JP3302592B2 - Manufacturing method of non-aqueous electrolyte secondary battery - Google Patents

Manufacturing method of non-aqueous electrolyte secondary battery

Info

Publication number
JP3302592B2
JP3302592B2 JP02923597A JP2923597A JP3302592B2 JP 3302592 B2 JP3302592 B2 JP 3302592B2 JP 02923597 A JP02923597 A JP 02923597A JP 2923597 A JP2923597 A JP 2923597A JP 3302592 B2 JP3302592 B2 JP 3302592B2
Authority
JP
Japan
Prior art keywords
aqueous electrolyte
secondary battery
electrolyte secondary
negative electrode
pitch
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP02923597A
Other languages
Japanese (ja)
Other versions
JPH10228924A (en
Inventor
博文 大橋
博義 能勢
匡良 中島
嘉己 上野
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
FDK Twicell Co Ltd
Original Assignee
Toshiba Battery Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Toshiba Battery Co Ltd filed Critical Toshiba Battery Co Ltd
Priority to JP02923597A priority Critical patent/JP3302592B2/en
Publication of JPH10228924A publication Critical patent/JPH10228924A/en
Application granted granted Critical
Publication of JP3302592B2 publication Critical patent/JP3302592B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P70/00Climate change mitigation technologies in the production process for final industrial or consumer products
    • Y02P70/50Manufacturing or production processes characterised by the final manufactured product

Description

【発明の詳細な説明】DETAILED DESCRIPTION OF THE INVENTION

【0001】[0001]

【発明の属する技術分野】本発明は非水電解液二次電池
の製造方法に係り、さらに詳しくは最適な初充電時期を
設定した非水電解液二次電池の製造方法に関する。
The present invention relates to a method for manufacturing a non-aqueous electrolyte secondary battery, and more particularly to a method for manufacturing a non-aqueous electrolyte secondary battery in which an optimal initial charging time is set.

【0002】[0002]

【従来の技術】近年、携帯電話やビデオカメラなどの電
子機器や、コンピューターなどの小型化、軽量化、高性
能化に伴って、これらの電子機器などの電源となる二次
電池についても、軽量で、エネルギー密度が高く、さら
に繰り返し充放電が可能などの要求が高まっている。最
近では、従来から使用されている鉛二次電池やニッケル
カドミウム電池の他に、水の分解電圧以上の高電圧が得
られる非水電解質二次電池も開発されている。また、非
水電解液を用いた二次電池、特に、リチウム二次電池
は、高電圧・高エネルギー密度を有する電池として期待
されている。
2. Description of the Related Art In recent years, as electronic devices such as mobile phones and video cameras and computers and the like have become smaller, lighter, and more sophisticated, secondary batteries serving as power sources for these electronic devices have also become lighter. Therefore, there is an increasing demand for high energy density and repetitive charge / discharge. Recently, in addition to conventionally used lead secondary batteries and nickel cadmium batteries, non-aqueous electrolyte secondary batteries capable of obtaining a voltage higher than the decomposition voltage of water have been developed. Also, secondary batteries using non-aqueous electrolytes, particularly lithium secondary batteries, are expected to have high voltage and high energy density.

【0003】そして、この種のリチウム二次電池では、
正極活物質として、モリブデン、バナジウム、チタン、
ニオブなどの酸化物、硫化物、セレン化物などを用いる
ことが知られている。また、最近、高エネルギー密度を
有するマンガン酸化物のサイクル特性を改良・向上させ
たスピネル型LiMn2 O4 、 LiCoO2 、 LiNiO2 などのリ
チウム含有マンガン複合酸化物についての検討が活発に
行われている。
[0003] In this type of lithium secondary battery,
Molybdenum, vanadium, titanium,
It is known to use oxides such as niobium, sulfides, selenides and the like. Recently, studies on lithium-containing manganese composite oxides such as spinel-type LiMn 2 O 4 , LiCoO 2 , and LiNiO 2 with improved and improved cycle characteristics of manganese oxides having high energy density have been actively conducted. I have.

【0004】一方、負極活物質としては、金属リチウム
をはじめ、リチウム合金やリチウムイオンを吸蔵・放出
できる炭素質材料などが検討されている。しかし、金属
リチウムの場合は、充放電に伴ってデンドライトが成長
し、短絡を発生し易いという問題があり、また、リチウ
ム合金の場合は、充放電に伴う膨張収縮に起因する電極
の崩壊が招来し易いなどの問題がある。したがって、最
近では、これらの問題の生じない炭素質材料がリチウム
二次電池の負極材料として有望視されている。さらに、
金属リチウムを負極材料として用いた場合、充電時に、
負極表面に生成する活性なデンドライトと非水溶媒とが
反応し、溶媒の一部が分解反応を引き起こして充電効率
を下げることもよく知られている。
On the other hand, as the negative electrode active material, a lithium alloy, a carbonaceous material capable of occluding and releasing lithium ions, and the like have been studied, including metallic lithium. However, in the case of metallic lithium, there is a problem that dendrite grows with charge / discharge and a short circuit easily occurs.In the case of lithium alloy, collapse of the electrode due to expansion / contraction accompanying charge / discharge is caused. There is a problem that it is easy to perform. Therefore, recently, carbonaceous materials that do not cause these problems are regarded as promising as negative electrode materials for lithium secondary batteries. further,
When lithium metal is used as the negative electrode material,
It is well known that active dendrite generated on the surface of a negative electrode reacts with a non-aqueous solvent, and a part of the solvent causes a decomposition reaction to lower charging efficiency.

【0005】このような問題を回避するために、炭素質
材料を金属材料から成る芯体に結着させ構成の負極を用
いることが進められている。すなわち、充電反応で電解
液中のリチウムイオンが、炭素質材料の層間にインター
カレートする反応を行うため、リチウムデンドライトの
析出が防止されてサイクル特性が向上するだけでなく、
活性な金属リチウムを使用しないので安全性も向上され
るという利点がある。そして、この種の非水電解液二次
電池例として、ゴム系高分子を結着剤としたピッチ系炭
素繊維を用いた負極、 LiCoO2 を用いた正極、非水電解
液を用いた電池が知られている。
In order to avoid such problems, use of a negative electrode having a structure in which a carbonaceous material is bonded to a core made of a metal material has been promoted. That is, in the charging reaction, lithium ions in the electrolytic solution perform a reaction of intercalating between layers of the carbonaceous material, so that not only precipitation of lithium dendrite is prevented but cycle characteristics are improved,
There is an advantage that safety is improved because active metallic lithium is not used. Examples of this type of non-aqueous electrolyte secondary battery include a negative electrode using pitch-based carbon fiber using a rubber-based polymer as a binder, a positive electrode using LiCoO 2, and a battery using a non-aqueous electrolyte. Are known.

【0006】なお、この種の二次電池は、いずれの場合
も、その製造工程で、所要の電解液を注液し、液密ない
し気密に封口して二次電池を組み立てた後に、充電(こ
の明細書では初充電と称する)を行い、負極にリチウム
をインターカレートさせて実用に供給される。
In any case, this type of secondary battery is charged with a required electrolyte solution in the manufacturing process, and after assembling the secondary battery in a liquid-tight or air-tight manner, the battery is charged ( In this specification, this is referred to as first charge), and lithium is intercalated into the negative electrode and supplied for practical use.

【0007】[0007]

【発明が解決しようとする課題】しかしながら、非水電
解液を電池(外装缶)内へ注液して二次電池を組み立て
た後、連続的に(放置時間を余り採らずに)初充電を行
うと、初期の充放電効率が悪く、これに伴って充放電サ
イクルの寿命が短くなる傾向がある。つまり、組み立て
後、初充電までの時間が短いと、セパレータおよび電極
面に対する非水電解液の含浸が不十分であるために、初
期の充放電効率が劣り、また、充放電サイクルの寿命が
低下する。
However, after assembling the secondary battery by injecting the non-aqueous electrolyte into the battery (outer can), the initial charge is continuously (without taking too much time). When this is performed, the initial charge / discharge efficiency is poor, and the life of the charge / discharge cycle tends to be shortened accordingly. In other words, if the time until the first charge after assembly is short, the impregnation of the separator and the electrode surface with the nonaqueous electrolyte is insufficient, so that the initial charge / discharge efficiency is poor and the life of the charge / discharge cycle is reduced. I do.

【0008】一方、二次電池組み立て後、初充電までの
時間が余り長いと、セパレータに目詰まりが起こったり
し、電池特性が阻害され易いという問題がある。すなわ
ち、組み立て後、初充電までの時間が長いと、電極の芯
体を形成している金属が電解液中に徐々に溶出し、充放
電を繰り返すうちに、溶出した金属が負極上に電析した
り、セパレータの目詰まりが起こることが分かった。
[0008] On the other hand, if the time until the first charging after assembling the secondary battery is too long, there is a problem that the separator is clogged and the battery characteristics are easily hindered. In other words, after assembly, if the time until the first charge is long, the metal forming the electrode core gradually elutes into the electrolytic solution, and during repeated charging and discharging, the eluted metal is deposited on the negative electrode. And clogging of the separator was found to occur.

【0009】また、電池(外装缶)内へ非水電解液を注
入し、液密に封口して二次電池を組み立てた後、初充電
を行う際の温度も影響することが分かった。すなわち、
初充電時の温度が低いと、非水電解液は水溶系電解液に
比べて粘度が高いため、電解液中のリチウムイオンの移
動性が低下することが確認された。一方、初充電時の温
度が高いと電解液の分解反応が起こり、電池特性を阻害
するという問題がある。 本発明は、この上記問題を解
決するためになされたもので、最適な初充電時間および
初充電時の温度を選定することにより、すぐれた初期充
放電効率と、サイクル特性を有する非水電解液二次電池
の製造方法を提供することを目的とする。
It has also been found that the temperature at the time of initial charging after assembling a secondary battery by injecting a non-aqueous electrolyte into a battery (outer can) and sealing it tightly is also affected. That is,
It was confirmed that when the temperature at the time of the first charge was low, the mobility of lithium ions in the electrolyte decreased because the viscosity of the nonaqueous electrolyte was higher than that of the aqueous electrolyte. On the other hand, when the temperature at the time of the first charge is high, there is a problem that a decomposition reaction of the electrolytic solution occurs and the battery characteristics are hindered. The present invention has been made in order to solve the above problem, and by selecting an optimum initial charging time and an initial charging temperature, a non-aqueous electrolyte having excellent initial charge / discharge efficiency and cycle characteristics. An object is to provide a method for manufacturing a secondary battery.

【0010】[0010]

【課題を解決するための手段】請求項1の発明は、正
極、セパレータおよびリチウムイオンを吸蔵・放出でき
る炭素質材料から成る負極を外装缶内に装着配置する工
程と、前記正極、セパレータおよび負極を装着配置した
外装缶内に、非水電解液を注入する工程と、前記非水電
解液を注入した外装缶の非水電解液注入口を液密に封止
して二次電池化する工程と、前記二次電池に初充電を行
う工程とを有する非水電解液二次電池の製造方法におい
て、非水系電解液を外装缶内に注液後、雰囲気温度25〜
45℃の下で24〜 168時間放置してから非水電解液注入口
を液密に封止し、初充電を行うことを特徴とする非水電
解液二次電池の製造方法である。
According to the first aspect of the present invention, there is provided a step of mounting and disposing a positive electrode, a separator and a negative electrode made of a carbonaceous material capable of occluding and releasing lithium ions in an outer can, A step of injecting a non-aqueous electrolyte into an outer can in which the is mounted and disposed, and a step of liquid-tightly sealing a non-aqueous electrolyte inlet of the outer can into which the non-aqueous electrolyte has been injected to form a secondary battery. And, in the method for producing a non-aqueous electrolyte secondary battery having a step of first charging the secondary battery, after injecting the non-aqueous electrolyte into the outer can, the ambient temperature 25 ~
A method for producing a non-aqueous electrolyte secondary battery, comprising leaving the battery at 45 ° C. for 24-168 hours, sealing the non-aqueous electrolyte inlet in a liquid-tight manner, and performing initial charging.

【0011】この発明において、雰囲気温度を25〜45℃
とし、かつ放置時間を24〜 168時間と設定されるが、こ
れら雰囲気温度の範囲および放置時間の範囲は相対的な
もので、たとえば上記範囲内で雰囲気温度が低温側の場
合は、上記範囲内で放置時間が長時間側に選択・設定さ
れる。そして、上記雰囲気温度を25〜45℃の範囲に、ま
た、放置時間を24〜 168時間の範囲にそれぞれ設定した
のは、多くの試行・錯誤の繰り返しの結果、生産性や信
頼性などを含めて、上記範囲が実用的にも最適であると
の知見に基づいたものである。
In the present invention, the ambient temperature is set at 25 to 45 ° C.
And the leaving time is set to 24 to 168 hours, but the range of the ambient temperature and the range of the leaving time are relative. For example, when the ambient temperature is on the low temperature side within the above range, the range is within the above range. Is selected and set to the long time. The reason why the above ambient temperature is set in the range of 25 to 45 ° C. and the leaving time is set in the range of 24 to 168 hours is that the result of many trials and errors, including productivity and reliability, etc. Thus, it is based on the finding that the above range is practically optimal.

【0012】請求項2の発明は、請求項第1記載の非水
電解液二次電池の製造方法において、負極を形成する炭
素質材料が、メソフェーズピッチを原料とするピッチ系
炭素繊維の粒度分布による平均粒径D50%=12〜20μm
の範囲であるピッチ系炭素質粒子を含有していることを
特徴とする。
According to a second aspect of the present invention, in the method for producing a non-aqueous electrolyte secondary battery according to the first aspect, the carbonaceous material forming the negative electrode has a particle size distribution of pitch-based carbon fibers using mesophase pitch as a raw material. Average particle size D50% = 12-20μm
Characterized by containing pitch-based carbonaceous particles in the range of

【0013】請求項3の発明は、請求項第1記載の非水
電解液二次電池の製造方法において、負極を形成する炭
素質材料が、メソフェーズピッチを原料とするピッチ系
炭素繊維の粒度分布による平均粒径D50%=12〜20μm
の範囲で、かつ光学的異方性組織がランダムに展開した
ピッチ系炭素質粒子を含有していることを特徴とする。
請求項1〜3の発明では、非水電解液二次電池の製造
方法において、非水電解液を電池内へ注入し、その注入
口を封止して二次電池を組み立てた後、初充電を行うま
での時間および温度を、雰囲気温度を25〜45℃、放置時
間を24〜 170時間と設定し、その後に初充電がなされて
いる。その結果、セパレータおよび電極面に対する非水
電解液の含浸が十分となる一方、電極芯体を形成する金
属の非水電解液への溶出も低減・抑制されるので、初充
電が適正な状態で行われことになり、初期の充放電効率
が向上する。また、初期の充放電効率向上に伴って、充
放電サイクルも長寿命化する。
According to a third aspect of the present invention, in the method for manufacturing a non-aqueous electrolyte secondary battery according to the first aspect, the carbonaceous material forming the negative electrode has a particle size distribution of pitch-based carbon fibers made from mesophase pitch. Average particle size D50% = 12-20μm
And the optically anisotropic structure contains pitch-based carbonaceous particles developed at random.
According to the first to third aspects of the present invention, in the method for manufacturing a non-aqueous electrolyte secondary battery, the non-aqueous electrolyte is injected into the battery, the injection port is sealed, and the secondary battery is assembled. The time and temperature for performing are set as follows: the ambient temperature is set at 25 to 45 ° C., the leaving time is set at 24 to 170 hours, and then the initial charging is performed. As a result, the impregnation of the separator and the electrode surface with the non-aqueous electrolyte is sufficient, while the elution of the metal forming the electrode core into the non-aqueous electrolyte is reduced and suppressed, so that the first charge is performed in an appropriate state. As a result, the initial charging / discharging efficiency is improved. Further, as the charge / discharge efficiency is improved in the initial stage, the charge / discharge cycle is extended.

【0014】[0014]

【発明の実施の形態】以下、図1,図2,図3および図
4を参照して実施例を説明する。
DETAILED DESCRIPTION OF THE PREFERRED EMBODIMENTS An embodiment will be described below with reference to FIGS. 1, 2, 3 and 4. FIG.

【0015】図1は、本発明に係る非水電解液二次電池
の要部構成を示す斜視図、図2は非水電解液二次電池の
要部構成を示す縦断面図である。図1および図2におい
て、1はたとえばステンレス鋼から成る負極端子を兼ね
る有底矩形円筒状の外装缶、2は前記外装缶1内に装着
配置された電池要素部である。ここで、電池要素部2
は、正極3、セパレータ4および負極5の積層体を渦巻
き状に捲回して構成されており、この電池要素部2は籠
形の電池要素部カバー6に一次的に収納され、外装缶1
内に装着配置ており、この電池要素部2を装着配置した
領域に非水電解液が注入・収容されている。
FIG. 1 is a perspective view showing a main part of a non-aqueous electrolyte secondary battery according to the present invention, and FIG. 2 is a longitudinal sectional view showing a main part of the non-aqueous electrolyte secondary battery. 1 and 2, reference numeral 1 denotes a rectangular cylindrical outer can having a bottom and also serving as a negative electrode terminal made of stainless steel, for example, and reference numeral 2 denotes a battery element portion mounted and arranged in the outer can 1. Here, the battery element part 2
Is formed by spirally winding a laminate of a positive electrode 3, a separator 4, and a negative electrode 5. The battery element portion 2 is temporarily stored in a cage-shaped battery element portion cover 6, and the outer can 1
The non-aqueous electrolyte is injected and accommodated in a region where the battery element portion 2 is attached and arranged.

【0016】また、前記外装缶1の開口側は、中央に円
形孔7およびこの円形孔7に隣接した個所に矩形状の圧
力開放孔8が開口・形設されたたとえばステンレス鋼製
の封口体9のレーザー溶接によって、気密に封口されて
いる。そして、前記封口体9の円形孔7には、ガラス系
絶縁体層10によってハーメチックシールされながら、ス
テンレス鋼製の正極端子ピン11が突出するように挿通入
され、かつこの正極ピン端子11は、リード12によって前
記電池要素部2の正極3と接続されている。
The opening side of the outer can 1 has a circular hole 7 in the center and a rectangular pressure release hole 8 at a position adjacent to the circular hole 7. 9 is hermetically sealed by laser welding. The stainless steel positive electrode terminal pin 11 is inserted into the circular hole 7 of the sealing body 9 so as to protrude, while being hermetically sealed by the glass-based insulator layer 10. The lead 12 is connected to the positive electrode 3 of the battery element 2.

【0017】さらに、前記封口体9圧力の開放孔8は、
その内側を塞ぐようにレーザー溶接されたステンレス鋼
製の矩形状の薄板13によって気密に封止されている。こ
こで、矩形状の薄板13は、直線部およびその両端がV字
型の切り込み溝14を有し、この切り溝14の薄膜化されて
いる部分が安全弁として機能する構成と成っており、圧
力開放用孔8内に充填された弾性を有する高分子材料15
で被覆されている。なお、前記切り込み溝14は、前記薄
板13をパンチでプレス加工するか、あるいはエッチング
を行うことにより形成される。
Further, the opening hole 8 for the pressure of the sealing body 9 is
It is hermetically sealed by a stainless steel rectangular thin plate 13 laser-welded so as to close the inside. Here, the rectangular thin plate 13 has a straight portion and V-shaped cut grooves 14 at both ends thereof. The thinned portions of the cut grooves 14 function as a safety valve, and the pressure is reduced. Elastic polymer material 15 filled in opening 8
It is covered with. The cut groove 14 is formed by pressing the thin plate 13 with a punch or by etching.

【0018】次に、前記正極3、負極5および非水電解
液について説明する。
Next, the positive electrode 3, the negative electrode 5, and the non-aqueous electrolyte will be described.

【0019】 正極 この正極3は、アルミニウム箔、アルミニウム製メッシ
ュ、アルミニウム製パンチドメタル、アルミニウム製ラ
スメタルのような集電体3aの両面に、たとえばLix MO2
(ただし、 MはCo、Niなどの遷移金属、0.05≦x≦1.10
の値)で表される活物質を含む正極合剤3bを形成した構
造を有する。前記活物質は、 LiCoO2 、LiNiO2 、LiNi
y Co(1-y) O2 、(ただし 0<y< 1)で表される複合
酸化物が挙げられる。
Positive Electrode The positive electrode 3 is provided on both surfaces of a current collector 3a such as aluminum foil, aluminum mesh, aluminum punched metal, aluminum lath metal, for example, Li x MO 2
(However, M is a transition metal such as Co or Ni, 0.05 ≦ x ≦ 1.10
Of the positive electrode mixture 3b containing the active material represented by the following formula: The active material is LiCoO 2 , LiNiO 2 , LiNi
y Co (1-y) O 2 , where 0 <y <1.

【0020】前記複合酸化物は、たとえばリチウム、コ
バルト、ニッケルの炭酸塩を出発原料とし、これら炭酸
塩を所定量混合し、酸素存在雰囲気下 600〜1000℃の温
度範囲で焼成することにより得られる。また前記出発原
料は炭酸塩に限定されず、水酸化物、酸化物からも同様
に合成可能である。
The above-mentioned composite oxide is obtained, for example, by using carbonates of lithium, cobalt and nickel as starting materials, mixing these carbonates in predetermined amounts, and calcining the mixture in a temperature range of 600 to 1000 ° C. in an atmosphere containing oxygen. . The starting materials are not limited to carbonates, but can be synthesized from hydroxides and oxides.

【0021】 負極 この負極5は、銅箔、銅製メッシュ、銅製パンチドメタ
ルのような集電体5aの両面にリチウムを吸蔵・放出する
材料を活物質として含む負極合剤5bを形成した構造を有
する。ここで、活物質としては、具体的には熱分解炭素
類;ピッチコークス、ニードルコークス、石油コークス
のようなコークス類;グラファイト類;ガラス状炭素
類;フェノール樹脂、フラン樹脂のような適当な温度で
焼成化する有機高分子化合物焼成体;炭素繊維;活性炭
などの炭素材料、または金属リチウム、、リチウム−ア
ルミ合金のようなリチウム合金、ポリアセチレン、ポリ
ピロールなどのポリマーも使用可能である。
Negative Electrode The negative electrode 5 has a structure in which a negative electrode mixture 5b containing a material that absorbs and releases lithium as an active material is formed on both surfaces of a current collector 5a such as a copper foil, a copper mesh, and a copper punched metal. Have. Here, specific examples of the active material include pyrolytic carbons; cokes such as pitch coke, needle coke and petroleum coke; graphites; glassy carbons; and suitable temperatures such as phenolic resins and furan resins. A carbon material such as activated carbon, or a polymer such as lithium metal, lithium alloy such as lithium-aluminum alloy, polyacetylene, or polypyrrole can also be used.

【0022】 非水電解液 この非水電解液は、リチウム塩のような電解質を有機溶
媒に対して、 0.5〜 1.5モル/ l程度の割合でで溶解し
たものである。ここで、電解質としては、 LiClO4 、 L
iAsF6 、LiPF6 、LiBF4 、 LiB(C6 H5 4 、LiCl、Li
Br、CH3 SO3 Li、CF3 SO3 Liから選ばれる1種または2
種以上のリチウム塩を挙げられる。
Non-aqueous electrolyte This non-aqueous electrolyte is obtained by dissolving an electrolyte such as a lithium salt in an organic solvent at a ratio of about 0.5 to 1.5 mol / l. Here, as the electrolyte, LiClO 4 , L
iAsF 6 , LiPF 6 , LiBF 4 , LiB (C 6 H 5 ) 4 , LiCl, Li
One or two selected from Br, CH 3 SO 3 Li, and CF 3 SO 3 Li
More than one lithium salt can be mentioned.

【0023】また、有機溶媒としては、たとえばプロピ
レンカーボネート、エチレンカーボネート、1,2-−ジメ
トキシエタン、γ−ブチルラクトン、テトラヒドロフラ
ン、2-メチルテトラヒドロフラン、1,3-ジオキソラン、
スルホラン、アセトニトリル、ジエチルカーボネート、
ジプロピルカーボネートなどから選ばれる1種または2
種類以上の混合溶媒が挙げられる。
Examples of the organic solvent include propylene carbonate, ethylene carbonate, 1,2-dimethoxyethane, γ-butyl lactone, tetrahydrofuran, 2-methyltetrahydrofuran, 1,3-dioxolan,
Sulfolane, acetonitrile, diethyl carbonate,
One or two selected from dipropyl carbonate and the like
A mixed solvent of more than one kind is exemplified.

【0024】次に、本発明の具体例を説明する。Next, a specific example of the present invention will be described.

【0025】実施例1 (正極の作製)炭酸リチウムと炭酸コバルトをLi/Coの
モル比で 1になるように混合し、空気中で 900℃、 5時
間焼成して正極活物質である複合酸化物( LiCoO2 )を
合成した。この複合酸化物についてX線回折測定を行っ
た。その結果、 JCPDSカードのLiCoO2 とよく一致して
いた。また、前記複合酸化物からなる試料を硫酸で分解
し、生成した二酸化炭素を塩化バリウムと水酸化ナトリ
ウム溶液中に導入して吸収させた後、標準試料で滴定す
ることにより二酸化炭素を定量し、その二酸化炭素量か
ら換算して複合酸化物中の炭酸リチウムを定量した。そ
の結果、炭酸リチウムは殆ど検出されなかった。この複
合酸化物を自動乳鉢で粉砕して、 LiCoO2粉末を得た。
Example 1 (Preparation of positive electrode) Lithium carbonate and cobalt carbonate were mixed at a molar ratio of Li / Co of 1 and fired in air at 900 ° C. for 5 hours to form a composite oxide as a positive electrode active material. (LiCoO 2 ) was synthesized. X-ray diffraction measurement was performed on this composite oxide. As a result, it was in good agreement with the LiCoO 2 of the JCPDS card. Further, the sample composed of the composite oxide is decomposed with sulfuric acid, the generated carbon dioxide is introduced into barium chloride and sodium hydroxide solution and absorbed, and the carbon dioxide is quantified by titration with a standard sample, The amount of lithium carbonate in the composite oxide was determined by conversion from the amount of carbon dioxide. As a result, lithium carbonate was hardly detected. This composite oxide was pulverized in an automatic mortar to obtain a LiCoO 2 powder.

【0026】このようにして得られた LiCoO2 粉末(正
極活物質)95重量%と炭酸リチウム5重量%とからなる
混合物91重量部、導電材としてのグラファイト 6重量
部、結着剤としてポリフッカビニリデン 3重量部とを混
合し、これをN-メチル -2-ピロリドンに分散して正極合
剤を調製した。
91 parts by weight of a mixture of 95% by weight of the LiCoO 2 powder (positive electrode active material) thus obtained and 5% by weight of lithium carbonate, 6 parts by weight of graphite as a conductive material, and polyhooker as a binder The mixture was mixed with 3 parts by weight of vinylidene and dispersed in N-methyl-2-pyrrolidone to prepare a positive electrode mixture.

【0027】この正極合剤をアルミニウム箔の両面に塗
布し、乾燥した後、ローラープレス機で加圧成形するこ
とによりシート状の正極を作製した。
This positive electrode mixture was applied to both sides of an aluminum foil, dried, and then subjected to pressure molding with a roller press to produce a sheet-like positive electrode.

【0028】(負極の作製)先ず、メソフェーズピッチ
を原料とするピッチ系炭素繊維を細かく粉砕し、2800℃
の温度で焼成して、活物質としての炭素質粉末を得た。
前記炭素繊維について、Χ線回折測定を行った結果、(0
02)面の面間隔は 3.76Aで、また真比重は1.58であっ
た。さらに粒度分布測定を行った結果、D50%=12〜20
μm の範囲であった。なお、粒度分布測定は、レーザー
回折式粒度分布測定装置((株)セイシン企業製PRO-70
00S )を使用した。
(Preparation of Negative Electrode) First, a pitch-based carbon fiber made from mesophase pitch was finely pulverized,
And a carbonaceous powder as an active material was obtained.
As a result of performing X-ray diffraction measurement on the carbon fiber, (0
02) The spacing between the surfaces was 3.76A, and the true specific gravity was 1.58. Furthermore, as a result of measuring the particle size distribution, D50% = 12 to 20
μm range. The particle size distribution was measured using a laser diffraction particle size distribution analyzer (PRO-70 manufactured by Seishin Enterprise Co., Ltd.).
00S) was used.

【0029】この炭素質粉末を90重量部当たり、結着剤
としてのポリフッ化ビニリデン10重量部の割合で混合し
て負極合剤を作製し、この負極合剤をN-メチル -2-ピロ
リドンに分散してスラリー状とした。この負極合剤スラ
リーを負極集電体である帯状の銅箔の両面に塗布し、乾
燥した後、ローラープレス機で加圧成形することにより
シート状の負極を作製した。
This carbonaceous powder was mixed at a ratio of 10 parts by weight of polyvinylidene fluoride as a binder per 90 parts by weight to prepare a negative electrode mixture, and this negative electrode mixture was converted into N-methyl-2-pyrrolidone. It was dispersed to form a slurry. This negative electrode mixture slurry was applied to both sides of a strip-shaped copper foil as a negative electrode current collector, dried, and then pressed with a roller press to produce a sheet-shaped negative electrode.

【0030】(電池要素部の作製)前記シート状の正
極、厚さ25μm の微孔性ポリプロピレンフィルムからな
るセパレーターおよび前記負極をこの順序で積層し、こ
の積層物を前記負極が外側に位置するように渦巻き状に
捲回した後、この捲回物を10 kgf/cm2 の加圧で圧縮し
て扁平状の電池要素部を作製した。
(Preparation of Battery Element Part) The positive electrode in the form of a sheet, a separator made of a microporous polypropylene film having a thickness of 25 μm, and the negative electrode are laminated in this order, and the laminate is placed so that the negative electrode is located outside. Then, the wound product was compressed under a pressure of 10 kgf / cm 2 to produce a flat battery element portion.

【0031】次いで、ステンレス鋼製の有底矩形筒形の
外装缶内に、前記電池要素部を銅製の電極カバーで覆っ
た状態で収納配置し、プロピレンカーボネイトとジメト
キシエタンとの混合溶媒(体積比率50:50)に六フッ化
リン酸リチウム(LiPF6 )を1モル/ lの割合で溶解し
て成る非水電解液を注入した。
Next, the battery element portion was housed and placed in a stainless steel bottomed rectangular cylindrical outer can in a state where the battery element portion was covered with a copper electrode cover, and a mixed solvent of propylene carbonate and dimethoxyethane (volume ratio: 50:50), a non-aqueous electrolyte obtained by dissolving lithium hexafluorophosphate (LiPF 6 ) at a ratio of 1 mol / l was injected.

【0032】引き続いて、中央に円形孔およびこの孔に
隣接した個所に矩形状の圧力開放用孔がそれぞれ開口さ
れたステンレスからなる矩形状の封口体の前記穴に正極
端子ピンをハーメチックシールし、さらに直線部および
この両端を V字型の切り込み溝を深さ35μm に形成した
厚さ50μm のステンレス鋼薄板で圧力開放用孔を塞ぐよ
うにレーザー溶接した封口体で外装缶の開口部を気密に
封止した。なお、この封止は、封口体の正極端子ピンの
下端を外装缶内の電池要素部の正極とリードを介して接
続した後、封口体を前記外装缶の開口部にレーザー溶接
することにより行って、上記図1および図2に示す構造
の角型非水電解液二次電池(電池寸法:幅34.0mm、高
さ:48.0mm、厚さ: 8.6mm)を組み立てた。
Subsequently, a positive electrode terminal pin is hermetically sealed in the hole of the rectangular sealing body made of stainless steel having a circular hole in the center and a rectangular pressure release hole in a position adjacent to the hole, respectively, Furthermore, the opening of the outer can is sealed airtight with a 50 μm thick stainless steel thin plate with a V-shaped notch groove formed at a depth of 35 μm and a laser welded to the straight part and both ends to close the pressure release hole. Sealed. This sealing is performed by connecting the lower end of the positive electrode terminal pin of the sealing body to the positive electrode of the battery element part in the outer can via a lead, and then laser welding the sealing body to the opening of the outer can. Thus, a square nonaqueous electrolyte secondary battery (battery dimensions: width 34.0 mm, height: 48.0 mm, thickness: 8.6 mm) having the structure shown in FIGS. 1 and 2 was assembled.

【0033】前記非水電解液二次電池の組み立て後、25
℃で24時間放置した時点で初充電を行って非水電解液二
次電池(実施例1)を製造・作製した。
After assembling the non-aqueous electrolyte secondary battery, 25
When the battery was left at 24 ° C. for 24 hours, the battery was initially charged, and a non-aqueous electrolyte secondary battery (Example 1) was manufactured and manufactured.

【0034】実施例2、3 電解液注入、その注入口の封止・組み立て後、雰囲気温
度25℃の下で各電池それぞれ 120時間(実施例2)、も
しくは 168時間(実施例3)放置した後に、初充電を行
った以外は実施例1の場合と同様の条件とし、それぞれ
非水電解液二次電池を製造・作製した。
Examples 2 and 3 After the electrolyte was injected and the injection port was sealed and assembled, each battery was allowed to stand for 120 hours (Example 2) or 168 hours (Example 3) at an ambient temperature of 25 ° C. Thereafter, the same conditions as in Example 1 were used except that the initial charge was performed, and non-aqueous electrolyte secondary batteries were manufactured and manufactured.

【0035】実施例4 電解液注入、その注入口の封止・組み立て後、雰囲気温
度30℃の下で、 120時間放置した後に、初充電を行った
以外は実施例1の場合と同様の条件とし、非水電解液二
次電池(実施例4)を製造・作製した。
Example 4 The same conditions as in Example 1 except that the electrolyte was injected, the injection port was sealed and assembled, the battery was allowed to stand for 120 hours at an ambient temperature of 30 ° C., and then charged for the first time. Then, a non-aqueous electrolyte secondary battery (Example 4) was manufactured and manufactured.

【0036】実施例5、6 電解液注入、その注入口の封止・組み立て後、雰囲気温
度45℃の下で各電池それぞれ24時間(実施例5)、もし
くは 120時間(実施例6)放置した後に、初充電を行っ
た以外は実施例1の場合と同様の条件とし、それぞれ非
水電解液二次電池をそれぞれ製造・作製した。
Examples 5 and 6 After the electrolyte was injected and the injection port was sealed and assembled, each battery was left for 24 hours (Example 5) or 120 hours (Example 6) at an ambient temperature of 45 ° C. Thereafter, the same conditions as in Example 1 were used except that the initial charge was performed, and non-aqueous electrolyte secondary batteries were respectively manufactured and manufactured.

【0037】比較例1、2 電解液注入、その注入口の封止・組み立て後、雰囲気温
度20℃(比較例1)もしくは50℃(比較例2)の下で、
24時間放置した後に、初充電を行った以外は実施例1の
場合と同様の条件とし、それぞれ非水電解液二次電池を
それぞれ製造・作製した。
COMPARATIVE EXAMPLES 1 AND 2 After injecting the electrolyte, sealing and assembling the injection port, at an ambient temperature of 20 ° C. (Comparative Example 1) or 50 ° C. (Comparative Example 2)
After leaving to stand for 24 hours, the same conditions as in Example 1 were used except that initial charging was performed, and non-aqueous electrolyte secondary batteries were manufactured and manufactured.

【0038】比較例3 電解液注入、その注入口の封止・組み立て後、雰囲気温
度25℃の下で、12時間放置した後に、初充電を行った以
外は実施例1の場合と同様の条件とし、非水電解液二次
電池をそれぞれ製造・作製した。
Comparative Example 3 The same conditions as in Example 1 except that the electrolyte solution was injected, the injection port was sealed and assembled, the battery was left at an ambient temperature of 25 ° C. for 12 hours, and then charged first. Then, non-aqueous electrolyte secondary batteries were manufactured and manufactured, respectively.

【0039】比較例4,5 電解液注入、その注入口の封止・組み立て後、雰囲気温
度10℃(比較例4)もしくは60℃(比較例5)の下で、
24時間放置した後に、初充電を行った以外は実施例1の
場合と同様の条件とし、それぞれ非水電解液二次電池を
それぞれ製造・作製した。
COMPARATIVE EXAMPLES 4 AND 5 After the electrolyte was injected and the injection port was sealed and assembled, at an ambient temperature of 10 ° C. (Comparative Example 4) or 60 ° C. (Comparative Example 5),
After leaving to stand for 24 hours, the same conditions as in Example 1 were used except that initial charging was performed, and non-aqueous electrolyte secondary batteries were manufactured and manufactured.

【0040】比較例6 電解液注入、その注入口の封止・組み立て後、雰囲気温
度25℃の下で、 192時間放置した後に、初充電を行った
以外は実施例1の場合と同様の条件とし、非水電解液二
次電池をそれぞれ製造・作製した。
Comparative Example 6 The same conditions as in Example 1 except that the electrolyte solution was injected, the injection port was sealed and assembled, the battery was left for 192 hours at an ambient temperature of 25 ° C., and then the initial charge was performed. Then, non-aqueous electrolyte secondary batteries were manufactured and manufactured, respectively.

【0041】なお、上記各実施例および各比較例の非水
電解液二次電池の初充電は、定電流定電圧(450mAh、4.
2V)で 5時間充電を行い、その後、定電流(450mAh、3.
0V cut)で放電を行って、初期の充放電効率をそれぞれ
測定・評価した。図3は、上記初充電時に設定した雰囲
気温度(縦軸)と、その雰囲気下に放置した時間(横
軸)をとによる放電効率を示した特性図であり、○印は
充放電効率85%以上の場合を、□印は充放電効率が70%
以上85%未満の場合を、×は充放電効率が70%未満の場
合をそれぞれ示す。
The non-aqueous electrolyte secondary batteries of the above Examples and Comparative Examples were initially charged at a constant current and a constant voltage (450 mAh, 4.
Charge at 2V) for 5 hours, then charge at constant current (450mAh, 3.
(0 V cut), and the initial charge / discharge efficiency was measured and evaluated. FIG. 3 is a characteristic diagram showing the discharge efficiency depending on the ambient temperature (vertical axis) set at the time of the first charge and the time (horizontal axis) of being left in the atmosphere. In the above cases, the □ mark indicates that the charge and discharge efficiency is 70%
And less than 85%, and x indicates a case where the charge and discharge efficiency is less than 70%.

【0042】図3から分かるように、各実施例の非水電
解液二次電池は、いずれも初期の充放電効率85%以上
で、各比較例の場合に比べてすぐれた充放電特性を呈す
る。
As can be seen from FIG. 3, each of the nonaqueous electrolyte secondary batteries of the examples has an initial charge / discharge efficiency of 85% or more and exhibits superior charge / discharge characteristics as compared with the comparative examples. .

【0043】次に、これら各実施例および各比較例の非
水電解液二次電池のサイクル特性を測定・評価した。す
なわち、20℃の温度で、定電流定電圧(900mAh、4.2V)
で 3時間充電を行い、その後定電流(900mAh、3.0V cu
t)で放電を行う充放電を 500サイクル繰り返して、そ
れぞれサイクル特性を測定・評価した結果を図4に特性
図として示す。図4では、縦軸に放電容量( mAh)、横
軸にサイクル数(回)で示されている。
Next, the cycle characteristics of the non-aqueous electrolyte secondary batteries of each of the examples and comparative examples were measured and evaluated. That is, at a temperature of 20 ° C, constant current and constant voltage (900mAh, 4.2V)
And charge for 3 hours, then constant current (900mAh, 3.0V cu
The charge / discharge cycle in which the discharge is performed in t) is repeated 500 times, and the cycle characteristics are measured and evaluated. In FIG. 4, the vertical axis shows the discharge capacity (mAh), and the horizontal axis shows the number of cycles (times).

【0044】図4から分かるように、初充電行うにあた
り電解液注入、注入封止後の放置時間および雰囲気温度
を適切に選択・設定した場合は、初期の充放電効率ない
し放電容量、充放電サイクル特性の向上・改善が容易に
図られる。
As can be seen from FIG. 4, when the initial charge is carried out, when the electrolyte injection, the standing time after injection sealing and the ambient temperature are appropriately selected and set, the initial charge / discharge efficiency or discharge capacity, the charge / discharge cycle, The characteristics can be easily improved and improved.

【0045】[0045]

【発明の効果】請求項1〜3の発明によれば、非水系電
解液の注入、封止後、適切な雰囲気温度および放置時間
の条件の下で初充電を行うことにより、セパレータおよ
び電極面への電解液含浸が十分となり、かつ電極芯体を
形成する金属材料が非水電解液に溶出することも低減さ
れるので、初充電が最適な状態で行われる。すなわち、
初期の充放電効率が向上し、この充放電効率の向上に伴
って充放電サイクルの寿命も長くなる。したがって、本
発明によれば、初期容量の高いかつ高充放電効率で、長
サイクル寿命であるすぐれた非水電解液二次電池を提供
することができる。
According to the first to third aspects of the present invention, after the non-aqueous electrolyte is injected and sealed, the initial charge is performed under the conditions of an appropriate ambient temperature and a standing time, so that the separator and the electrode surface can be formed. The electrolyte is sufficiently impregnated into the electrolyte, and the elution of the metal material forming the electrode core into the non-aqueous electrolyte is reduced, so that the initial charging is performed in an optimal state. That is,
The initial charge / discharge efficiency is improved, and the life of the charge / discharge cycle is prolonged with the improvement of the charge / discharge efficiency. Therefore, according to the present invention, an excellent non-aqueous electrolyte secondary battery having a high initial capacity, high charge / discharge efficiency, and a long cycle life can be provided.

【図面の簡単な説明】[Brief description of the drawings]

【図1】本発明に係る非水電解液二次電池の要部構成例
を示す斜視図。
FIG. 1 is a perspective view showing a configuration example of a main part of a nonaqueous electrolyte secondary battery according to the present invention.

【図2】図1の非水電解液二次電池の縦断面図。FIG. 2 is a longitudinal sectional view of the non-aqueous electrolyte secondary battery of FIG.

【図3】本発明に係る非水電解液二次電池の初期充放電
効率と初充電を行うまでの雰囲気温度および放置時間と
の関係を比較例の非水電解液二次電池の場合と比較して
示す特性図。
FIG. 3 shows the relationship between the initial charging / discharging efficiency of the nonaqueous electrolyte secondary battery according to the present invention, the ambient temperature until the first charge is performed, and the standing time, as compared with the nonaqueous electrolyte secondary battery of the comparative example. FIG.

【図4】本発明に係る非水電解液二次電池および比較例
の非水電解液二次電池のサイクル特性を比較して示す特
性図。
FIG. 4 is a characteristic diagram showing a comparison between cycle characteristics of a non-aqueous electrolyte secondary battery according to the present invention and a non-aqueous electrolyte secondary battery of a comparative example.

【符号の説明】[Explanation of symbols]

1……外装缶 2……電池要素部 3……正極 4……セパレーター 5……負極 8……圧力解放用孔 9……封口体 10……正極端子ピン 11……ガラス製絶縁体層 12……正極リード 13……薄板(安全弁) 14……切り込み溝 DESCRIPTION OF SYMBOLS 1 ... Outer can 2 ... Battery element part 3 ... Positive electrode 4 ... Separator 5 ... Negative electrode 8 ... Pressure release hole 9 ... Sealing body 10 ... Positive electrode terminal pin 11 ... Glass insulator layer 12 ...... Positive electrode lead 13 Thin plate (safety valve) 14 Cut groove

───────────────────────────────────────────────────── フロントページの続き (72)発明者 上野 嘉己 東京都品川区南品川3丁目4番10号 東 芝電池株式会社内 (56)参考文献 特開 平9−259927(JP,A) 特開 平8−162096(JP,A) (58)調査した分野(Int.Cl.7,DB名) H01M 10/40 ──────────────────────────────────────────────────続 き Continuation of the front page (72) Inventor Yoshimi Ueno 3-4-10 Minamishinagawa, Shinagawa-ku, Tokyo Toshiba Battery Corporation (56) References JP-A-9-259927 (JP, A) JP Hei 8-162096 (JP, A) (58) Fields investigated (Int. Cl. 7 , DB name) H01M 10/40

Claims (3)

(57)【特許請求の範囲】(57) [Claims] 【請求項1】 正極、セパレータおよびリチウムイオン
を吸蔵・放出できる炭素質材料から成る負極を外装缶内
に装着配置する工程と、 前記正極、セパレータおよび負極を装着配置した外装缶
内に、非水電解液を注入する工程と、 前記非水電解液を注入した外装缶の非水電解液注入口を
液密に封止して二次電池化する工程と、 前記二次電池に初充電を行う工程とを有する非水電解液
二次電池の製造方法において、 非水系電解液を外装缶内に注液後、雰囲気温度25〜45℃
の下で24〜 168時間放置してから非水電解液注入口を液
密に封止し、初充電を行うことを特徴とする非水電解液
二次電池の製造方法。
1. A step of mounting and disposing a positive electrode, a separator and a negative electrode made of a carbonaceous material capable of occluding and releasing lithium ions in an outer can. A step of injecting an electrolyte, a step of sealing the nonaqueous electrolyte injection port of the outer can into which the nonaqueous electrolyte is injected to form a secondary battery, and a step of first charging the secondary battery And a method of manufacturing a non-aqueous electrolyte secondary battery having a step, after injecting the non-aqueous electrolyte into the outer can, the ambient temperature 25 ~ 45 ℃
A method for producing a non-aqueous electrolyte secondary battery, comprising leaving the non-aqueous electrolyte injection port liquid-tightly sealed for 24 to 168 hours and then performing initial charging.
【請求項2】 負極を形成する炭素質材料が、メソフェ
ーズピッチを原料とするピッチ系炭素繊維の粒度分布に
よる平均粒径D50%=12〜20μm の範囲であるピッチ系
炭素質粒子を含有していることを特徴とする請求項第1
記載の非水電解液二次電池の製造方法。
2. A carbonaceous material forming a negative electrode contains pitch-based carbonaceous particles having an average particle diameter D50% = 12 to 20 μm according to a particle size distribution of pitch-based carbon fibers using mesophase pitch as a raw material. Claim 1
A method for producing the nonaqueous electrolyte secondary battery according to the above.
【請求項3】 負極を形成する炭素質材料が、メソフェ
ーズピッチを原料とするピッチ系炭素繊維の粒度分布に
よる平均粒径D50%=12〜20μm の範囲で、かつ光学的
異方性組織がランダムに展開したピッチ系炭素質粒子を
含有していることを特徴とする請求項第1記載の非水電
解液二次電池の製造方法。
3. The carbonaceous material forming the negative electrode has an average particle size D50% = 12 to 20 μm according to a particle size distribution of pitch-based carbon fibers using mesophase pitch as a raw material, and an optically anisotropic structure is random. 2. The method for producing a non-aqueous electrolyte secondary battery according to claim 1, wherein the non-aqueous electrolyte secondary battery contains pitch-based carbonaceous particles developed in the following manner.
JP02923597A 1997-02-13 1997-02-13 Manufacturing method of non-aqueous electrolyte secondary battery Expired - Fee Related JP3302592B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP02923597A JP3302592B2 (en) 1997-02-13 1997-02-13 Manufacturing method of non-aqueous electrolyte secondary battery

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP02923597A JP3302592B2 (en) 1997-02-13 1997-02-13 Manufacturing method of non-aqueous electrolyte secondary battery

Publications (2)

Publication Number Publication Date
JPH10228924A JPH10228924A (en) 1998-08-25
JP3302592B2 true JP3302592B2 (en) 2002-07-15

Family

ID=12270580

Family Applications (1)

Application Number Title Priority Date Filing Date
JP02923597A Expired - Fee Related JP3302592B2 (en) 1997-02-13 1997-02-13 Manufacturing method of non-aqueous electrolyte secondary battery

Country Status (1)

Country Link
JP (1) JP3302592B2 (en)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR100416093B1 (en) * 2001-05-23 2004-01-24 삼성에스디아이 주식회사 Method for manufacturing lithium battery

Also Published As

Publication number Publication date
JPH10228924A (en) 1998-08-25

Similar Documents

Publication Publication Date Title
JP3010781B2 (en) Non-aqueous electrolyte secondary battery
JP4986009B2 (en) Secondary battery
JP3319258B2 (en) Method for producing positive electrode active material for lithium secondary battery and method for producing lithium secondary battery
JP4061586B2 (en) Positive electrode active material for nonaqueous electrolyte secondary battery and nonaqueous electrolyte secondary battery using the same
JP3028582B2 (en) Non-aqueous electrolyte secondary battery
JP3885327B2 (en) Flat rectangular non-aqueous electrolyte secondary battery
KR20030087540A (en) Non-aqueous electrolyte battery
JP2008060033A (en) Positive-electrode active material, positive electrode using the same, nonaqueous electrolyte secondary battery, and positive-electrode active material manufacturing method
JP4649113B2 (en) Nonaqueous electrolyte secondary battery
JP3588885B2 (en) Non-aqueous electrolyte battery
KR101066446B1 (en) Battery
JP4591674B2 (en) Lithium ion secondary battery
JP4900994B2 (en) Nonaqueous electrolyte secondary battery
JP2001283861A (en) Battery electrode and nonaqueous electrolyte battery
JPH10334884A (en) Filling method for nonaqueous electrolyte, and nonaqueous electrolyte filler
JP2001023685A (en) Electrolyte and secondary battery using it
JP3103899B2 (en) Non-aqueous electrolyte secondary battery
JP2001085009A (en) Positive electrode active material and its manufacture
JPH11273743A (en) Cylindrical nonaqueous electrolyte secondary battery
JPH11273738A (en) Nonaqueous electrolyte secondary battery
JP3302592B2 (en) Manufacturing method of non-aqueous electrolyte secondary battery
JP2002063942A (en) Nonaqueous electrolyte secondary battery
JP2007059343A (en) Battery
JPH10270079A (en) Nonaqueous electrolyte battery
JP3230279B2 (en) Non-aqueous electrolyte secondary battery and method of manufacturing the same

Legal Events

Date Code Title Description
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20020416

LAPS Cancellation because of no payment of annual fees