration signal generating means 30 is measured to determine a measurement characteristic error of the signal measuring device, and the measurement data of the measured data of the signal to be measured which is already stored in the storage means using the measurement characteristic error. Calibrate the error. The calibration of the error of the measurement data is performed by a calculation circuit such as a microprocessor, for example. Subsequently, the calibration signal may be measured to perform self-calibration of the circuit of the signal measuring device as in the related art.
【0009】[0009]
【作用】本発明によれば、被測定信号の測定データを記
憶した後に測定データを校正する。即ち、被測定信号の
測定直後に測定時点の時間的直近で測定特性誤差を求
め、この測定特性誤差を考慮して測定データを校正する
ため、高い精度の測定データを得ることができる。According to the present invention, the measured data is calibrated after storing the measured data of the signal under measurement. In other words, immediately after the measurement of the signal under measurement, the measurement characteristic error is obtained immediately before the time of measurement, and the measurement data is calibrated in consideration of the measurement characteristic error, so that highly accurate measurement data can be obtained.
【0010】[0010]
【実施例】本発明は、図1に示したような信号測定装置
に幅広く適用できる。そこで以下の説明では、図1を参
照して行う。また、図2は、本発明の一実施例のフロー
チャートである。これは、デジタル回路14が有するマ
イクロプロセッサの制御により行われる。マイクロプロ
セッサが実行するソフトウェアは、デジタル回路14に
あるROMなどのメモリに記憶させておけば良い。DESCRIPTION OF THE PREFERRED EMBODIMENTS The present invention can be widely applied to a signal measuring apparatus as shown in FIG. Therefore, the following description is made with reference to FIG. FIG. 2 is a flowchart of one embodiment of the present invention. This is performed under the control of a microprocessor included in the digital circuit 14. The software executed by the microprocessor may be stored in a memory such as a ROM in the digital circuit 14.
【0011】本発明の信号測定装置は、トリガ回路20
が被測定信号の入力を検出する(ステップ42)と、デ
ジタル処理回路にあるアナログ・デジタル(A/D)変
換器が被測定信号をアナログ・デジタル変換し、RAM
などのメモリに記憶する(ステップ44)。被測定信号
の記憶が終了するのに続いて、マイクロプロセッサの制
御により校正回路(校正信号発生手段)30が通常の校
正動作と同様に校正信号を測定装置前面の入力端子(B
NCコネクタ)10、垂直入力回路12、掃引発生回路
24等に供給する(ステップ46)。この校正信号を夫
々の回路が測定する(ステップ48)ことにより、周波
数特性、利得、動作利得(利得の線形性)等の測定特性
の正常な状態(校正された状態)と現在(校正されてい
ない状態)のと差異、つまり、測定特性の誤差を求める
ことができる(ステップ50)。この測定特性誤差がわ
かれば、メモリに記憶された被測定信号の測定データの
誤差がわかるので、これをマイクロプロセッサ(又は専
用の演算回路)が演算して測定データを校正する(ステ
ップ52)。即ち、被測定信号の測定データを測定直後
に校正(ポスト校正)を行うことが、本発明の信号測定
装置の特徴である。このポスト校正は、測定時点より後
ではあるが、測定時点の直近で信号測定装置の測定特性
誤差を求めた上で測定データを校正するため、測定時点
よりかなり前の時点で校正を行う場合と比較して、より
高い測定精度が得られる。The signal measuring device according to the present invention comprises a trigger circuit 20
Detects the input of the signal to be measured (step 42), the analog-to-digital (A / D) converter in the digital processing circuit converts the signal to be measured from analog to digital,
And the like (step 44). After the storage of the signal under measurement is completed, the calibration circuit (calibration signal generating means) 30 transmits the calibration signal under the control of the microprocessor to the input terminal (B
(NC connector) 10, the vertical input circuit 12, the sweep generation circuit 24, and the like (step 46). Each circuit measures this calibration signal (step 48), so that the measurement characteristics such as the frequency characteristic, the gain, and the operating gain (linearity of the gain) are measured in a normal state (calibrated state) and a present state (calibrated state). ), That is, an error in the measurement characteristics can be obtained (step 50). If this measurement characteristic error is known, the error of the measurement data of the signal under measurement stored in the memory can be known, and this is calculated by a microprocessor (or a dedicated arithmetic circuit) to calibrate the measurement data (step 52). That is, it is a feature of the signal measuring apparatus of the present invention that calibration (post-calibration) is performed immediately after the measurement data of the signal under measurement is measured. This post-calibration is performed after the measurement time, but after measuring the measurement characteristic error of the signal measurement device immediately before the measurement time, and then calibrating the measurement data. In comparison, higher measurement accuracy is obtained.
【0012】被測定信号の終了の検出は、例えばその信
号レベルが所定値以下に低下したときを検出することに
より行っても良い。また、周知のように複数のレベルを
設けたり、信号の記憶開始から所定時間を経過した時点
を予め設定しておくことにより終了を検出しても良い。
RAMなどのメモリは安価になりつつあり、被測定信号
の測定データを記憶するのに充分な記憶容量を確保する
のは容易である。The end of the signal under measurement may be detected, for example, by detecting when the signal level has dropped below a predetermined value. As is well known, the end may be detected by providing a plurality of levels or setting a point in time after a predetermined time has elapsed from the start of signal storage.
A memory such as a RAM is becoming inexpensive, and it is easy to secure a sufficient storage capacity for storing measurement data of a signal under measurement.
【0013】メモリに記憶した被測定信号の測定データ
を校正するについては、信号測定装置の測定特性誤差が
1次近似(線形)と見なせなくなる程度に大きくなる
と、被測定信号のデータの校正に2次以上の複雑な演算
を行う必要がでてくる恐れがある。しかし、オシロスコ
ープなどの最近の信号測定装置は、被測定信号のデータ
の校正に2次以上の複雑な演算を必要とする程度まで、
大きく精度が低下することはまれである。よって、本発
明によるポスト校正によれば、それほど複雑な演算を必
要とせずに、従来の信号測定装置が持っている測定精度
をより高め、非常に高い精度で被測定信号のデータを収
集することが可能になる。しかしながら、次の被測定信
号が発生するまでの期間が長く(例えば数時間)、従っ
て校正モードに長い期間入ることができない場合には、
被測定信号の測定データの校正を行うのに続いて測定装
置自身の校正(ステップ53)を行っても良い。図3
は、この場合のフローチャートである。When calibrating the measurement data of the signal under measurement stored in the memory, if the measurement characteristic error of the signal measuring device becomes too large to be regarded as a first-order approximation (linear), the data of the signal under measurement is calibrated. There is a possibility that complicated calculations of second or higher order need to be performed. However, recent signal measurement devices such as oscilloscopes require that the calibration of data of the signal under measurement requires a complex second-order or higher calculation.
It is rare that the accuracy is greatly reduced. Therefore, according to the post-calibration according to the present invention, it is possible to increase the measurement accuracy of the conventional signal measurement device and collect data of the signal under measurement with extremely high accuracy without requiring much complicated calculation. Becomes possible. However, if the period until the next signal under measurement is generated is long (for example, several hours), and thus cannot enter the calibration mode for a long period of time,
After the calibration of the measurement data of the signal under measurement, the calibration of the measuring device itself (step 53) may be performed. FIG.
Is a flowchart in this case.
【0014】メモリに記憶した被測定信号の測定データ
をさらに高精度に校正するためには、記憶した被測定信
号のデータから、被測定信号とほぼ同じ周波数及び振幅
の校正信号を選択的に発生させて、信号測定装置の測定
特性誤差を求めれば良い。例えば、周波数、振幅ともに
被測定信号の値を中心にある程度の幅で発生させて、測
定特性の線形性の誤差を求めてもよい。さらには、被測
定信号のデータを高速フーリエ変換(FFT)を行って
解析し被測定信号が複数の高調波を含めならば、対応す
る周波数の校正信号を発生させて測定特性誤差を求めて
も良い。これにより、被測定信号に応じて測定特性誤差
を正確に求めることができ、よって、被測定信号のデー
タの校正も非常に高精度に行える。In order to calibrate the measurement data of the signal under test stored in the memory with higher accuracy, a calibration signal having substantially the same frequency and amplitude as the signal under test is selectively generated from the data of the signal under test stored. Then, the measurement characteristic error of the signal measuring device may be obtained. For example, both the frequency and the amplitude may be generated with a certain width around the value of the signal under measurement, and the linearity error of the measurement characteristic may be obtained. Furthermore, if the data of the signal under measurement is analyzed by performing a fast Fourier transform (FFT) and the signal under measurement includes a plurality of harmonics, a calibration signal of a corresponding frequency may be generated to obtain a measurement characteristic error. good. As a result, the measurement characteristic error can be accurately obtained according to the signal under measurement, and thus the data of the signal under measurement can be calibrated with very high accuracy.
【0015】図1に示した実施例では、ベクトル表示型
の表示装置を用いた信号測定装置、例えばオシロスコー
プの例を示しているが、もちろんラスタ・スキャン型表
示装置を用いた信号測定装置でも良い。本発明を適用す
る信号測定装置としては、オシロスコープの他にもスペ
クトラム・アナライザなどが考えられる。In the embodiment shown in FIG. 1, an example of a signal measuring device using a vector display type display device, for example, an oscilloscope is shown, but a signal measuring device using a raster scan type display device may of course be used. . As a signal measuring apparatus to which the present invention is applied, a spectrum analyzer or the like can be considered in addition to an oscilloscope.
【0016】[0016]
【発明の効果】本発明の信号測定装置によれば、ある程
度の期間にわたり校正を行えなくとも、高い精度で測定
データを得ることができる。よって、電源投入後に測定
装置の温度が安定するまで待機する必要もなく、また、
長い期間に1回程度しか発生しない被測定信号でも高い
精度で測定することができる。加えて、本発明の実施に
あたっては、既に自己校正機能を有している種々の信号
測定装置を用いれば、これに多少の改良を施すだけで容
易に実施可能で、幅広く応用できる。According to the signal measuring apparatus of the present invention, measurement data can be obtained with high accuracy even if calibration cannot be performed for a certain period. Therefore, there is no need to wait until the temperature of the measuring device becomes stable after turning on the power,
Even a signal to be measured that occurs only once in a long period can be measured with high accuracy. In addition, in implementing the present invention, if various signal measuring devices already having a self-calibration function are used, the present invention can be easily implemented with only a slight improvement, and can be widely applied.
【図1】本発明を適用するのに適した信号測定装置一例
のブロック図である。FIG. 1 is a block diagram of an example of a signal measuring device suitable for applying the present invention.
【図2】本発明の信号測定装置の動作の一実施例の流れ
を示すフローチャートである。FIG. 2 is a flowchart showing a flow of one embodiment of the operation of the signal measuring device of the present invention.
【図3】本発明の信号測定装置の動作の他の実施例の流
れを示すフローチャートである。FIG. 3 is a flowchart showing a flow of another embodiment of the operation of the signal measuring device of the present invention.
10 入力端子 11 切換えスイッチ 12 垂直入力回路 14 デジタル処理回路 16 垂直出力回路 18 表示装置 20 入力検出回路(トリガ回路) 22 トリガ・レベル設定手段 24 掃引発生回路 26 水平増幅回路 30 校正信号発生回路(校正回路) 34 温度センサ Reference Signs List 10 input terminal 11 changeover switch 12 vertical input circuit 14 digital processing circuit 16 vertical output circuit 18 display device 20 input detection circuit (trigger circuit) 22 trigger level setting means 24 sweep generation circuit 26 horizontal amplification circuit 30 calibration signal generation circuit (calibration) Circuit) 34 Temperature sensor
Claims (2)
いて、 上記被測定信号の入力を検出する入力検出手段と、 上記被測定信号をアナログ・デジタル変換して測定デー
タを生成するアナログ・デジタル変換手段と、 上記測定データを記憶する記憶手段と、 校正信号を発生する校正信号発生手段とを具え、 上記測定データを記憶するのに続いて上記被測定信号の
測定を終了すると上記校正信号を測定して上記信号測定
装置の測定特性誤差を求め、該測定特性誤差を用いて上
記記憶手段が既に記憶している上記測定データの誤差を
校正することを特徴とする信号測定装置。1. A signal measuring apparatus for measuring a signal under test, an input detecting means for detecting an input of the signal under test, and an analog-to-digital converter for converting the signal under test into analog-to-digital to generate measurement data. measuring means, storage means for storing the measurement data, comprising a calibration signal generating means for generating a calibration signal and terminates the measurement of subsequently the signal to be measured to store the measurement data the calibration signal A measurement characteristic error of the signal measurement device, and using the measurement characteristic error to calibrate an error of the measurement data already stored in the storage unit.
いて、 上記被測定信号の入力を検出する入力検出手段と、 上記被測定信号をアナログ・デジタル変換して測定デー
タを生成するアナログ・デジタル変換手段と、 上記測定データを記憶する記憶手段と、 校正信号を発生する校正信号発生手段とを具え、 上記測定データを記憶するのに続いて上記被測定信号の
測定を終了すると上記校正信号を測定して上記信号測定
装置の測定特性誤差を求め、該測定特性誤差を用いて上
記記憶手段が既に記憶している上記測定データの誤差を
校正し、さらに続いて上記校正信号を測定して上記信号
測定装置の回路の自己校正を行うことを特徴とする信号
測定装置。2. A signal measuring device for measuring a signal under test, an input detecting means for detecting an input of the signal under test, and an analog-to-digital conversion for converting the signal under test into analog-to-digital to generate measurement data. measuring means, storage means for storing the measurement data, comprising a calibration signal generating means for generating a calibration signal and terminates the measurement of subsequently the signal to be measured to store the measurement data the calibration signal Then, the measurement characteristic error of the signal measuring device is obtained, the error of the measurement data already stored in the storage means is calibrated using the measurement characteristic error, and the calibration signal is measured subsequently, and the signal is measured. A signal measuring device for performing self-calibration of a circuit of the measuring device.
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP02879494A JP3311464B2 (en) | 1994-01-31 | 1994-01-31 | Signal measurement device |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP02879494A JP3311464B2 (en) | 1994-01-31 | 1994-01-31 | Signal measurement device |
Publications (2)
Publication Number | Publication Date |
---|---|
JPH07218547A JPH07218547A (en) | 1995-08-18 |
JP3311464B2 true JP3311464B2 (en) | 2002-08-05 |
Family
ID=12258336
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP02879494A Expired - Fee Related JP3311464B2 (en) | 1994-01-31 | 1994-01-31 | Signal measurement device |
Country Status (1)
Country | Link |
---|---|
JP (1) | JP3311464B2 (en) |
Families Citing this family (7)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
AUPN716895A0 (en) * | 1995-12-15 | 1996-01-18 | Orbital Engine Company (Australia) Proprietary Limited | Throttle position sensors |
US5995344A (en) * | 1996-06-14 | 1999-11-30 | Sony Corporation | Disc cartridge having design parameters of a recording and/or reproduction medium housed therein |
US5978742A (en) * | 1997-04-04 | 1999-11-02 | Tektronix, Inc. | Method and apparatus for digital sampling of electrical waveforms |
DE19757296C2 (en) * | 1997-12-22 | 2002-12-05 | Rohde & Schwarz | Method for determining the transfer function of a measuring device |
JP4141444B2 (en) * | 2005-01-25 | 2008-08-27 | 三菱電機株式会社 | In-vehicle engine controller |
US8319502B2 (en) * | 2008-06-26 | 2012-11-27 | Dune Medical Devices Ltd. | RF calibration device and method |
JP7117340B2 (en) * | 2020-03-19 | 2022-08-12 | アンリツ株式会社 | Measuring system and measuring method |
-
1994
- 1994-01-31 JP JP02879494A patent/JP3311464B2/en not_active Expired - Fee Related
Also Published As
Publication number | Publication date |
---|---|
JPH07218547A (en) | 1995-08-18 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
KR100317598B1 (en) | A Laplace transform impedance spectrometer | |
JP2814362B2 (en) | High precision voltage measuring device | |
US8280667B2 (en) | Test apparatus, performance board and calibration board | |
US4958294A (en) | Swept microwave power measurement system and method | |
JP2593106B2 (en) | Maximum / minimum value detector for input signal | |
JPH1054851A (en) | Instrument for measuring output current of power source | |
JP3311464B2 (en) | Signal measurement device | |
US20200309826A1 (en) | Method and apparatus for processing a measurement signal | |
JP2003315372A (en) | Current measuring device | |
US6998834B2 (en) | Real-time time drift adjustment for a TDR step stimulus | |
US5942982A (en) | System for detecting open circuits with a measurement device | |
KR20180095150A (en) | Hardware tester | |
JPH0339270B2 (en) | ||
JPH0712852A (en) | Waveform measuring equipment having waveform generating function | |
US4719408A (en) | Apparatus for indicating proper compensation of an adjustable frequency compensation network | |
CN116312308B (en) | Output voltage calibration method and device for shortening Bar and storage medium | |
US6365914B1 (en) | Semiconductor device provided with a built-in minute charge detecting circuit | |
CN115219971B (en) | Oscillograph waveform checking method, oscillograph waveform checking device, oscillograph waveform checking equipment and oscillograph waveform checking storage medium | |
JPH0933588A (en) | Tester for protective repeater | |
Prochazka et al. | Comparative Analysis of Methods for Partial Discharge Calibrator Performance | |
JP3469369B2 (en) | Electric measuring instrument | |
JPH03172775A (en) | Method for calibrating level of waveform analysis device | |
JPH063372A (en) | Digital sampling oscilloscope apparatus,method for measuringtime-axis error thereof and method of calibration | |
JPH0627184A (en) | Partial-discharge measurement | |
JP3238867B2 (en) | Battery voltage measuring method and device |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
LAPS | Cancellation because of no payment of annual fees |