JP3304410B2 - Near UV objective lens - Google Patents

Near UV objective lens

Info

Publication number
JP3304410B2
JP3304410B2 JP23479592A JP23479592A JP3304410B2 JP 3304410 B2 JP3304410 B2 JP 3304410B2 JP 23479592 A JP23479592 A JP 23479592A JP 23479592 A JP23479592 A JP 23479592A JP 3304410 B2 JP3304410 B2 JP 3304410B2
Authority
JP
Japan
Prior art keywords
lens
object side
lens unit
ultraviolet
cemented
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP23479592A
Other languages
Japanese (ja)
Other versions
JPH05196874A (en
Inventor
鹿島伸悟
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Olympus Corp
Original Assignee
Olympus Optic Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Olympus Optic Co Ltd filed Critical Olympus Optic Co Ltd
Priority to JP23479592A priority Critical patent/JP3304410B2/en
Publication of JPH05196874A publication Critical patent/JPH05196874A/en
Application granted granted Critical
Publication of JP3304410B2 publication Critical patent/JP3304410B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Landscapes

  • Lenses (AREA)

Description

【発明の詳細な説明】DETAILED DESCRIPTION OF THE INVENTION

【0001】[0001]

【産業上の利用分野】本発明は、顕微鏡用の対物レンズ
に関し、特に、近紫外から可視域にわたって色収差を補
正し、半導体市場等での使用を目的とした乾燥系高倍対
物レンズに関するものである。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to an objective lens for a microscope, and more particularly to a dry high-magnification objective lens for correcting the chromatic aberration from near ultraviolet to the visible region and for use in the semiconductor market and the like. .

【0002】[0002]

【従来の技術】従来、近紫外域用の対物レンズとして
は、一般の紫外蛍光用高倍対物レンズやドイツ特許公開
明細書第3915868号等のものが知られている。
2. Description of the Related Art Conventionally, as a near-ultraviolet objective lens, a general high-magnification objective lens for ultraviolet fluorescence and German Patent Publication No. 3915868 are known.

【0003】しかしながら、これら従来例においては、
一般の紫外蛍光用対物レンズは、単に近紫外光が通るだ
けであり、近紫外から可視にわたって焦点位置が一致し
ているわけではなく、また、たとえ焦点位置をずらして
も結像性能が充分になっていないのが通例である。さら
に、これらの対物レンズは一般に生物用であり、高倍高
解像力のものは液浸タイプが多いが、半導体市場等では
液浸タイプは標本を傷め、かつ、作業性が悪いため、ほ
とんど使われない。しかし、近年、半導体市場等でもサ
ブミクロンオーダーの物を明瞭に見る必要性が高まって
きており、乾燥系で液浸系なみの高解像力が求められて
いる。
[0003] However, in these conventional examples,
A general ultraviolet fluorescent objective lens simply passes near-ultraviolet light, and does not necessarily have the same focal position from near-ultraviolet to visible.In addition, even if the focal position is shifted, the imaging performance is sufficient. Usually it is not. Furthermore, these objective lenses are generally used for living organisms, and those with high resolution and high resolution are often immersion types, but in the semiconductor market, etc., the immersion type is hardly used because it damages the specimen and has poor workability. . However, in recent years, the necessity of clearly seeing objects on the order of sub-microns has increased in the semiconductor market and the like, and a high resolution of a dry system as well as a liquid immersion system has been demanded.

【0004】また、ドイツ特許公開明細書第39158
68号に述べられている対物レンズは、紫外から可視域
にわたって用いる波長(単波長)に応じてフローティン
グするものであり、広い波長範囲で同時に使えるもので
はない。これは、ある特定波長で観察するには適してい
るが、異なる波長で厳密な同一焦点位置性能が必要な蛍
光共焦点顕微鏡等には使えず、また、異なる波長での切
り換え観察時のフローティング操作が面倒で、操作性が
悪くなる。
[0004] Also, German Patent Publication No. 39158
The objective lens described in No. 68 floats according to the wavelength (single wavelength) used in the ultraviolet to visible range, and cannot be used simultaneously in a wide wavelength range. This is suitable for observation at a specific wavelength, but cannot be used for fluorescence confocal microscopes, etc., which require exact same focal position performance at different wavelengths. In addition, floating operation during switching observation at different wavelengths Is troublesome and operability deteriorates.

【0005】[0005]

【発明が解決しようとする課題】本発明はこのような状
況に鑑みてなされたものであり、その目的は、近紫外光
での高解像観察や紫外蛍光共焦点を可能とするように、
近紫外から可視域にわたって色補正した近紫外対物レン
ズを提供することである。
SUMMARY OF THE INVENTION The present invention has been made in view of such circumstances, and an object of the present invention is to enable high-resolution observation with near-ultraviolet light and ultraviolet-fluorescence confocal.
An object of the present invention is to provide a near-ultraviolet objective lens that has been color-corrected in the near-ultraviolet to visible range.

【0006】[0006]

【課題を解決するための手段】本発明の近紫外対物レン
ズは、物体側から順に、物体側に凹面を向けたメニスカ
スレンズと接合レンズとからなり、全体として正パワー
の第1レンズ群L1と、3枚接合レンズを2個含む第2
レンズ群L2と、互いに凹面を向かい合わせた1対の接
合レンズからなる第3レンズ群L3と、からなり、以下
の条件を満足することを特徴とするものである。 (1) 1.5<|f1 /f |<3.5 (2) 0.5<|R3 /D3 |<1.5 ただし、f1 、fはそれぞれ第1レンズ群L1及び全系
の焦点距離、R3 、D3 はそれぞれ第3レンズ群L3の
最も物体側レンズの物体側面の曲率半径及びその中心肉
厚である。
The near-ultraviolet objective lens of the present invention comprises, in order from the object side, a meniscus lens having a concave surface facing the object side and a cemented lens, and a first lens unit L1 having a positive power as a whole. Second including two triplet lenses
It comprises a lens unit L2 and a third lens unit L3 comprising a pair of cemented lenses whose concave surfaces face each other, and satisfies the following conditions. (1) 1.5 <| f 1 /f|<3.5 (2) 0.5 <| R 3 / D 3 | <1.5 where f 1 and f are the first lens unit L1 and the whole, respectively. The focal lengths R 3 and D 3 of the system are respectively the radius of curvature of the object side surface of the most object side lens of the third lens unit L3 and the center thickness thereof.

【0007】この場合、10mm厚、波長350nmで
の内部透過率が50%以上の硝材のみを用いて構成する
のが望ましい。また、平凸レンズを含む両凸レンズの少
なくとも2枚を蛍石から構成するのが望ましい。
In this case, it is desirable to use only a glass material having a thickness of 10 mm and an internal transmittance of 50% or more at a wavelength of 350 nm. It is desirable that at least two biconvex lenses including a plano-convex lens are made of fluorite.

【0008】[0008]

【作用】以下、上記構成を採用した理由と作用について
説明する。近紫外から可視域にわたっての広い波長範囲
で色補正をするためには、接合面を多用し、そこで効果
的に色収差を補正しなければならない。第1レンズ群L
1は、物体から出た高角度の光線をその角度を徐々に小
さくしつつ、3枚接合レンズや蛍石を用いた効果的な色
補正能力を持つ第2レンズ群L2に導入するためのもの
である。大きな球面収差等を発生させずに光線を曲げて
行くには、面の法線と入射光線の角度差をあまり大きく
しないことが必要であり、そのため、第1レンズは物体
側に凹面を向けたメニスカスレンズとなる。さらに、第
2レンズ群L2への導入を効果的に行うために設定され
た条件が上記の条件(1)である。ここで、その下限の
1.5を越えると、第1レンズ群L1のパワーが強くな
りすぎ、そこで発生する球面収差、色収差が第2レンズ
群以降で補正しきれず、逆に、その上限の3.5を越え
ると、大きな角度を持ったままの光線群が第2レンズ群
L2へ導入されることになり、第1レンズ群L1で発生
した色収差等が第2レンズ群L2で補正しきれなくな
る。
The reason and operation of the above configuration will be described below. In order to perform color correction in a wide wavelength range from the near ultraviolet to the visible region, a large number of bonding surfaces must be used, and chromatic aberration must be corrected effectively there. First lens group L
1 is for introducing a high-angle light beam emitted from an object into a second lens unit L2 having an effective color correction capability using a triple cemented lens or fluorite while gradually reducing the angle. It is. In order to bend the light beam without causing large spherical aberration or the like, it is necessary to make the angle difference between the normal line of the surface and the incident light beam not so large. Therefore, the first lens has a concave surface facing the object side. It becomes a meniscus lens. Further, the condition set for effectively introducing the light into the second lens unit L2 is the above condition (1). Here, if the lower limit of 1.5 is exceeded, the power of the first lens unit L1 becomes too strong, and the spherical aberration and chromatic aberration generated there cannot be completely corrected by the second and subsequent lens units. When the value exceeds 0.5, the light beam group having a large angle is introduced into the second lens unit L2, and the chromatic aberration and the like generated in the first lens unit L1 cannot be corrected by the second lens unit L2. .

【0009】第2レンズ群L2で色補正した後、今度は
像面湾曲を補正するために強い凹面を持つ第3レンズ群
L3に導く必要があるが、ここで効果的に像面湾曲を補
正するために、上記条件(2)が設定される。ここで、
その下限の0.5を越えると、第3レンズ群L3の最も
物体側レンズの物体側の面のパワーが強くなりすぎ、そ
こで大きな正のペッツバール値が発生し、それに続く凹
面の負のペッツバール値でも打ち消し難くなり、また、
あまりにも急激に光線が曲がるため、そこで発生する球
面収差、色収差、コマ収差等が他群で補正しきれなくな
る。逆に、その上限の1.5を越えると、光線高を下げ
て強い凹面に導くことができなくなり、効果的に負のペ
ッツバール値を発生させることができず、像面湾曲が補
正できない。
After the color correction by the second lens unit L2, it is necessary to guide to the third lens unit L3 having a strong concave surface in order to correct the field curvature. Here, the field curvature is corrected effectively. In order to do so, the above condition (2) is set. here,
If the lower limit of 0.5 is exceeded, the power on the object side surface of the most object side lens of the third lens unit L3 becomes too strong, where a large positive Petzval value is generated, followed by a negative Petzval value of a concave surface. But it's hard to counter, and
Since the light beam bends too rapidly, the spherical aberration, chromatic aberration, coma aberration, and the like generated there cannot be corrected by other groups. Conversely, if the upper limit of 1.5 is exceeded, the ray height cannot be lowered to lead to a strong concave surface, a negative Petzval value cannot be generated effectively, and field curvature cannot be corrected.

【0010】さらに、第3レンズ群L3の像側レンズに
効果的に光線を導き、諸収差を良好に補正するために
は、以下の条件を満足することが望ましい。
Furthermore, in order to effectively guide light rays to the image side lens of the third lens unit L3 and satisfactorily correct various aberrations, it is desirable to satisfy the following conditions.

【0011】 (3) 3<|(d3 +d4 /n4 +d5 /n5 )/f|<8 ただし、d3 、d4 、n4 、d5 、n5 は、第3レンズ
群L3の2群間の距離、第3レンズ群L3の標本側レン
ズ各々の中心肉厚及び屈折率である。ここで、条件
(3)の下限の3を越えると、光線の下がっていく距離
が短いため、第3レンズ群L3の像側レンズへの入射光
線高が下がらず、効果的な負のペッツバール値を発生さ
せることができない。逆に、その上限の8を越えると、
第3レンズ群L3の像側レンズへの入射光線高が下がり
すぎ、過剰な負のペッツバール値及びコマ収差等が発生
する。
(3) 3 <| (d 3 + d 4 / n 4 + d 5 / n 5 ) / f | <8, where d 3 , d 4 , n 4 , d 5 , and n 5 are the third lens group The distance between the two lens units L3, the center thickness and the refractive index of each sample side lens of the third lens unit L3. Here, if the lower limit of 3 of the condition (3) is exceeded, the distance of the ray falling is short, so that the height of the ray incident on the image side lens of the third lens unit L3 does not decrease, and an effective negative Petzval value is obtained. Can not occur. Conversely, if the upper limit of 8 is exceeded,
The height of the light ray incident on the image side lens of the third lens unit L3 is too low, and an excessive negative Petzval value, coma and the like are generated.

【0012】また、本発明の対物レンズは、10mm
厚、波長350nmでの内部透過率が50%以上の硝材
のみを用いることが望ましい。本対物レンズでは、近紫
外から可視域にわたっての広い範囲で色補正するため、
レンズ枚数が通常の対物レンズに比べてかなり多くなっ
ており、そのためにも是非とも必要な条件である。
Further, the objective lens of the present invention has a size of 10 mm.
It is desirable to use only a glass material having a thickness and an internal transmittance of 50% or more at a wavelength of 350 nm. With this objective lens, color correction is performed over a wide range from near ultraviolet to visible.
The number of lenses is considerably larger than that of a normal objective lens, which is a necessary condition.

【0013】さらに、本発明の対物レンズは、平凸レン
ズを含む両凸レンズの少なくとも2枚が蛍石であること
が望ましい。近紫外から可視域にわたっての広い範囲で
色補正するためには、俗に言う異常分散ガラスを多用す
る必要があるが、その最たるものが蛍石である。他に
も、凸レンズ用の異常分散ガラスがあるが、色補正能力
や紫外線の透過率を考慮すると、蛍石を使わざるを得な
い(両凸レンズや平凸レンズは、縁肉確保等の理由によ
り、どうしても中心肉厚が厚くなり、その透過率が問題
となるからである。)。
Furthermore, in the objective lens of the present invention, it is desirable that at least two of the biconvex lenses including the plano-convex lens are fluorite. In order to perform color correction in a wide range from the near ultraviolet to the visible range, it is necessary to use a lot of anomalous dispersion glass, which is commonly called, and fluorite is the best. In addition, there is anomalous dispersion glass for convex lenses, but in consideration of the color correction ability and the transmittance of ultraviolet rays, fluorite must be used. The reason is that the center thickness is inevitably increased, and the transmittance thereof becomes a problem.)

【0014】[0014]

【実施例】以下に、本発明の近紫外対物レンズの実施例
1から3について説明する。各実施例のレンズデータは
後記するが、実施例1から3のレンズ断面をそれぞれ図
1から図3に示す。ここで、各実施例共、倍率100
×、開口数(NA)0.85であり、何れも乾燥無限遠
補正設計で、焦点距離は3.6mmとしてある。
DESCRIPTION OF THE PREFERRED EMBODIMENTS Embodiments 1 to 3 of the near-ultraviolet objective lens of the present invention will be described below. Although lens data of each embodiment will be described later, FIGS. 1 to 3 show lens cross sections of Examples 1 to 3, respectively. Here, in each of the examples, a magnification of 100
X, numerical aperture (NA) 0.85, all of which are designed to be corrected for dry infinity, and have a focal length of 3.6 mm.

【0015】レンズ系の配置としては、物体(標本)側
から順に、実施例1においては、第1レンズ群L1は、
物体側に凹面を向けた正メニスカスレンズと、像側に凹
面を向けた負メニスカスレンズ、両凸レンズの接合レン
ズからなり、第2レンズ群L2は、両凸レンズ、両凹レ
ンズ、両凸レンズの3枚接合レンズと、像側に凹面を向
けた負メニスカスレンズ、両凸レンズ、物体側に凹面を
向けた負メニスカスレンズの3枚接合レンズからなり、
第3レンズ群L3は、両凸レンズ、両凹レンズの接合レ
ンズと、物体側に凹面を向けた正メニスカスレンズ、両
凹レンズの接合レンズからなる。蛍石は、第2レンズ群
L2の第1の3枚接合レンズの像側の両凸レンズ、第2
の3枚接合レンズの両凸レンズ、第3レンズ群L3の第
1の接合レンズの両凸レンズの3枚に使用している。
In the arrangement of the lens system, in order from the object (sample) side, in the first embodiment, the first lens unit L1 is
The second lens unit L2 includes a cemented lens of a positive meniscus lens having a concave surface facing the object side, a negative meniscus lens having a concave surface facing the image side, and a biconvex lens. A lens, a negative meniscus lens having a concave surface facing the image side, a biconvex lens, and a triple cemented lens of a negative meniscus lens having a concave surface facing the object side,
The third lens unit L3 includes a cemented lens of a biconvex lens and a biconcave lens, and a cemented lens of a positive meniscus lens having a concave surface facing the object side and a biconcave lens. The fluorite is a biconvex lens on the image side of the first triplet lens of the second lens unit L2,
Are used for the three cemented double-convex lenses and the third cemented lens of the third lens unit L3.

【0016】実施例2は、第1レンズ群L1、第2レン
ズ群L2は実施例1と同様であるが、第3レンズ群L3
は、凸平レンズ、平凹レンズの接合レンズと、両凹レン
ズ、両凸レンズの接合レンズからなり、蛍石は、第2レ
ンズ群L2の第1の3枚接合レンズの像側の両凸レン
ズ、第2の3枚接合レンズの両凸レンズの2枚に使用し
ている。
In the second embodiment, the first lens unit L1 and the second lens unit L2 are the same as in the first embodiment, but the third lens unit L3
Is composed of a cemented lens of a plano-convex lens and a plano-concave lens, and a cemented lens of a biconcave lens and a biconvex lens. The fluorite is a biconvex lens on the image side of the first triplet lens of the second lens unit L2, and Are used for two biconvex lenses of the three-element cemented lens.

【0017】実施例3においては、第1レンズ群L1
は、物体側に凹面を向けた正メニスカスレンズと、像側
に凹面を向けた負メニスカスレンズ、両凸レンズの接合
レンズからなり、第2レンズ群L2は、両凸レンズ、両
凹レンズ、両凸レンズの3枚接合レンズと、像側に凹面
を向けた負メニスカスレンズ、両凸レンズ、物体側に凹
面を向けた負メニスカスレンズの3枚接合レンズからな
り、第3レンズ群L3は、両凸レンズ、両凹レンズの接
合レンズと、両凹レンズ、両凸レンズの接合レンズから
なる。蛍石は、第2レンズ群L2の第1の3枚接合レン
ズの像側の両凸レンズ、第2の3枚接合レンズの両凸レ
ンズ、第3レンズ群L3の第1の接合レンズの両凸レン
ズの3枚に使用している。
In the third embodiment, the first lens unit L1
Is composed of a positive meniscus lens having a concave surface facing the object side, a negative meniscus lens having a concave surface facing the image side, and a cemented lens of a biconvex lens. The second lens unit L2 includes a biconvex lens, a biconcave lens, and a biconvex lens. The third lens unit L3 includes a cemented lens, a negative meniscus lens having a concave surface facing the image side, a biconvex lens, and a negative meniscus lens having a concave surface facing the object side. The third lens unit L3 includes a biconvex lens and a biconcave lens. It consists of a cemented lens and a cemented lens of a biconcave lens and a biconvex lens. The fluorite is a biconvex lens on the image side of the first triplet lens of the second lens unit L2, a biconvex lens of the second triplet lens, and a biconvex lens of the first cemented lens of the third lens unit L3. We use for three pieces.

【0018】以下に各実施例のレンズデータを示すが、
各データは実際の光線進行方向とは逆の順序で示してあ
る。なお、記号は、上記の外、fは全系の焦点距離、N
Aは開口数、Mは倍率、r1 、r2 …は各レンズ面の曲
率半径、d1 、d2 …は各レンズ面間の間隔、nd1、n
d2…は各レンズのd線の屈折率、νd1、νd2…は各レン
ズのアッベ数である。
The lens data of each embodiment is shown below.
Each data is shown in an order reverse to the actual ray traveling direction. In addition, symbols are the above, f is the focal length of the whole system, N
A is the numerical aperture, M is the magnification, r 1 , r 2 ... Are the radii of curvature of the respective lens surfaces, d 1 , d 2, ... Are the distances between the respective lens surfaces, n d1 , n
d2 ... are the d-line refractive indices of each lens, and v d1 , v d2 .

【0019】実施例1 f =3.6 NA=0.85 M = 100× r1 = -50.000 d1 = 3.00 nd1 =1.498 νd1 =66.8 r2 = 7.199 d2 = 4.83 nd2 =1.620 νd2 =36.3 r3 = 35.679 d3 =15.88 r4 = -5.098 d4 = 4.62 nd3 =1.517 νd3 =52.4 r5 = 15.142 d5 = 7.26 nd4 =(蛍石)νd4 = . r6 = -9.090 d6 = 1.14 r7 = 25.259 d7 = 4.00 nd5 =1.652 νd5 =58.5 r8 = 11.159 d8 = 8.79 nd6 =(蛍石)νd6 = . r9 = -9.021 d9 = 2.00 nd7 =1.652 νd7 =58.5 r10= -29.928 d10= 0.29 r11= 21.322 d11= 7.53 nd8 =(蛍石)νd8 = . r12= -12.966 d12= 2.00 nd9 =1.652 νd9 =58.5 r13= 16.769 d13= 8.23 nd10=1.569 νd10=71.3 r14= -15.756 d14= 0.51 r15= 10.935 d15= 7.20 nd11=1.497 νd11=81.6 r16= -14.862 d16= 2.53 nd12=1.741 νd12=52.6 r17= -413.869 d17= 0.28 r18= 3.683 d18= 3.67 nd13=1.519 νd13=64.5 r19= 5.697 d19= 1.57 r20= ∞(標本) |f1 /f|=2.77 |R3 /D3 |=1.25 |(d3 +d4 /n4 +d5 /n5 )/f|=6.66[0019] Example 1 f = 3.6 NA = 0.85 M = 100 × r 1 = -50.000 d 1 = 3.00 n d1 = 1.498 ν d1 = 66.8 r 2 = 7.199 d 2 = 4.83 n d2 = 1.620 ν d2 = 36.3 r 3 = 35.679 d 3 = 15.88 r 4 = -5.098 d 4 = 4.62 n d3 = 1.517 ν d3 = 52.4 r 5 = 15.142 d 5 = 7.26 n d4 = ( fluorite) ν d4 =. r 6 = -9.090 d 6 = 1.14 r 7 = 25.259 d 7 = 4.00 n d5 = 1.652 ν d5 = 58.5 r 8 = 11.159 d 8 = 8.79 n d6 = ( fluorite) ν d6 =. r 9 = -9.021 d 9 = 2.00 n d7 = 1.652 ν d7 = 58.5 r 10 = -29.928 d 10 = 0.29 r 11 = 21.322 d 11 = 7.53 n d8 = ( fluorite) ν d8 =. r 12 = -12.966 d 12 = 2.00 n d9 = 1.652 ν d9 = 58.5 r 13 = 16.769 d 13 = 8.23 n d10 = 1.569 ν d10 = 71.3 r 14 = -15.756 d 14 = 0.51 r 15 = 10.935 d 15 = 7.20 n d11 = 1.497 ν d11 = 81.6 r 16 = -14.862 d 16 = 2.53 n d12 = 1.741 ν d12 = 52.6 r 17 = -413.869 d 17 = 0.28 r 18 = 3.683 d 18 = 3.67 n d13 = 1.519 ν d13 = 64.5 r 19 = 5.697 d 19 = 1.57 r 20 = ∞ ( The present) | f 1 /f|=2.77 | R 3 / D 3 | = 1.25 | (d 3 + d 4 / n 4 + d 5 / n 5) /f|=6.66

【0020】実施例2 f =3.6 NA=0.85 M = 100× r1 = 18.703 d1 = 2.95 nd1 =1.596 νd1 =39.2 r2 = -9.306 d2 = 2.00 nd2 =1.498 νd2 =66.8 r3 = 10.133 d3 = 3.74 r4 = -5.787 d4 =16.42 nd3 =1.498 νd3 =66.8 r5 = ∞ d5 =13.63 nd4 =1.497 νd4 =81.6 r6 = -15.855 d6 = 1.79 r7 = 43.965 d7 = 2.00 nd5 =1.741 νd5 =52.6 r8 = 10.326 d8 =11.77 nd6 =(蛍石)νd6 = . r9 = -18.335 d9 = 2.00 nd7 =1.741 νd7 =52.6 r10= -35.773 d10= 0.20 r11= 14.981 d11= 8.97 nd8 =(蛍石)νd8 = . r12= -19.128 d12= 4.03 nd9 =1.741 νd9 =52.6 r13= 16.479 d13= 8.44 nd10=1.569 νd10=71.3 r14= -20.158 d14= 1.71 r15= 11.437 d15= 7.85 nd11=1.497 νd11=81.6 r16= -14.259 d16= 2.07 nd12=1.741 νd12=52.6 r17= -56.555 d17= 0.20 r18= 3.225 d18= 3.05 nd13=1.519 νd13=64.5 r19= 3.763 d19= 1.79 r20= ∞(標本) |f1 /f|=2.76 |R3 /D3 |=1.16 |(d3 +d4 /n4 +d5 /n5 )/f|=6.61Example 2 f = 3.6 NA = 0.85 M = 100 × r 1 = 18.703 d 1 = 2.95 n d1 = 1.596 ν d1 = 39.2 r 2 = -9.306 d 2 = 2.00 nd 2 = 1.498 ν d2 = 66.8 r 3 = 10.133 d 3 = 3.74 r 4 = -5.787 d 4 = 16.42 n d3 = 1.498 ν d3 = 66.8 r 5 = ∞ d 5 = 13.63 n d4 = 1.497 ν d4 = 81.6 r 6 = -15.855 d 6 = 1.79 r 7 = 43.965 d 7 = 2.00 n d5 = 1.741 ν d5 = 52.6 r 8 = 10.326 d 8 = 11.77 n d6 = ( fluorite) ν d6 =. r 9 = -18.335 d 9 = 2.00 n d7 = 1.741 ν d7 = 52.6 r 10 = -35.773 d 10 = 0.20 r 11 = 14.981 d 11 = 8.97 n d8 = ( fluorite) ν d8 =. r 12 = -19.128 d 12 = 4.03 n d9 = 1.741 ν d9 = 52.6 r 13 = 16.479 d 13 = 8.44 n d10 = 1.569 ν d10 = 71.3 r 14 = -20.158 d 14 = 1.71 r 15 = 11.437 d 15 = 7.85 n d11 = 1.497 ν d11 = 81.6 r 16 = -14.259 d 16 = 2.07 n d12 = 1.741 ν d12 = 52.6 r 17 = -56.555 d 17 = 0.20 r 18 = 3.225 d 18 = 3.05 n d13 = 1.519 ν d13 = 64.5 r 19 = 3.763 d 19 = 1.79 r 20 = ∞ ( specimen | F 1 /f|=2.76 | R 3 / D 3 | = 1.16 | (d 3 + d 4 / n 4 + d 5 / n 5) /f|=6.61

【0021】実施例3 f =3.6 NA=0.85 M = 100× r1 = 13.488 d1 = 2.52 nd1 =1.596 νd1 =39.3 r2 = -9.164 d2 = 2.32 nd2 =1.498 νd2 =65.0 r3 = 7.716 d3 = 4.96 r4 = -4.529 d4 = 5.22 nd3 =1.527 νd3 =51.1 r5 = 12.751 d5 = 5.98 nd4 =(蛍石)νd8 = . r6 = -7.810 d6 =20.84 r7 = 58.790 d7 = 2.00 nd5 =1.652 νd5 =58.5 r8 = 14.229 d8 =10.26 nd6 =(蛍石)νd8 = . r9 = -7.678 d9 = 2.00 nd7 =1.652 νd7 =58.5 r10= -17.908 d10= 2.15 r11= 18.425 d11= 6.00 nd8 =(蛍石)νd8 = . r12= -11.442 d12= 4.44 nd9 =1.652 νd9 =58.5 r13= 18.125 d13= 6.00 nd10=1.497 νd10=81.1 r14= -13.482 d14= 0.91 r15= 11.951 d15= 5.97 nd11=1.497 νd11=81.1 r16= -12.381 d16= 2.72 nd12=1.741 νd12=52.6 r17= -40.955 d17= 0.16 r18= 3.670 d18= 3.65 nd13=1.516 νd13=64.2 r19= 5.992 d19= 1.55 r20= ∞(標本) |f1 /f|=2.43 |R3 /D3 |=1.31 |(d3 +d4 /n4 +d5 /n5 )/f|=3.48[0021] Example 3 f = 3.6 NA = 0.85 M = 100 × r 1 = 13.488 d 1 = 2.52 n d1 = 1.596 ν d1 = 39.3 r 2 = -9.164 d 2 = 2.32 n d2 = 1.498 ν d2 = 65.0 r 3 = 7.716 d 3 = 4.96 r 4 = -4.529 d 4 = 5.22 n d3 = 1.527 ν d3 = 51.1 r 5 = 12.751 d 5 = 5.98 n d4 = ( fluorite) ν d8 =. r 6 = -7.810 d 6 = 20.84 r 7 = 58.790 d 7 = 2.00 n d5 = 1.652 ν d5 = 58.5 r 8 = 14.229 d 8 = 10.26 n d6 = ( fluorite) ν d8 =. r 9 = -7.678 d 9 = 2.00 n d7 = 1.652 ν d7 = 58.5 r 10 = -17.908 d 10 = 2.15 r 11 = 18.425 d 11 = 6.00 n d8 = ( fluorite) ν d8 =. r 12 = -11.442 d 12 = 4.44 n d9 = 1.652 ν d9 = 58.5 r 13 = 18.125 d 13 = 6.00 n d10 = 1.497 ν d10 = 81.1 r 14 = -13.482 d 14 = 0.91 r 15 = 11.951 d 15 = 5.97 n d11 = 1.497 ν d11 = 81.1 r 16 = -12.381 d 16 = 2.72 n d12 = 1.741 ν d12 = 52.6 r 17 = -40.955 d 17 = 0.16 r 18 = 3.670 d 18 = 3.65 n d13 = 1.516 ν d13 = 64.2 r 19 = 5.992 d 19 = 1.55 r 20 = ∞ ( standard The present) | f 1 /f|=2.43 | R 3 / D 3 | = 1.31 | (d 3 + d 4 / n 4 + d 5 / n 5) /f|=3.48

【0022】以上の実施例1〜3の近紫外対物レンズの
球面収差、非点収差、歪曲収差を示す収差図を図4〜図
6に示す。
FIGS. 4 to 6 show aberration diagrams showing the spherical aberration, astigmatism, and distortion of the near ultraviolet objective lenses of Examples 1 to 3 described above.

【0023】[0023]

【発明の効果】以上説明したように、本発明によれば、
近紫外から可視域にわたって良好に色補正され、像面の
平坦性、透過率も良い乾燥系高倍対物レンズを得ること
ができる。
As described above, according to the present invention,
It is possible to obtain a dry high-magnification objective lens that is color-corrected satisfactorily from the near ultraviolet to the visible region, and has good image plane flatness and transmittance.

【図面の簡単な説明】[Brief description of the drawings]

【図1】本発明の近紫外対物レンズの実施例1のレンズ
断面図である。
FIG. 1 is a sectional view of a near-ultraviolet objective lens according to a first embodiment of the present invention.

【図2】実施例2のレンズ断面図である。FIG. 2 is a sectional view of a lens according to a second embodiment.

【図3】実施例3のレンズ断面図である。FIG. 3 is a sectional view of a lens according to a third embodiment.

【図4】実施例1の球面収差、非点収差、歪曲収差を示
す収差図である。
FIG. 4 is an aberration diagram showing a spherical aberration, an astigmatism, and a distortion of the first embodiment.

【図5】実施例2の図4と同様な収差図である。FIG. 5 is an aberration diagram similar to FIG. 4 of the second embodiment.

【図6】実施例3の図4と同様な収差図である。FIG. 6 is an aberration diagram similar to FIG. 4 of the third embodiment.

【符号の説明】[Explanation of symbols]

L1…第1レンズ群 L2…第2レンズ群 L3…第3レンズ群 L1 first lens group L2 second lens group L3 third lens group

Claims (3)

(57)【特許請求の範囲】(57) [Claims] 【請求項1】 物体側から順に、物体側に凹面を向けた
メニスカスレンズと接合レンズとからなり、全体として
正パワーの第1レンズ群と、3枚接合レンズを2個含む
第2レンズ群と、互いに凹面を向かい合わせた1対の接
合レンズからなる第3レンズ群と、からなり、以下の条
件を満足することを特徴とする近紫外対物レンズ: (1) 1.5<|f1 /f |<3.5 (2) 0.5<|R3 /D3 |<1.5 ただし、f1 、fはそれぞれ第1レンズ群及び全系の焦
点距離、R3 、D3 はそれぞれ第3レンズ群の最も物体
側レンズの物体側面の曲率半径及びその中心肉厚であ
る。
1. A first lens group having a positive power as a whole, and a second lens group including two triple cemented lenses, each of which includes, in order from the object side, a meniscus lens having a concave surface facing the object side and a cemented lens. And a third lens group consisting of a pair of cemented lenses having concave surfaces facing each other, and satisfying the following condition: (1) 1.5 <| f 1 / f | <3.5 (2) 0.5 <| R 3 / D 3 | <1.5 where f 1 and f are the focal lengths of the first lens unit and the entire system, respectively, and R 3 and D 3 are each The radius of curvature of the object side surface of the most object side lens of the third lens group and the center thickness thereof.
【請求項2】 以下の条件を満足することを特徴とする
請求項1記載の近紫外対物レンズ: (3) 3<|(d3 +d4 /n4 +d5 /n5 )/f|<8 ただし、d3 、d4 、n4 、d5 、n5 は、第3レンズ
群の2群間の距離、第3レンズ群の標本側レンズ各々の
中心肉厚及び屈折率である。
2. The near-ultraviolet objective lens according to claim 1, wherein the following condition is satisfied: (3) 3 <| (d 3 + d 4 / n 4 + d 5 / n 5 ) / f | < 8 where d 3 , d 4 , n 4 , d 5 , and n 5 are the distance between the two lens units of the third lens unit, the center thickness and the refractive index of each sample side lens of the third lens unit.
【請求項3】 10mm厚、波長350nmでの内部透
過率が50%以上の硝材のみを用いて構成されているこ
とを特徴とする請求項1記載の近紫外対物レンズ。
3. The near-ultraviolet objective lens according to claim 1, wherein only a glass material having a thickness of 10 mm and an internal transmittance at a wavelength of 350 nm of 50% or more is used.
JP23479592A 1991-09-12 1992-09-02 Near UV objective lens Expired - Fee Related JP3304410B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP23479592A JP3304410B2 (en) 1991-09-12 1992-09-02 Near UV objective lens

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
JP23311991 1991-09-12
JP3-233119 1991-09-12
JP23479592A JP3304410B2 (en) 1991-09-12 1992-09-02 Near UV objective lens

Publications (2)

Publication Number Publication Date
JPH05196874A JPH05196874A (en) 1993-08-06
JP3304410B2 true JP3304410B2 (en) 2002-07-22

Family

ID=26530857

Family Applications (1)

Application Number Title Priority Date Filing Date
JP23479592A Expired - Fee Related JP3304410B2 (en) 1991-09-12 1992-09-02 Near UV objective lens

Country Status (1)

Country Link
JP (1) JP3304410B2 (en)

Also Published As

Publication number Publication date
JPH05196874A (en) 1993-08-06

Similar Documents

Publication Publication Date Title
JP3140111B2 (en) High magnification microscope objective
JP3299808B2 (en) Immersion microscope objective lens
JP3280402B2 (en) Microscope objective lens
JP3985937B2 (en) Microscope objective lens for fluorescence
JPH06160720A (en) Liquid immersion system microscope objective lens
JP2002031760A (en) Objective lens for microscope
JP3313163B2 (en) Microscope objective lens
JPH07281097A (en) Liquid immersion system microscope objective lens
JP4742355B2 (en) Immersion microscope objective lens
JP3454935B2 (en) Microscope objective lens
JP4959230B2 (en) Microscope objective lens
JP4098492B2 (en) Immersion microscope objective lens
JP3126028B2 (en) High magnification objective lens
JP4488283B2 (en) Afocal zoom lens for microscope
JPH10288740A (en) Long operating distance microscope objective lens
JP3288441B2 (en) Near UV objective lens
JP3093835B2 (en) Microscope objective lens
JP3335391B2 (en) High magnification microscope objective
JPH08136816A (en) Objective lens of microscope
US5532879A (en) Microscope objective lens
JPH08286112A (en) Objective lens for microscope
JP3242426B2 (en) UV objective lens
JPH07234357A (en) Loupe
JP3304410B2 (en) Near UV objective lens
US4426136A (en) Projection lens with long working distance

Legal Events

Date Code Title Description
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20020417

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20080510

Year of fee payment: 6

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090510

Year of fee payment: 7

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100510

Year of fee payment: 8

LAPS Cancellation because of no payment of annual fees