JPH0627184A - Partial-discharge measurement - Google Patents

Partial-discharge measurement

Info

Publication number
JPH0627184A
JPH0627184A JP20429892A JP20429892A JPH0627184A JP H0627184 A JPH0627184 A JP H0627184A JP 20429892 A JP20429892 A JP 20429892A JP 20429892 A JP20429892 A JP 20429892A JP H0627184 A JPH0627184 A JP H0627184A
Authority
JP
Japan
Prior art keywords
amplifier
khz
cable
partial discharge
output
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP20429892A
Other languages
Japanese (ja)
Other versions
JP3151752B2 (en
Inventor
Yoshio Tsunoda
美伯 角田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Mitsubishi Cable Industries Ltd
Original Assignee
Mitsubishi Cable Industries Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Mitsubishi Cable Industries Ltd filed Critical Mitsubishi Cable Industries Ltd
Priority to JP20429892A priority Critical patent/JP3151752B2/en
Publication of JPH0627184A publication Critical patent/JPH0627184A/en
Application granted granted Critical
Publication of JP3151752B2 publication Critical patent/JP3151752B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Abstract

PURPOSE:To realize high-sensitive measurement of partial-discharge level in power cable, etc. CONSTITUTION:A transformer 4 is connected to the near end of a power cable C with a blocking coil 1 interposed. Further, an input unit 4 is also connected to the near end thereof with a capacitor 3 interposed, and the output of the unit 4 is connected with an amplifier 6 through an attenuator 5. The output of the amplifier 6 is connected with a band amplifier 9, that resonates at center frequency of 20kHz, through a wave detector 7 and integrator 8, and the output of the amplifier 9 is connected with an indicator 10. In order to measure partial discharging, the cable C is applied with voltage through the transformer 2 first. When there is any partial discharging, the signal is inputted to the unit 4 by the capacitor 3 and then it is inputted to the amplifier 6 through the attenuator 5 to be amplified. The amplified signal is changed into a narrow-band signal by the amplifier 9 via the detector 7 and integrator 8 and final output can be obtained from the indicator 10.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【産業上の利用分野】本発明は、電力ケーブル等の部分
放電の大きさを測定する部分放電測定方法に関するもの
である。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a partial discharge measuring method for measuring the magnitude of partial discharge of a power cable or the like.

【0002】[0002]

【従来の技術】部分放電測定方法には、パルス電圧を増
幅する方法として広帯域法(数kHz〜数MHz)、同
調法(400kHz±50kHz)及び低周波法(数1
0kHz〜200kHz)が知られているが、一般に外
来雑音の妨害の少ない点で後二者が優れ、ケーブル中の
放電発生個所の差異による検出感度に変動が少ない点で
低周波法が優れていると云われている。
2. Description of the Related Art Partial discharge measuring methods include a wide band method (several kHz to several MHz), a tuning method (400 kHz ± 50 kHz) and a low frequency method (several 1) as methods for amplifying a pulse voltage.
0 kHz to 200 kHz) is known, but generally, the latter two are superior in that there is little disturbance of external noise, and the low frequency method is superior in that there is little fluctuation in detection sensitivity due to the difference in the discharge occurrence point in the cable. It is said that.

【0003】[0003]

【発明が解決しようとする課題】図3は供試ケーブルに
部分放電を疑似的に生じさせた場合の周波数スペクトル
分布を表すグラフ図であり、図3(a) は供試ケーブルを
除く測定系の雑音をスペクトルアナライザにより測定し
たものであり、また図3(b) は長さ700mの供試ケー
ブルを接続した場合の線路の雑音を表している。この線
路雑音の場合に、中心周波数は50〜100kHzとな
る。図3(c) は供試ケーブルの遠端にパルスジュネレー
タ2を接続し、100pCの電荷量のパルスを繰り返し
入力した場合の近端に得られた信号であり、放電を疑似
的に発生させた場合に相当する。図3(b) の線路雑音と
比較して、比較的低い周波数である50kHz付近以下
のスペクトルに相当する成分が増加している。図3(d)
はパルスジュネレータ2から1000pCのパルスを繰
り返し入力した場合の信号を表し、図3(c) と比較し
て、50kHz付近以下のスペクトルに相当する成分が
大きく増加している。
FIG. 3 is a graph showing the frequency spectrum distribution when a partial discharge is artificially generated in the test cable, and FIG. 3 (a) is a measurement system excluding the test cable. Is measured by a spectrum analyzer, and Fig. 3 (b) shows the noise of the line when a test cable of 700 m in length is connected. In the case of this line noise, the center frequency is 50 to 100 kHz. Figure 3 (c) shows the signal obtained at the near end when the pulse generator 2 is connected to the far end of the sample cable and a pulse with a charge amount of 100 pC is repeatedly input. It corresponds to the case. Compared with the line noise in Fig. 3 (b), the components corresponding to the spectrum around 50 kHz, which is a relatively low frequency, are increased. Figure 3 (d)
Represents a signal when a pulse of 1000 pC is repeatedly input from the pulse generator 2, and the components corresponding to the spectrum around 50 kHz or less are greatly increased as compared with FIG. 3 (c).

【0004】つまり、線路の中心周波数よりも低い50
kHz以下の比較的低い周波数成分は、パルスの注入量
に大きく関係し、換言すればケーブル中の放電量と相関
があることが分かる。
That is, 50 which is lower than the center frequency of the line.
It can be seen that the relatively low frequency component of kHz or less is largely related to the pulse injection amount, in other words, it is correlated with the discharge amount in the cable.

【0005】従来の低周波法は前述のように数10kH
z〜200kHzの範囲の周波数を用いて行われている
が、図3から分かるように実際に放電量と十分に対応し
得るのは、50kHz以下の周波数である。従って、従
来の低周波法における使用周波数帯域では放電時のS/
N比が悪く、精度の良い測定が望めないことになる。
As described above, the conventional low frequency method is several tens of kHz.
Although it is performed using a frequency in the range of z to 200 kHz, it is a frequency of 50 kHz or less that can actually sufficiently correspond to the discharge amount as can be seen from FIG. Therefore, in the frequency band used in the conventional low frequency method, S /
The N ratio is bad, and accurate measurement cannot be expected.

【0006】本発明の目的は、低周波数測定法で使用す
る周波数成分のうち、比較的低い周波数だけを測定に用
いることにより、高感度測定が可能な部分放電測定方法
を提供することにある。
An object of the present invention is to provide a partial discharge measuring method which enables highly sensitive measurement by using only a relatively low frequency among frequency components used in the low frequency measuring method.

【0007】[0007]

【課題を解決するための手段】上述の目的を達成するた
めの本発明に係る部分放電測定方法は、低周波法で部分
放電を測定する場合において、50kHz以下の周波数
成分を基に電力ケーブル中の部分放電量を測定すること
を特徴とする。
The partial discharge measuring method according to the present invention for achieving the above-mentioned object is a method for measuring partial discharge by a low frequency method, in which a power cable based on a frequency component of 50 kHz or less is used. It is characterized in that the partial discharge amount of is measured.

【0008】[0008]

【作用】上述の構成を有する部分放電測定方法は、50
kHz以下の比較的低い周波数成分の大きさを基に電力
ケーブル中の放電量を測定する。
The partial discharge measuring method having the above-mentioned structure is 50
The amount of discharge in the power cable is measured based on the magnitude of a relatively low frequency component of kHz or less.

【0009】[0009]

【実施例】図1は電力ケーブルCに対して、本発明の方
法を適用するための構成図である。電力ケーブルCの近
端Caにはブロッキングコイル1を介してトランス2を接
続する。更に近端Caには、コンデンサ3を介して入力ユ
ニット4を接続し、入力ユニット4の出力はアッテネー
タ5を介して例えば100kHz付近を中心周波数とし
た増幅器6に接続する。増幅器6の出力は検波器7、積
分器8を介して20kHzを中心周波数として共振する
帯域増幅器9に接続し、増幅器9の出力は指示器10に
接続する。なお、11は校正用としてケーブルCの遠端
Cbに接続したパルスジェネレータである。
1 is a block diagram for applying the method of the present invention to a power cable C. In FIG. The transformer 2 is connected to the near end Ca of the power cable C via the blocking coil 1. Further, an input unit 4 is connected to the near end Ca via a capacitor 3, and an output of the input unit 4 is connected to an amplifier 6 having a center frequency around 100 kHz, for example, via an attenuator 5. The output of the amplifier 6 is connected via the detector 7 and the integrator 8 to the band amplifier 9 which resonates with the center frequency of 20 kHz, and the output of the amplifier 9 is connected to the indicator 10. In addition, 11 is a far end of the cable C for calibration.
It is a pulse generator connected to Cb.

【0010】測定に当って、トランス2から電力ケーブ
ル1に電圧を印加すると、部分放電があればその信号は
コンデンサ3を介して入力ユニット4に入力し、その後
に信号はアッテネータ5を介して増幅器6に入力し増幅
される。そして、ここまでは従来の低周波法による測定
手段に相当する。
In the measurement, when a voltage is applied from the transformer 2 to the power cable 1, if there is partial discharge, the signal is input to the input unit 4 via the capacitor 3, and then the signal is amplified via the attenuator 5. Input to 6 and amplified. The process up to this point corresponds to the conventional measuring means using the low frequency method.

【0011】増幅器6で増幅された信号は検波器7、積
分器8を介して帯域増幅器9により狭帯域の信号が求め
られ、指示器10により出力が得られる。
The signal amplified by the amplifier 6 is narrowed by the band amplifier 9 via the detector 7 and the integrator 8, and the output is obtained by the indicator 10.

【0012】また、パルスジェネレータ11により遠端
Cbから既知の電荷量を注入して測定し、指示器10によ
り得られた測定値を比較すれば、先に測定した放電量を
校正することができる。
Further, the pulse generator 11 allows the far end
If a known charge amount is injected from Cb and measured, and the measured values obtained by the indicator 10 are compared, the previously measured discharge amount can be calibrated.

【0013】図2(a) は長さ700mの供試ケーブルに
パルスジェネレータにより100pCのパルスを繰り返
して注入した場合に得られた増幅波形、つまり図1の増
幅器6の出力波形を表すグラフ図であり、図2(b) は1
000pCのパルスを繰り返して注入した場合のグラフ
図である。
FIG. 2 (a) is a graph showing the amplified waveform obtained when a pulse generator repeatedly injects 100 pC pulses into a 700 m long test cable, that is, the output waveform of the amplifier 6 in FIG. Yes, Figure 2 (b) is 1
It is a graph figure when a pulse of 000pC is repeatedly injected.

【0014】このように、部分放電測定器の増幅帯域
幅、つまり数10kHz〜200kHzの周波数で決ま
る波形の分解能に従った反射波形がケーブルで生ずる。
分解能相当の時間よりも短い反射時間を持つケーブルで
は、反射波形は分離せずに1個の波形になり、このよう
な現象は生ずることはない。図2の波形は部分放電測定
器の増幅器とケーブル長さで決まり、繰り返して発生し
ている反射は包絡線を形成する。
In this way, a reflection waveform is generated on the cable according to the resolution of the waveform determined by the amplification bandwidth of the partial discharge measuring instrument, that is, the frequency of several tens kHz to 200 kHz.
In a cable having a reflection time shorter than the time corresponding to the resolution, the reflection waveform does not separate and becomes one waveform, and such a phenomenon does not occur. The waveform of FIG. 2 is determined by the amplifier of the partial discharge measuring instrument and the cable length, and the repetitive reflections form an envelope.

【0015】図2(a) と図2(b) を比較しても分かる通
り、1000pCを入力した方、つまり放電量が多い方
がパルス反射波形の包絡線は大きくなり、囲まれる面積
も大きくなり、包絡線で決まる増幅器の中心周波数より
も低い周波数成分も増大する。
As can be seen by comparing FIG. 2 (a) and FIG. 2 (b), the envelope of the pulse reflection waveform becomes larger and the enclosed area is larger when 1000 pC is input, that is, when the discharge amount is larger. Therefore, the frequency component lower than the center frequency of the amplifier determined by the envelope also increases.

【0016】従って、この包絡線が含んでいる低い周波
数、即ち図3で増加している反射波形に含まれる低い周
波数を測定することにより、放電電荷量を測定ることが
可能になる。そのため、図1に示す20kHzの中心周
波数を有する帯域増幅器9で更に共振増幅してこの周波
数を強調する。
Therefore, the discharge charge amount can be measured by measuring the low frequency included in the envelope, that is, the low frequency included in the reflection waveform increasing in FIG. Therefore, the band amplifier 9 having a center frequency of 20 kHz shown in FIG. 1 further resonates and amplifies this frequency.

【0017】このようにして、ケーブルの長さに関連し
た低い周波数を検出して長尺ケーブルで低周波数の部分
放電測定器の増幅周波数数よりも低い周波数の測定によ
る部分放電電荷を測定する。
In this way, the low frequency related to the length of the cable is detected, and the partial discharge charge by measuring the frequency lower than the amplification frequency number of the low frequency partial discharge measuring instrument is measured with the long cable.

【0018】従って、この包絡線の傾きを測定したり、
或いは包絡線で囲まれた面積を測定することにより、放
電電荷量を測定することが可能となる。
Therefore, the inclination of this envelope can be measured,
Alternatively, the discharge charge amount can be measured by measuring the area surrounded by the envelope.

【0019】[0019]

【発明の効果】以上説明したように本発明に係る部分放
電測定方法は、低い周波数成分を基に測定することによ
り、電力ケーブル等の部分放電の大きさの高精度測定を
可能とする。
As described above, the partial discharge measuring method according to the present invention enables highly accurate measurement of the magnitude of partial discharge of a power cable or the like by measuring based on a low frequency component.

【図面の簡単な説明】[Brief description of drawings]

【図1】本発明の方法を実施するための構成図である。FIG. 1 is a block diagram for carrying out the method of the present invention.

【図3】部分放電測定方法の出力スペクトルを表すグラ
フ図である。
FIG. 3 is a graph showing an output spectrum of a partial discharge measuring method.

【図2】部分放電測定方法の増幅波形を表すグラフ図で
ある。
FIG. 2 is a graph showing an amplified waveform of a partial discharge measuring method.

【符号の説明】[Explanation of symbols]

C 電力ケーブル 1 ブロッキングコイル 2 トランス 3 コンデンサ 4 入力ユニット 5 アッテネータ 6、9 増幅器 7 検波器 8 積分器 10 指示器 11 パルスジュネレータ C power cable 1 blocking coil 2 transformer 3 capacitor 4 input unit 5 attenuator 6, 9 amplifier 7 detector 8 integrator 10 indicator 11 pulse generator

─────────────────────────────────────────────────────
─────────────────────────────────────────────────── ───

【手続補正書】[Procedure amendment]

【提出日】平成4年8月20日[Submission date] August 20, 1992

【手続補正1】[Procedure Amendment 1]

【補正対象書類名】図面[Document name to be corrected] Drawing

【補正対象項目名】図1[Name of item to be corrected] Figure 1

【補正方法】変更[Correction method] Change

【補正内容】[Correction content]

【図面】 [Drawing]

Claims (1)

【特許請求の範囲】[Claims] 【請求項1】 低周波法で部分放電を測定する場合にお
いて、50kHz以下の周波数成分を基に電力ケーブル
中の部分放電量を測定することを特徴とする部分放電測
定方法。
1. A method for measuring partial discharge, which comprises measuring the amount of partial discharge in a power cable based on a frequency component of 50 kHz or less when measuring partial discharge by a low frequency method.
JP20429892A 1992-07-09 1992-07-09 Partial discharge measurement method Expired - Fee Related JP3151752B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP20429892A JP3151752B2 (en) 1992-07-09 1992-07-09 Partial discharge measurement method

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP20429892A JP3151752B2 (en) 1992-07-09 1992-07-09 Partial discharge measurement method

Publications (2)

Publication Number Publication Date
JPH0627184A true JPH0627184A (en) 1994-02-04
JP3151752B2 JP3151752B2 (en) 2001-04-03

Family

ID=16488169

Family Applications (1)

Application Number Title Priority Date Filing Date
JP20429892A Expired - Fee Related JP3151752B2 (en) 1992-07-09 1992-07-09 Partial discharge measurement method

Country Status (1)

Country Link
JP (1) JP3151752B2 (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2013142672A (en) * 2012-01-12 2013-07-22 Mitsubishi Cable Ind Ltd Partial discharge measuring device
JP2013142673A (en) * 2012-01-12 2013-07-22 Mitsubishi Cable Ind Ltd Partial discharge measuring device, partial discharge measuring method, and partial discharge measurement program
JP2019020315A (en) * 2017-07-20 2019-02-07 日新電機株式会社 Device and method for partial discharge detection by ground line current method

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2013142672A (en) * 2012-01-12 2013-07-22 Mitsubishi Cable Ind Ltd Partial discharge measuring device
JP2013142673A (en) * 2012-01-12 2013-07-22 Mitsubishi Cable Ind Ltd Partial discharge measuring device, partial discharge measuring method, and partial discharge measurement program
JP2019020315A (en) * 2017-07-20 2019-02-07 日新電機株式会社 Device and method for partial discharge detection by ground line current method

Also Published As

Publication number Publication date
JP3151752B2 (en) 2001-04-03

Similar Documents

Publication Publication Date Title
JP2000266791A (en) Laplace transformation impedance measuring method and device thereof
US4958294A (en) Swept microwave power measurement system and method
JPH02297046A (en) Apparatus and method for performing emission analysis
HU196513B (en) Apparatus for measuring voltage by sampling
JPH0627184A (en) Partial-discharge measurement
US4785419A (en) Logarithmic amplifier calibrator
US4737652A (en) Method for the periodic determination of a quantity to be measured, using a reference signal
CN107145184B (en) A kind of temperature-compensation method of variable power reference source
JP3311464B2 (en) Signal measurement device
US4634972A (en) Method for measuring low-frequency signal progressions with an electron probe inside integrated circuits
Osvath et al. A contribution on the traceability of partial discharge measurements
JPS6156979A (en) Insulation measurement of power cable
CN109298235B (en) Micro-discharge power dynamic tracking method
JP2662406B2 (en) Data collection device for partial discharge measurement device
US3652931A (en) Innate oscillator noise determination
Procházka et al. Validation of partial discharge calibrators for small charge rates
JP3330835B2 (en) Partial discharge measurement method for power cable
JP2795099B2 (en) Device for measuring DUT using electromagnetic waves
SU1472852A1 (en) Method of determining integral non-linearity of pulse amplifiers
van Rijn Shot noise
JP3096370B2 (en) NQR signal measuring method and NQR device
Peterson et al. The measurement of noise with the sound spectrograph
SU705324A1 (en) Electromagnetic flaw detector
SU1656477A1 (en) Method for amplitude modulation meter calibration
Paal et al. Bunched beam current measurements with 100 pA RMS resolution at CRYRING

Legal Events

Date Code Title Description
LAPS Cancellation because of no payment of annual fees