JP3301505B2 - Polylactic acid copolymer - Google Patents

Polylactic acid copolymer

Info

Publication number
JP3301505B2
JP3301505B2 JP20518193A JP20518193A JP3301505B2 JP 3301505 B2 JP3301505 B2 JP 3301505B2 JP 20518193 A JP20518193 A JP 20518193A JP 20518193 A JP20518193 A JP 20518193A JP 3301505 B2 JP3301505 B2 JP 3301505B2
Authority
JP
Japan
Prior art keywords
acid
polylactic acid
melting point
copolymerization
carbon atoms
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
JP20518193A
Other languages
Japanese (ja)
Other versions
JPH0753685A (en
Inventor
邦生 木村
武 伊藤
知裕 青山
敬一 宇野
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Toyobo Co Ltd
Original Assignee
Toyobo Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Family has litigation
First worldwide family litigation filed litigation Critical https://patents.darts-ip.com/?family=16502765&utm_source=google_patent&utm_medium=platform_link&utm_campaign=public_patent_search&patent=JP3301505(B2) "Global patent litigation dataset” by Darts-ip is licensed under a Creative Commons Attribution 4.0 International License.
Priority to JP20518193A priority Critical patent/JP3301505B2/en
Application filed by Toyobo Co Ltd filed Critical Toyobo Co Ltd
Priority to US08/285,552 priority patent/US5618911A/en
Priority to CN94115768A priority patent/CN1051095C/en
Priority to CN03108626.8A priority patent/CN1216882C/en
Publication of JPH0753685A publication Critical patent/JPH0753685A/en
Priority to US08/734,474 priority patent/US5714618A/en
Priority to CN99117996.XA priority patent/CN1129595C/en
Publication of JP3301505B2 publication Critical patent/JP3301505B2/en
Application granted granted Critical
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Landscapes

  • Polyesters Or Polycarbonates (AREA)
  • Biological Depolymerization Polymers (AREA)

Description

【発明の詳細な説明】DETAILED DESCRIPTION OF THE INVENTION

【0001】[0001]

【産業上の利用分野】本発明は、融点がポリ乳酸単体よ
り充分低く成形加工に適したポリ乳酸を主成分とする脂
肪族ポリエステルに関する。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to an aliphatic polyester containing polylactic acid as a main component and having a melting point sufficiently lower than that of polylactic acid alone and suitable for molding.

【0002】[0002]

【従来の技術】従来よりポリ乳酸に代表される脂肪族ポ
リエステルは、徐放性重合体として手術用縫合糸、注射
薬用マイクロカプセルなどの生分解性医療材料や除草剤
等の農薬組成物として利用されている。また、近年プラ
スチック公害が問題となり、酵素や微生物による分解が
期待される生分解性プラスチックとしても注目され、研
究開発が進められている。
2. Description of the Related Art Conventionally, aliphatic polyesters represented by polylactic acid have been used as sustained-release polymers as biodegradable medical materials such as surgical sutures and microcapsules for injections and agricultural chemical compositions such as herbicides. Have been. In recent years, plastic pollution has become a problem, and biodegradable plastics, which are expected to be decomposed by enzymes and microorganisms, have attracted attention and research and development have been promoted.

【0003】ポリ乳酸は、融点を180℃付近に有して
いるために、製糸、製膜、成形と溶融成形が可能であ
り、製造プロセスからみても優れた成形性を有してい
る。しかし、融点と熱分解温度が近く、高温での成形或
は長時間の溶融状態を経由とすると著しく分子量が減少
してしまい、目的とする成形品物性が得られないと言っ
た問題がある。故に、初めから成形工程における分子量
低下分を考慮し、より高分子量のポリ乳酸を原料として
使用する必要がある。この方法では、成形工程の初期工
程では溶融粘度が著しく高いといった問題や、成形品の
物性がバラックと言った問題が生じ、好ましい方法とは
言い難い。このような問題を解決するために、溶融成形
を用いたり、末端封鎖法等によるポリマーの熱安定化が
提案されているが、未だ充分な解決を見出すには至って
いない。
[0003] Since polylactic acid has a melting point near 180 ° C, it can be formed into a thread, formed into a film, molded and melt-molded, and has excellent moldability even from the viewpoint of the production process. However, there is a problem in that the melting point and the thermal decomposition temperature are close to each other, and if the molding is performed at a high temperature or a melted state for a long time, the molecular weight is remarkably reduced, and the desired physical properties of the molded product cannot be obtained. Therefore, it is necessary to use a higher molecular weight polylactic acid as a raw material in consideration of the molecular weight reduction in the molding step from the beginning. In this method, a problem that the melt viscosity is remarkably high in the initial step of the molding step and a problem that the physical properties of the molded article are barracks occur, and it is hard to say that this method is preferable. In order to solve such a problem, it has been proposed to use melt molding or to stabilize the polymer by a terminal blocking method or the like, but a satisfactory solution has not yet been found.

【0004】[0004]

【発明が解決しようとする課題】上述の如く、溶融成形
時に著しい分解即ち分子量低下を引き起こさないポリ乳
酸系ポリエステルは未だ得られていない。
As described above, polylactic acid-based polyesters which do not cause significant decomposition, ie, decrease in molecular weight, during melt molding have not yet been obtained.

【0005】[0005]

【課題を解決するための手段】本発明者らは、上記事情
を鑑み、溶融成形時に分子量低下の少ないポリ乳酸系ポ
リエステルを得るべく鋭意検討を重ねた結果、遂に本発
明を完成するに至った。即ち本発明は乳酸と50モル%
を越えない量の下記(I)及び(II)が共重合された
ポリ乳酸共重合体であって、且つ、融点が90℃以上1
70℃以下の範囲にあるポリ乳酸共重合体である。 (I)炭素数が4以上42以下のジカルボン酸類 (II)炭素数が2以上40以下のグリコール類
Means for Solving the Problems In view of the above circumstances, the present inventors have intensively studied to obtain a polylactic acid-based polyester with a small decrease in molecular weight during melt molding, and finally completed the present invention. . That is, the present invention relates to lactic acid and 50 mol%
A polylactic acid copolymer obtained by copolymerizing the following (I) and (II) with an amount not exceeding 90.degree.
A polylactic acid copolymer having a temperature of 70 ° C. or lower. (I) Dicarboxylic acids having 4 to 42 carbon atoms (II) Glycols having 2 to 40 carbon atoms

【0006】本発明における共重合によって融点が下が
り分解温度は下がらない。即ち、融点と分解温度の差が
広がり、成形時に分子量低下を引き起こさないポリ乳酸
系ポリエステルが得られることは驚異に値する。本発明
において共重合し得るジカルボン酸類(I)は、炭素数
4以上42以下の化合物である。炭素数が3以下では目
的とするものを得るには多量の共重合を必要とし、熱特
性以外の特性、例えば力学特性等が著しく低下し好まし
く無い。また、43以上であると、少量の共重合におい
ても同様に力学特性等が著しく低下し好ましく無い。具
体的には、例えば、コハク酸、グルタル酸、アジピン
酸、ピメリン酸、スベリン酸、アゼライン酸、セバチン
酸、ウンデカン二酸、ドデカン二酸、フマル酸、ダイマ
ー酸等を挙げることが出来る。しかし、これらに限定さ
れるものでは無い。特に、コハク酸、アジピン酸、フマ
ル酸、及びアゼライン酸及びダイマー酸が好ましい。こ
れらの共重合成分オキシ酸或はジオールとジカルボン酸
の組み合わせは単独で共重合してもよいし、2種類以上
の組み合わせにより共重合しても良い。
[0006] The copolymerization in the present invention lowers the melting point and does not lower the decomposition temperature. That is, it is surprising that the difference between the melting point and the decomposition temperature is widened and a polylactic acid-based polyester which does not cause a decrease in molecular weight during molding can be obtained. The dicarboxylic acids (I) that can be copolymerized in the present invention are compounds having 4 to 42 carbon atoms. If the number of carbon atoms is 3 or less, a large amount of copolymerization is required to obtain the desired product, and characteristics other than thermal characteristics, such as mechanical characteristics, are remarkably deteriorated. On the other hand, if it is 43 or more, the mechanical properties and the like are remarkably deteriorated even in a small amount of copolymerization, which is not preferable. Specific examples include succinic acid, glutaric acid, adipic acid, pimelic acid, suberic acid, azelaic acid, sebacic acid, undecandioic acid, dodecandioic acid, fumaric acid, and dimer acid. However, it is not limited to these. Particularly, succinic acid, adipic acid, fumaric acid, azelaic acid and dimer acid are preferred. These copolymerization components oxyacids or combinations of diols and dicarboxylic acids may be copolymerized alone or in combination of two or more.

【0007】また、本発明において共重合し得るグリコ
ール類(II)は、炭素数2以上40以下の化合物であ
る。炭素数が1以下では目的とするものを得るには多量
の共重合を必要とし、熱特性以外の特性、例えば力学特
性等が著しく低下し好ましく無い。また、41以上であ
ると、少量の共重合においても同様に力学特性等が著し
く低下し好ましく無い。具体的には、例えば、エチレン
グリコール、1,3−プロパンジオール、1,4−ブタ
ンジオール、1,5−ペンタンジオール、1,8−オク
タンジオール、1,10−デカンジオール、1,12−
ドデカンジオール、プロピレングリコール、2,3−ブ
タンジオール、1,3−ブタンジオール、ネオペンチル
グリコールなどを挙げることが出来る。しかし、これら
に限定されるものでは無い。コスト及び分解物安全性の
観点から、エチレングリコール、1,4−ブタンジオー
ル、2,3−ブタンジオールが好ましい。これらの共重
合成分ジカルボン酸類(I)とジオール類(II)の組み
合わせは単独で共重合してもよいし、2種類以上の組み
合わせにより共重合しても良い。
The glycols (II) copolymerizable in the present invention are compounds having 2 to 40 carbon atoms. When the number of carbon atoms is 1 or less, a large amount of copolymerization is required to obtain a desired product, and characteristics other than thermal characteristics, such as mechanical characteristics, are remarkably deteriorated. On the other hand, if the ratio is 41 or more, the mechanical properties and the like are remarkably deteriorated even in a small amount of copolymerization, which is not preferable. Specifically, for example, ethylene glycol, 1,3-propanediol, 1,4-butanediol, 1,5-pentanediol, 1,8-octanediol, 1,10-decanediol, 1,12-
Dodecanediol, propylene glycol, 2,3-butanediol, 1,3-butanediol, neopentyl glycol and the like can be mentioned. However, it is not limited to these. From the viewpoint of cost and decomposition product safety, ethylene glycol, 1,4-butanediol, and 2,3-butanediol are preferred. Combinations of these copolymerization components dicarboxylic acids (I) and diols (II) may be copolymerized singly or in combinations of two or more.

【0008】また、本発明において炭素数4以上のα−
オキシ酸類を共重合しても構わない。炭素数3以下では
目的とするものを得るには多量の共重合を必要とし、熱
特性以外の特性、例えば力学特性等が著しく低下し好ま
しく無い。具体的には、例えば、α−ヒドロキシ酪酸、
α−ヒドロキシイソ酪酸、α−ヒドロキシ吉草酸、α−
ヒドロキシイソ吉草酸、α−ヒドロキシ−α−メチル酪
酸、α−ヒドロキシカプロン酸、α−ヒドロキシイソカ
プロン酸、α−ヒドロキシ−β−メチル吉草酸、α−ヒ
ドロキシヘプタン酸等を挙げることが出来る。しかし、
これらに限定されるものでは無い。共重合する場合にお
いては、オキシ酸或は対応する環状ジエステルとして共
重合系に供せられる。
Further, in the present invention, α-α having 4 or more carbon atoms is used.
Oxy acids may be copolymerized. If the number of carbon atoms is 3 or less, a large amount of copolymerization is required to obtain the desired product, and characteristics other than thermal characteristics, such as mechanical characteristics, are remarkably deteriorated. Specifically, for example, α-hydroxybutyric acid,
α-hydroxyisobutyric acid, α-hydroxyvaleric acid, α-
Examples thereof include hydroxyisovaleric acid, α-hydroxy-α-methylbutyric acid, α-hydroxycaproic acid, α-hydroxyisocaproic acid, α-hydroxy-β-methylvaleric acid, and α-hydroxyheptanoic acid. But,
It is not limited to these. In the case of copolymerization, it is provided to the copolymerization system as an oxyacid or a corresponding cyclic diester.

【0009】また、本発明において炭素数7以上の環状
ラクトン類を共重合しても構わない。炭素数6以下では
目的とするものを得るには多量の共重合を必要とし、熱
特性以外の特性、例えば力学特性等が著しく低下し好ま
しく無い。具体的には、例えば、7−ヘプタノリド、8
−オクタノリド、9−ノナノリド、10−デカノリド、
11−ウンデカノリド、12−ドデカノリド等を挙げる
ことが出来る。しかし、これらに限定されるものでは無
い。
Further, in the present invention, a cyclic compound having 7 or more carbon atoms is used.
Lactones may be copolymerized. If the number of carbon atoms is 6 or less, a large amount of copolymerization is required to obtain the desired product, and characteristics other than thermal characteristics, for example, mechanical characteristics, etc. are significantly reduced, which is not preferable. Specifically, for example, 7-heptanolide, 8
-Octanolide, 9-nonanolide, 10-decanolide,
Examples thereof include 11-undecanolide and 12-dodecanolide. However, it is not limited to these.

【0010】上記の共重合成分を含有するポリ乳酸系ポ
リエステルは乳酸或はラクチドと前述の如くの共重合成
分を脱水重縮合或は開環重合等の公知の方法により合成
することが出来る。ポリマー中不斉炭素を有するもの
は、L体、DL体、D体といった光学異性体が存在する
が、それらは何れでも良く、また、それら光学異性体の
混合物であってもよい。
The polylactic acid-based polyester containing the above-mentioned copolymerization component can be synthesized from lactic acid or lactide and the above-mentioned copolymerization component by a known method such as dehydration polycondensation or ring-opening polymerization. Those having an asymmetric carbon in the polymer include optical isomers such as L-form, DL-form and D-form, and any of them may be used, or a mixture of these optical isomers may be used.

【0011】本発明の重要な要件であるところの共重合
体の融点(Tm)であるが、目的とする溶融成形性を付
与するためにはTmが90℃以上170℃以下である必
要がある。170℃を越えると成形加工温度をポリ乳酸
単体に比べて著しく下げることが難しく、よって、分子
量の低下を抑制することが出来ない。また、90℃未満
であると耐熱性をはじめとした諸物性が著しく低下する
故好ましくない。このような範囲に融点を有するポリ乳
酸系共重合ポリエステルを得るには、上述した如くの成
分を共重合するわけであるが、共重合成分が多すぎると
得られたポリマーの融点が90℃未満になってしまう
し、また、少なすぎると融点が170℃以下とならず目
的を達しえない。最適共重合量は用いる成分によって異
なるが、50モル%を越えることは無い。
The melting point (Tm) of the copolymer, which is an important requirement of the present invention, is required to be 90 ° C. or more and 170 ° C. or less in order to impart the desired melt moldability. . If the temperature exceeds 170 ° C., it is difficult to lower the molding temperature remarkably as compared with the case of polylactic acid alone, so that a decrease in molecular weight cannot be suppressed. On the other hand, when the temperature is lower than 90 ° C., various physical properties such as heat resistance are remarkably reduced, which is not preferable. In order to obtain a polylactic acid-based copolymerized polyester having a melting point in such a range, the above-mentioned components are copolymerized. However, if the amount of the copolymerized components is too large, the melting point of the obtained polymer is less than 90 ° C. On the other hand, if the amount is too small, the melting point will not be 170 ° C. or less, and the object cannot be achieved. The optimum copolymerization amount varies depending on the components used, but does not exceed 50 mol%.

【0012】本発明のポリエステルは、還元粘度で0.
1dl/g以上である。還元粘度が0.1dl/g未満
であると、重合度が低すぎてしまい、目的とする熱安定
性は得られない。好ましくは、0.2dl/g以上であ
る。
The polyester of the present invention has a reduced viscosity of 0.1.
It is 1 dl / g or more. If the reduced viscosity is less than 0.1 dl / g, the degree of polymerization is too low, and the desired thermal stability cannot be obtained. Preferably, it is 0.2 dl / g or more.

【0013】本発明におけるポリマーは溶融成形時に、
必要に応じて他のポリマーや無機物と混合して用いるこ
とも出来る。また、通常のポリエステルと同じく、艶消
剤、顔料例えばカーボンブラック等、酸化防止剤例えば
ヒンダードフェノール化合物、ヒンダードアミン化合
物、リン系化合物、紫外線吸収剤例えばベンゾフェノン
化合物、ベンゾトリアゾール化合物、サリシレート化合
物等、また、場合によっては架橋性基を持つ化合物を含
んでいても何等差し支えない。
In the present invention, the polymer is melt-molded.
If necessary, it can be used by mixing with other polymers or inorganic substances. Further, as with ordinary polyesters, matting agents, pigments such as carbon black, antioxidants such as hindered phenol compounds, hindered amine compounds, phosphorus compounds, ultraviolet absorbers such as benzophenone compounds, benzotriazole compounds, salicylate compounds, etc., In some cases, a compound having a crosslinkable group may be contained.

【0014】本発明のポリエステルは、溶融成形性が良
好故に、多方面にわたり使用することができる。例え
ば、釣糸や魚網、養殖網、ロープ類などの漁業用繊維集
合体、生理用品等の衛生用繊維集合体、防鳥網や苗床な
どの農業用繊維集合体、遮水用シート、仮設シート、仮
設ネット、防風ネット、仮止め用ロープ、ドレーン材用
ロープなどの土木用繊維集合体、農業用マルチフイルム
やグリーンハウスフイルム、苗木カップなどの農業用フ
イルム、食品包装用フイルム、米、肥料またゴミなどの
袋類、カップやトレイなどの食品容器容器用またドリン
クパック用紙積層体、ボトル、トレイ、カップ、苗木用
また育苗用ポット類、ナイフ、フォーク、スプーンなど
の飲食用具、パイプ、仮止め材などの成形品、手術用縫
合糸、人工関節或は注射薬用マイクロカプセルに代表さ
れる医療用材料等を挙げることが出来るがこれらに限定
されるものではない。
The polyester of the present invention can be used in various fields because of its good melt moldability. For example, fishing fiber aggregates such as fishing lines and fish nets, aquaculture nets, ropes, sanitary fiber aggregates such as sanitary products, agricultural fiber aggregates such as bird nets and nurseries, waterproof sheets, temporary sheets, Civil fiber aggregates such as temporary nets, windbreak nets, temporary fixing ropes, drainage ropes, etc., agricultural films such as agricultural multi-films, greenhouse films, seedling cups, food packaging films, rice, fertilizers and garbage Such as bags, food container containers such as cups and trays, and drink pack paper laminates, bottles, trays, cups, pottings for seedlings and seedlings, eating and drinking utensils such as knives, forks, spoons, pipes, temporary fixing materials And other medical materials such as surgical products, surgical sutures, artificial joints, and microcapsules for injections, but are not limited thereto. No.

【0015】[0015]

【実施例】【Example】

実施例1 アゼライン酸20.0g(0.106mol)、エチレ
ングリコール14.5g(0.234mol)、Sb2
3 15.4mg(5.3×10-5mol)を撹拌装
置、窒素導入管を備えた重合管に装入し、窒素雰囲気下
に170℃から240℃に昇温加熱し脱水縮合した。得
られた乳白色固形物を更に240℃で徐々に0.3mm
Hgまで減圧し18時間加熱してエステル交換により生
成するエチレングリコールを留去した。得られた薄黄色
固体の還元粘度(測定:クロロホルム中25℃、0.5
g/dl)は1.73dl/gであった。得られたポリ
マーを粉砕し、6.0gを重合管に挿入して60℃で1
0時間減圧乾燥(0.5mmHg)した。続いてL−ラ
クチド8.4g(0.058mol)、オクチル酸第一
スズ2.5mg(6.2×10-5mol)のトルエン溶
液とともに1時間減圧乾燥してトルエンを留去した後2
00℃で1時間加熱した。得られたポリマーの還元粘度
は0.32dl/gであり、DSCによる融点は146
℃(ピーク温度)であった。このもののTGA分析によ
る10%重量減少温度は280℃で、ポリ乳酸(比較例
1参照)とほぼ同じであった。
Example 1 20.0 g (0.106 mol) of azelaic acid, 14.5 g (0.234 mol) of ethylene glycol, Sb 2
15.4 mg (5.3 × 10 −5 mol) of O 3 was charged into a polymerization tube equipped with a stirrer and a nitrogen inlet tube, and heated and heated from 170 ° C. to 240 ° C. under a nitrogen atmosphere to perform dehydration condensation. The resulting milky white solid is further gradually reduced to 0.3 mm at 240 ° C.
The pressure was reduced to Hg and the mixture was heated for 18 hours to distill off ethylene glycol produced by transesterification. The reduced viscosity of the obtained pale yellow solid (measurement: in chloroform at 25 ° C., 0.5
g / dl) was 1.73 dl / g. The obtained polymer was pulverized, 6.0 g was inserted into a polymerization tube, and 1
It dried under reduced pressure (0.5 mmHg) for 0 hours. Subsequently, 8.4 g (0.058 mol) of L-lactide and 2.5 mg (6.2 × 10 −5 mol) of stannous octoate in toluene were dried under reduced pressure for 1 hour, and toluene was distilled off.
Heated at 00 ° C. for 1 hour. The reduced viscosity of the obtained polymer was 0.32 dl / g, and the melting point by DSC was 146.
° C (peak temperature). Its 10% weight loss temperature by TGA analysis was 280 ° C., which was almost the same as that of polylactic acid (see Comparative Example 1).

【0016】比較例1 L−ラクチド10.0g(0.069mol)、オクチ
ル酸第一スズ3mg(7.4×10-5mol)のトルエ
ン溶液を撹拌装置、窒素導入管を備えた重合管に装入
し、2時間減圧乾燥した後、窒素雰囲気下に200℃で
1時間加熱した。得られたポリマーの還元粘度(測定:
クロロホルム中25℃、0.5g/dl)は2.41d
l/gであり、DSCによる融点は181℃(ピーク温
度)であった。このもののTGA分析による10%重量
減少温度は283℃であった。
Comparative Example 1 A toluene solution of 10.0 g (0.069 mol) of L-lactide and 3 mg (7.4 × 10 −5 mol) of stannous octylate was placed in a polymerization tube equipped with a stirrer and a nitrogen inlet tube. After being charged and dried under reduced pressure for 2 hours, it was heated at 200 ° C. for 1 hour under a nitrogen atmosphere. Reduced viscosity of the obtained polymer (measurement:
2.41 d at 25 ° C. in chloroform and 0.5 g / dl)
1 / g and the melting point by DSC was 181 ° C (peak temperature). Its 10% weight loss temperature by TGA analysis was 283 ° C.

【0017】[0017]

【発明の効果】本発明のポリ乳酸系共重合ポリエステル
は、第2成分を共重合することによりポリ乳酸の分解点
を下げることなく融点をさげることが出来る。故に、溶
融成形に良好な融点を有しているために成形時の熱分解
による分子量低下を引き起こすことなく、ポリマーの有
する優れた諸物性を容易に引き出すことが出来る。
The polylactic acid-based copolymerized polyester of the present invention can lower the melting point without lowering the decomposition point of polylactic acid by copolymerizing the second component. Therefore, since it has a good melting point for melt molding, it is possible to easily bring out the excellent physical properties of the polymer without causing a decrease in molecular weight due to thermal decomposition during molding.

───────────────────────────────────────────────────── フロントページの続き (56)参考文献 特開 昭59−215319(JP,A) 特開 平5−177734(JP,A) 米国特許4481353(US,A) (58)調査した分野(Int.Cl.7,DB名) C08G 63/00 - 63/91 WPI/L(QUESTEL)──────────────────────────────────────────────────続 き Continuation of the front page (56) References JP-A-59-215319 (JP, A) JP-A-5-177734 (JP, A) US Patent 4,481,353 (US, A) (58) Fields investigated (Int .Cl. 7 , DB name) C08G 63/00-63/91 WPI / L (QUESTEL)

Claims (1)

(57)【特許請求の範囲】(57) [Claims] 【請求項1】 乳酸と50モル%を越えない量の下記
(I)及び(II)が共重合されたポリ乳酸共重合体で
あって、且つ、融点が90℃以上170℃以下の範囲に
あるポリ乳酸共重合体。 (I)炭素数が4以上42以下のジカルボン酸類 (II)炭素数が2以上40以下のグリコール類
1. A polylactic acid copolymer obtained by copolymerizing the following (I) and (II) in an amount not exceeding 50 mol% with lactic acid, and having a melting point in the range of 90 ° C. or more and 170 ° C. or less. Certain polylactic acid copolymers. (I) Dicarboxylic acids having 4 to 42 carbon atoms (II) Glycols having 2 to 40 carbon atoms
JP20518193A 1993-08-19 1993-08-19 Polylactic acid copolymer Expired - Lifetime JP3301505B2 (en)

Priority Applications (6)

Application Number Priority Date Filing Date Title
JP20518193A JP3301505B2 (en) 1993-08-19 1993-08-19 Polylactic acid copolymer
US08/285,552 US5618911A (en) 1993-08-19 1994-08-03 Polymer containing lactic acid as its constituting unit and method for producing the same
CN94115768A CN1051095C (en) 1993-08-19 1994-08-04 Polymer containing lactic acid as its constituting unit and method for producing the same
CN03108626.8A CN1216882C (en) 1993-08-19 1994-08-04 Process for purifying lactide formed through ring-opening polymerization
US08/734,474 US5714618A (en) 1993-08-19 1997-01-09 Polymer containing lactic acid as its constituting unit and method for producing the same
CN99117996.XA CN1129595C (en) 1993-08-19 1999-08-20 Process for preparing cyclodiester used to produce polymer containing structural unit of lactic acid

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP20518193A JP3301505B2 (en) 1993-08-19 1993-08-19 Polylactic acid copolymer

Publications (2)

Publication Number Publication Date
JPH0753685A JPH0753685A (en) 1995-02-28
JP3301505B2 true JP3301505B2 (en) 2002-07-15

Family

ID=16502765

Family Applications (1)

Application Number Title Priority Date Filing Date
JP20518193A Expired - Lifetime JP3301505B2 (en) 1993-08-19 1993-08-19 Polylactic acid copolymer

Country Status (1)

Country Link
JP (1) JP3301505B2 (en)

Families Citing this family (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2997756B2 (en) * 1995-05-19 2000-01-11 工業技術院長 High molecular weight aliphatic polyester copolymer and method for producing the same
AU751267B2 (en) 1997-06-30 2002-08-08 Monsanto Technology Llc Microparticles containing agricultural active ingredients
US6509440B1 (en) * 1998-11-13 2003-01-21 Daicel Chemical Industries, Ltd Aliphatic copolymer, production process, aliphatic polyester resin composition, various uses, coating composition, and agricultural or horticultural particulate composition comprising degradable coating film
US7220469B2 (en) 1998-11-13 2007-05-22 Daicel Chemical Industries, Ltd. Aliphatic copolyester resin, a preparation method, an aliphatic polyester resin composition, uses thereof, a coating composition, a particle-state composition for agriculture and gardening coated by degradable layer
CN102181029A (en) * 2011-01-13 2011-09-14 同济大学 Biodegradable copolymer

Also Published As

Publication number Publication date
JPH0753685A (en) 1995-02-28

Similar Documents

Publication Publication Date Title
EP0428620B1 (en) A method of plasticizing lactide polymers.
FI117440B (en) Biodegradable polymers, process for their preparation and their use for the preparation of biodegradable molds
JP3452582B2 (en) Biodegradable polymer, process for its production and its use for the production of biodegradable shaped bodies
JP3493472B2 (en) Biodegradable, aliphatic polyesteramides that can be processed thermoplastically
US5424346A (en) Biodegradable replacement of crystal polystyrene
US5863991A (en) Biodegradable polymers, the preparation thereof and the use thereof for the production of biodegradable moldings
US5916950A (en) Resin composition and molded articles thereof
EP0675913B1 (en) Thermoplastic biodegradable resins and a process of preparation thereof
KR100342144B1 (en) Biologically Degradable Polymers, Processes for Manufacturing the Same and the Use Thereof for Producing biodergradable Moulded Articles
ES2294428T3 (en) BIODEGRADABLE ALPHATIC POLYESTER COPOLYMERS.
JPH11500157A (en) Biologically degradable polymers, their preparation and their use for the production of biodegradable shaped bodies
KR20010023261A (en) Biodegradable Lactone Copolymers
CN101815741B (en) Method for making copolymers of lactide and a 1:4-3:6 dianhydrohexitol
JP3301505B2 (en) Polylactic acid copolymer
WO2005103111A1 (en) Poly(isosorbid oxalate) resin
JP3287425B2 (en) Polylactic acid having hydroxyl-terminated ester ester and method for producing the same
JP3599533B2 (en) Resin composition and molded product thereof
US7253250B2 (en) Simplified method of producing biodegradable aliphatic polyesters
WO2021201185A1 (en) Biodegradable resin composition and molded body
JP3144231B2 (en) Aliphatic polyester and / or copolymer thereof
JP3374530B2 (en) Method for producing aliphatic polyester copolymer
JP3339600B2 (en) Polylactic acid and / or its copolymer
JP3105018B2 (en) Thermoplastic decomposable polymer composition
JP3144416B2 (en) Aliphatic polyester and / or copolymer thereof
JPH1135680A (en) Biodegradable polylatic acid esteramide and its production