JP3287425B2 - Polylactic acid having hydroxyl-terminated ester ester and method for producing the same - Google Patents

Polylactic acid having hydroxyl-terminated ester ester and method for producing the same

Info

Publication number
JP3287425B2
JP3287425B2 JP01760193A JP1760193A JP3287425B2 JP 3287425 B2 JP3287425 B2 JP 3287425B2 JP 01760193 A JP01760193 A JP 01760193A JP 1760193 A JP1760193 A JP 1760193A JP 3287425 B2 JP3287425 B2 JP 3287425B2
Authority
JP
Japan
Prior art keywords
acid
ester
mol
polymerization
polylactic acid
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP01760193A
Other languages
Japanese (ja)
Other versions
JPH06228287A (en
Inventor
知裕 青山
武 伊藤
邦生 木村
敬一 宇野
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Toyobo Co Ltd
Original Assignee
Toyobo Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Toyobo Co Ltd filed Critical Toyobo Co Ltd
Priority to JP01760193A priority Critical patent/JP3287425B2/en
Publication of JPH06228287A publication Critical patent/JPH06228287A/en
Application granted granted Critical
Publication of JP3287425B2 publication Critical patent/JP3287425B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Description

【発明の詳細な説明】DETAILED DESCRIPTION OF THE INVENTION

【0001】[0001]

【産業上の利用分野】本発明は重合反応生成物、さらに
詳しくは少なくとも約1000の分子量を有し、重合時
に水酸基末端の封鎖された生分解性を有するポリ乳酸、
およびその製造方法に関する。
FIELD OF THE INVENTION The present invention relates to a polymerization reaction product, more particularly a polylactic acid having a molecular weight of at least about 1000 and having a hydroxyl-terminated capped biodegradable during polymerization.
And its manufacturing method.

【0002】[0002]

【従来の技術】ポリ乳酸、ポリグリコール酸に代表され
るα−オキシ酸ポリエステルは、良好な生分解性を有し
ており、手術用縫合糸、注射薬用マイクロカプセル等の
生体分解性医用材料に利用されている。また近年、プラ
スチック廃棄物が問題となり、酵素や微生物による分解
が期待される生分解性プラスチックとしても注目され、
研究開発が進められている。
2. Description of the Related Art α-Hydroxy acid polyesters represented by polylactic acid and polyglycolic acid have good biodegradability and are used as biodegradable medical materials such as surgical sutures and microcapsules for injections. It's being used. In recent years, plastic waste has become a problem, and has attracted attention as a biodegradable plastic that is expected to be decomposed by enzymes and microorganisms.
R & D is underway.

【0003】前記ポリ乳酸の高分子量体を得る方法とし
て、従来より、下記式(II)で示される乳酸の環状二量
体であるラクチドを触媒存在下に加熱、開環重合する方
法が知られている。しかし得られた前記ポリ乳酸は、融
解温度(180℃)よりわずかに高い温度において比較
的容易に熱分解するため、溶融成形時に問題となる。
As a method for obtaining the high molecular weight polylactic acid, a method has conventionally been known in which lactide which is a cyclic dimer of lactic acid represented by the following formula (II) is heated and ring-opening-polymerized in the presence of a catalyst. ing. However, the obtained polylactic acid is relatively easily thermally decomposed at a temperature slightly higher than the melting temperature (180 ° C.), and thus poses a problem during melt molding.

【0004】[0004]

【化2】 そこで、同様なα−オキシ酸ポリエステルであるポリグ
リコール酸やグリコール酸と乳酸の共重合体において
は、それらの熱安定性を向上するために、得られたポリ
エステルを粉末もしくは粒状とし、適当なアセチル化剤
と0〜200℃で反応させることによる末端水酸基のア
セチル化が開示されている(特開昭56−15742
2)。
Embedded image Therefore, in the case of polyglycolic acid or a copolymer of glycolic acid and lactic acid, which is a similar α-oxy acid polyester, in order to improve their thermal stability, the obtained polyester is powdered or granulated, and a suitable acetyl is added. Acetylation of terminal hydroxyl groups by reacting with an agent at 0 to 200 ° C. is disclosed (JP-A-56-15742).
2).

【0005】[0005]

【発明が解決しようとする課題】しかし前記の方法では
通常の開環重合の後、さらに煩雑なアセチル化工程が要
求され工業的に好ましいものではない。また、前記ポリ
乳酸を開環重合して得る際に重合度の上昇が急激である
ため、任意に適当な分子量を有するポリエステルを得る
ことは困難である。かかる理由により熱安定性が良好で
あり、さらに製造上容易に任意の分子量に調節しうるポ
リ乳酸を、開環重合時に得ることが要望されている。
However, the above-mentioned method is not industrially preferable because a more complicated acetylation step is required after the ordinary ring-opening polymerization. Further, when the polylactic acid is obtained by ring-opening polymerization, the degree of polymerization is sharply increased, so that it is difficult to arbitrarily obtain a polyester having an appropriate molecular weight. For this reason, there is a demand for obtaining a polylactic acid which has good thermal stability and can be easily adjusted to an arbitrary molecular weight in production at the time of ring-opening polymerization.

【0006】[0006]

【問題を解決するための手段】そこで本発明者らは、ラ
クチドを開環重合させる際に熱安定性の良好な前記ポリ
乳酸を得るべく鋭意検討を重ねた結果、開環重合時に脂
肪族カルボン酸を目的の分子量に応じて適当量添加する
ことで良好な熱安定性を有し、しかも重合の際重合度の
上昇が緩慢になるため容易に任意の分子量に調節しうる
ポリ乳酸が得られることを見いだし、ついに本発明を完
成するに到った。
The inventors of the present invention have conducted intensive studies to obtain the above-mentioned polylactic acid having good thermal stability when lactide is subjected to ring-opening polymerization. By adding an acid in an appropriate amount according to the target molecular weight, it is possible to obtain polylactic acid which has good thermal stability, and can be easily adjusted to an arbitrary molecular weight because the degree of polymerization increases slowly during polymerization. Finally, the present invention has been completed.

【0007】即ち本発明は、式(I)で示される水酸基
末端をエステル封鎖したポリ乳酸、
That is, the present invention provides a polylactic acid represented by the formula (I), wherein the hydroxyl terminal is ester-blocked.

【0008】[0008]

【化2】 (式(I)中、nは10以上の整数、Xは炭素数1〜5
0のアルキル基および/または炭素数1〜50の1カル
ボキシアルキル基を示す。)である。
Embedded image (In the formula (I), n is an integer of 10 or more, and X is 1 to 5 carbon atoms.
0 represents an alkyl group and / or 1 carboxyalkyl group having 1 to 50 carbon atoms. ).

【0009】本発明において使用する炭素数2〜51の
脂肪族カルボン酸はモノ、ジカルボン酸のいずれでもよ
く、また飽和、もしくは不飽和であってもかまわない。
具体的には、酢酸、プロピオン酸、酪酸、吉草酸、カプ
ロン酸、カプリル酸、ペラルゴン酸、ラウリン酸、ミリ
スチン酸、パルミチン酸、ステアリン酸、アラキジン
酸、ベヘン酸、リノール酸、オレイン酸、コハク酸、ア
ジピン酸、スベリン酸、アゼライン酸、セバシン酸、ウ
ンデカン二酸、ドデカン二酸、ダイマー酸、フマル酸等
が使用できる。また、これらの酸無水物を加えても一向
に構わない。これらのカルボン酸は1種、または複数を
併用してもよい。特にステアリン酸、パルミチン酸、ミ
リスチン酸、リノール酸、オレイン酸は着香料、乳化
剤、ビタミン強化剤、またフマル酸、コハク酸、アジピ
ン酸は調味料、酸味料もしくはそれらの原料として食品
添加物にも挙げられており、安全性が確認されているの
で好ましいカルボン酸である。さらに好ましくは、製パ
ン用助剤として用いられるステアリル乳酸カルシウムの
原料であるステアリン酸が挙げられる。
The aliphatic carboxylic acid having 2 to 51 carbon atoms used in the present invention may be a mono- or dicarboxylic acid, and may be saturated or unsaturated.
Specifically, acetic acid, propionic acid, butyric acid, valeric acid, caproic acid, caprylic acid, pelargonic acid, lauric acid, myristic acid, palmitic acid, stearic acid, arachidic acid, behenic acid, linoleic acid, oleic acid, succinic acid , Adipic acid, suberic acid, azelaic acid, sebacic acid, undecandioic acid, dodecandioic acid, dimer acid, fumaric acid and the like can be used. Further, it does not matter even if these acid anhydrides are added. One or more of these carboxylic acids may be used in combination. In particular, stearic acid, palmitic acid, myristic acid, linoleic acid, and oleic acid are flavoring agents, emulsifiers, vitamin fortifiers, and fumaric acid, succinic acid, and adipic acid are seasonings, acidulants, and food additives as their raw materials. It is a preferred carboxylic acid because its safety has been confirmed. More preferably, stearic acid, which is a raw material of calcium stearyl lactate used as an auxiliary for baking, is exemplified.

【0010】これらをラクチドに添加する場合、そのま
まの状態(液体、固体)でもよく、適当な溶媒に溶解し
ておいてもかまわない。ただし溶媒を用いた場合は、反
応前もしくは反応中に溶媒を容易に留去できるのが望ま
しい。
When these are added to lactide, they may be used as they are (liquid or solid) or may be dissolved in an appropriate solvent. However, when a solvent is used, it is desirable that the solvent can be easily distilled off before or during the reaction.

【0011】これらの脂肪族モノ、ジカルボン酸は、用
いられる酸の種類などの条件により若干の相違はある
が、モノマーであるラクチドに対し0.001〜5モル
%の割合で用いられる。なかでも0.02モル%以上、
1モル%以下が好ましく、さらには0.05〜0.6モ
ル%用いるのが特に好ましい。使用量が0.001モル
%未満であると熱安定性向上の効果が少なくなり、また
任意に分子量を調節することも困難である。また使用量
が5モル%より多くなると、カルボン酸が過剰の末端停
止剤として働き、重合を抑制する為に実用上必要な重合
度まで高めることが困難である。この所定範囲内で用途
に合わせて適宜選択する。
These aliphatic mono- and dicarboxylic acids are used in a proportion of 0.001 to 5 mol% with respect to the monomer lactide, although there are some differences depending on conditions such as the kind of acid used. Among them, 0.02 mol% or more,
It is preferably at most 1 mol%, more preferably 0.05 to 0.6 mol%. When the amount is less than 0.001 mol%, the effect of improving the thermal stability is reduced, and it is difficult to arbitrarily control the molecular weight. If the amount is more than 5 mol%, the carboxylic acid acts as an excessive terminal terminator, and it is difficult to increase the degree of polymerization to a practically necessary degree for suppressing polymerization. It is appropriately selected within this predetermined range according to the application.

【0012】また重合には一般に触媒が用いられるが、
これにはラクチドの重合に通常用いられる公知の触媒、
たとえばスズ、アンチモン、亜鉛、鉛、チタン、鉄、ア
ルミニウム化合物等が好適に使用できる。これらの触媒
は1種、または複数を併用してもよい。この中でも特に
FDA(アメリカ食品薬品管理局)によって認可されて
いるオクチル酸第一スズが好ましい。またオクチル酸亜
鉛も毒性が低く好ましい触媒である。
A catalyst is generally used for the polymerization.
This includes known catalysts commonly used for lactide polymerization,
For example, tin, antimony, zinc, lead, titanium, iron, aluminum compounds and the like can be suitably used. One or more of these catalysts may be used in combination. Of these, stannous octylate, which is approved by the FDA (American Food and Drug Administration), is particularly preferred. Zinc octylate is also a preferred catalyst with low toxicity.

【0013】本発明において用いられるラクチドは、L
−ラクチド、D−ラクチド、DL−ラクチド、メソラク
チドのいずれでもよい。これらは通常の精製操作、すな
わち再結晶、精留、昇華などによって、十分に精製され
た物を用いるのが望ましい。反応は窒素、アルゴン等の
不活性雰囲気、あるいは減圧、もしくは加圧下で行なっ
てもよく、その際、逐次、触媒、カルボン酸を添加して
もかまわない。
The lactide used in the present invention is L
-Lactide, D-lactide, DL-lactide, meso-lactide may be used. It is desirable to use those which are sufficiently purified by ordinary purification operations, that is, recrystallization, rectification, sublimation and the like. The reaction may be carried out in an inert atmosphere such as nitrogen or argon, or under reduced pressure or increased pressure. At that time, a catalyst and a carboxylic acid may be added sequentially.

【0014】このようにして開環重合終了後に得られた
ポリ乳酸は任意の分子量を有しており、熱安定性が向上
しているため溶融成形が容易になるため、種々の生分解
性成形物を製造することが可能である。さらに熱安定性
の向上、機械特性、分解特性を制御するために、エポキ
シ化合物やアルコール等を用いてカルボキシル基末端を
封鎖しても一向に差し支えない。また必要に応じて、顔
料、酸化防止剤、劣化防止剤、可塑剤、艶消剤、帯電防
止剤、蛍光増白剤、紫外線吸収剤などの添加剤を加えて
も一向に差し支えない。
The polylactic acid thus obtained after the completion of the ring-opening polymerization has an arbitrary molecular weight, and has improved thermal stability to facilitate melt molding. It is possible to manufacture things. Further, in order to improve the thermal stability and control the mechanical properties and the decomposition properties, the terminal of the carboxyl group may be blocked with an epoxy compound, alcohol, or the like. If necessary, additives such as pigments, antioxidants, anti-deterioration agents, plasticizers, matting agents, antistatic agents, fluorescent brighteners, and ultraviolet absorbers may be added.

【0015】本発明におけるポリ乳酸は、溶融、溶液状
態から、繊維、フィルム、種々の成形品に成形加工する
ことが可能であり、生分解性材料として有用である。具
体的な用途として繊維では釣り糸、魚網、不織布等、フ
ィルムでは包装用フィルム農業用マルチフィルム、ショ
ッピングバック、テープ類、肥料袋、分離膜等、成型品
では飲料や化粧品類のボトル、ディスポーザブルカッ
プ、トレイ等の容器類、農業用植木鉢、育苗床、掘り出
し不要のパイプ、仮止め材等の建材が考えられる。さら
に医療用途として、縫合糸、人工骨、人工皮膚、マイク
ロカプセルなどのDDS分野への応用等が考えられる
が、これらに限定されるものではない。
The polylactic acid in the present invention can be formed into a fiber, a film, or various molded products from a molten or solution state, and is useful as a biodegradable material. Specific uses include fishing line, fish net, non-woven fabric, etc. for fibers, films for packaging, multi-film for agriculture, shopping bags, tapes, fertilizer bags, separation membranes, etc. for films, bottles for beverages and cosmetics for molded products, disposable cups, Containers such as trays, agricultural flower pots, nursery beds, pipes that do not need to be dug out, and building materials such as temporary fixing materials are conceivable. Further, as medical applications, applications to the DDS field such as sutures, artificial bones, artificial skins, microcapsules, and the like can be considered, but the present invention is not limited thereto.

【0016】なお、本発明において、機械特性、分解特
性を種々変化させるために、他の脂肪族ポリエステル形
成物、すなわち酸成分としてコハク酸、アジピン酸、セ
バシン酸等、グリコール成分としてエチレングリコー
ル、1,4−ブタンジオール等またはε−カプロラクト
ンなどとの混合、共重合化をはかることも可能である。
In the present invention, in order to change various mechanical properties and decomposition properties, other aliphatic polyester-forming products, that is, succinic acid, adipic acid, sebacic acid and the like as an acid component, ethylene glycol and a glycol component as a glycol component, etc. , 4-butanediol or the like, or ε-caprolactone, or the like, can be mixed and copolymerized.

【0017】[0017]

【実施例】本発明をさらに具体的に説明するために以下
に実施例を述べるが、本発明はこれらに限定されるもの
ではない。なお実施例における特性値は以下の方法によ
って測定した。
EXAMPLES The present invention will be described in more detail with reference to the following Examples, but it should not be construed that the invention is limited thereto. The characteristic values in the examples were measured by the following methods.

【0018】(1)粘度平均分子量 ポリマー0.125gをクロロホルムに溶解し、25±
0.1℃で測定して還元粘度を算出した。これから固有
粘度を求め、公知であるポリL−乳酸の粘度式 [η]=5.45×10-4・Mv0.73 に代入して粘度平均分子量(Mv)を算出した。
(1) Viscosity average molecular weight 0.125 g of polymer was dissolved in chloroform,
Measured at 0.1 ° C. to calculate the reduced viscosity. From this, the intrinsic viscosity was determined, and the viscosity average molecular weight (Mv) was calculated by substituting into the known viscosity formula of poly L-lactic acid [η] = 5.45 × 10 −4 · Mv 0.73 .

【0019】(2)10%重量減少温度 島津製作所製TGA−50を用いて、アルゴン雰囲気
下、昇温速度10℃/分で測定し、熱安定性を評価し
た。
(2) 10% Weight Loss Temperature The thermal stability was evaluated using a TGA-50 manufactured by Shimadzu Corporation in an argon atmosphere at a heating rate of 10 ° C./min.

【0020】(3)融点 島津製作所製DSC−50を用いて、アルゴン雰囲気
下、昇降温速度10℃/分で測定した。
(3) Melting point The melting point was measured at a temperature rising / falling rate of 10 ° C./min in an argon atmosphere using a DSC-50 manufactured by Shimadzu Corporation.

【0021】実施例1 L−ラクチド10.0g(6.94×10-2モル)、ス
テアリン酸57mg(2.00×10-4モル)、オクチ
ル酸第一スズ3mg(7.4×10-6モル)のトルエン
溶液を攪拌装置、窒素導入管を備えた重合管に装入し、
2hr真空乾燥、窒素置換を行なった後、窒素雰囲気下
に200℃に加熱し、開環重合した。重合度は緩やかに
上昇した。1hrで反応を終了して得られたポリマーを
クロロホルム60mlに溶解し、メタノール400ml
に注いで再沈澱させた。得られた白色粉末はメタノー
ル、エーテルで順次洗浄した後、60℃で真空乾燥し
た。このポリマーはMv =3.24×104 を有してお
り、TGAによる10%重量減少温度は321℃であ
り、融点は177℃であった。このものを重クロロホル
ムに溶解して 1H−NMRスペクトルを測定したとこ
ろ、末端ステアリル基に起因するピーク(1.23pp
m)を確認した。
[0021] Example 1 L-lactide 10.0g (6.94 × 10 -2 mol), 57 mg of stearic acid (2.00 × 10 -4 mol), octyl stannous 3mg (7.4 × 10 - 6 mol) of a toluene solution was charged into a polymerization tube equipped with a stirrer and a nitrogen inlet tube,
After vacuum drying for 2 hours and purging with nitrogen, the mixture was heated to 200 ° C. in a nitrogen atmosphere to effect ring-opening polymerization. The degree of polymerization increased slowly. The polymer obtained by terminating the reaction for 1 hour was dissolved in 60 ml of chloroform, and 400 ml of methanol was dissolved.
And reprecipitated. The obtained white powder was sequentially washed with methanol and ether, and then dried at 60 ° C. in vacuo. The polymer had a Mv = 3.24 × 10 4 , a TGA 10% weight loss temperature of 321 ° C. and a melting point of 177 ° C. This was dissolved in deuterated chloroform and the 1 H-NMR spectrum was measured. The peak (1.23 pp) attributed to the terminal stearyl group was obtained.
m) was confirmed.

【0022】比較例1 L−ラクチド10.0g(6.94×10-2モル)をス
テアリン酸を添加しない以外は実施例1と同様に重合し
たところ、重合度の上昇が急激であり、任意の分子量の
ものを得ることは困難であった。1hrで反応を終了し
て得られたポリマーを実施例1と同様に後処理した結
果、Mv =6.71×104 を有するポリマーを得た。
融点は181℃であり、TGAによる10%重量減少温
度は283℃であった。
COMPARATIVE EXAMPLE 1 10.0 g (6.94 × 10 −2 mol) of L-lactide was polymerized in the same manner as in Example 1 except that stearic acid was not added. It was difficult to obtain those having a molecular weight of The polymer obtained after the reaction was completed for 1 hour was subjected to post-treatment in the same manner as in Example 1 to obtain a polymer having Mv = 6.71 × 10 4 .
The melting point was 181 ° C and the 10% weight loss temperature by TGA was 283 ° C.

【0023】実施例2 L−ラクチド10.0g(6.94×10-2モル)、ス
テアリン酸114mg(4.00×10-4モル)とした
ほかは実施例1と同様に重合した。重合度は緩やかに上
昇した。同様に後処理して得られたポリマーはMv =
1.96×104を有しており、TGAによる10%重
量減少温度は310℃であり、融点は176℃であっ
た。
Example 2 Polymerization was carried out in the same manner as in Example 1 except that 10.0 g (6.94 × 10 −2 mol) of L-lactide and 114 mg (4.00 × 10 −4 mol) of stearic acid were used. The degree of polymerization increased slowly. Similarly, the polymer obtained by post-treatment has Mv =
It had 1.96 × 10 4 , the 10% weight loss temperature by TGA was 310 ° C., and the melting point was 176 ° C.

【0024】実施例3 L−ラクチド10.0g(6.94×10-2モル)、ス
テアリン酸14mg(5.0×10-5モル)としたほか
は実施例1と同様に重合、後処理した。得られたポリマ
ーはMv =4.78×104 を有しており、TGAによ
る10%重量減少温度は315℃であり、融点は180
℃であった。
Example 3 Polymerization and post-treatment in the same manner as in Example 1 except that 10.0 g (6.94 × 10 −2 mol) of L-lactide and 14 mg (5.0 × 10 −5 mol) of stearic acid were used. did. The resulting polymer has Mv = 4.78 × 10 4 , a 10% weight loss temperature by TGA of 315 ° C. and a melting point of 180
° C.

【0025】実施例4 L−ラクチド10.0g(6.94×10-2モル)、パ
ルミチン酸52mg(2.00×10-4モル)としたほ
かは実施例1と同様に重合、後処理した。得られたポリ
マーはMv =3.66×104 を有しており、TGAに
よる10%重量減少温度は、319℃であり、融点は1
78℃であった。
Example 4 Polymerization and post-treatment were conducted in the same manner as in Example 1 except that 10.0 g (6.94 × 10 −2 mol) of L-lactide and 52 mg (2.00 × 10 −4 mol) of palmitic acid were used. did. The resulting polymer has a Mv = 3.66 × 10 4 , a 10% weight loss temperature by TGA of 319 ° C. and a melting point of 1
78 ° C.

【0026】実施例5 L−ラクチド10.0g(6.94×10-2モル)、ミ
リスチン酸46mg(2.00×10-4モル)としたほ
かは実施例1と同様に重合、後処理した。得られたポリ
マーはMv =3.70×104 を有しており、TGAに
よる10%重量減少温度は317℃であり、融点は17
8℃であった。
Example 5 Polymerization and post-treatment were performed in the same manner as in Example 1 except that 10.0 g (6.94 × 10 −2 mol) of L-lactide and 46 mg (2.00 × 10 −4 mol) of myristic acid were used. did. The resulting polymer has Mv = 3.70 × 10 4 , a 10% weight loss temperature by TGA of 317 ° C. and a melting point of 17
8 ° C.

【0027】実施例6 L−ラクチド10.0g(6.94×10-2モル)、ア
ジピン酸15mg(1.00×10-4モル)としたほか
は実施例1と同様に重合、後処理した。得られたポリマ
ーはMv =3.02×104 を有しており、TGAによ
る10%重量減少温度は310℃であり、融点は177
℃であった。
Example 6 Polymerization and post-treatment were carried out in the same manner as in Example 1 except that 10.0 g (6.94 × 10 −2 mol) of L-lactide and 15 mg (1.00 × 10 −4 mol) of adipic acid were used. did. The resulting polymer has Mv = 3.02 × 10 4 , has a 10% weight loss temperature by TGA of 310 ° C. and a melting point of 177.
° C.

【0028】実施例7 ステアリン酸で水酸基末端をエステル封鎖したポリマー
(Mv =3.31×104 )と封鎖していないポリマー
(Mv =3.37×104 )を、窒素雰囲気下に200
℃、1hr、それぞれ加熱してMv 保持率を比較したと
ころ、エステル封鎖したポリマーのMv保持率は94%
であったが封鎖していないポリマーのMv保持率は65
%にすぎなかった。
Example 7 A polymer (Mv = 3.31 × 10 4 ) in which the hydroxyl terminal was ester-blocked with stearic acid and a polymer (Mv = 3.37 × 10 4 ) which had not been blocked were mixed under nitrogen atmosphere for 200 minutes.
When the Mv retention was compared by heating each at 1 ° C. for 1 hour, the Mv retention of the ester-sealed polymer was 94%.
But the unblocked polymer had an Mv retention of 65
It was only%.

【0029】[0029]

【発明の効果】以上の実施例からも明らかなように、本
発明におけるポリ乳酸は任意の分子量に調節でき、かつ
良好な熱安定性を有するため溶融成形が容易であり、比
較的簡便な方法で製造することができる。得られたポリ
乳酸からは種々の生分解性成形物を製造することがで
き、広範な用途が期待できるので、産業界または環境問
題の解決にも寄与するところが非常に大きい。
As is clear from the above examples, the polylactic acid in the present invention can be adjusted to an arbitrary molecular weight and has good thermal stability, so that melt molding is easy and a relatively simple method. Can be manufactured. From the obtained polylactic acid, various biodegradable molded products can be produced, and a wide range of applications can be expected. Therefore, they greatly contribute to solving the industry or environmental problems.

───────────────────────────────────────────────────── フロントページの続き (56)参考文献 特開 平6−16792(JP,A) 特開 平6−228289(JP,A) (58)調査した分野(Int.Cl.7,DB名) C08G 63/00 - 63/91 ────────────────────────────────────────────────── ─── Continuation of the front page (56) References JP-A-6-16792 (JP, A) JP-A-6-228289 (JP, A) (58) Fields investigated (Int. Cl. 7 , DB name) C08G 63/00-63/91

Claims (1)

(57)【特許請求の範囲】(57) [Claims] 【請求項1】 式(I)で示される水酸基末端をエステ
ル封鎖したポリ乳酸。 【化1】 (式(I)中、nは10以上の整数、Xは炭素数1〜5
0のアルキル基および/または炭素数1〜50の1−カ
ルボキシアルキル基を示す。)
1. A polylactic acid represented by the formula (I), wherein the hydroxyl terminal is ester-blocked. Embedded image (In the formula (I), n is an integer of 10 or more, and X is 1 to 5 carbon atoms.
0 represents an alkyl group and / or a 1-carboxyalkyl group having 1 to 50 carbon atoms. )
JP01760193A 1993-02-04 1993-02-04 Polylactic acid having hydroxyl-terminated ester ester and method for producing the same Expired - Fee Related JP3287425B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP01760193A JP3287425B2 (en) 1993-02-04 1993-02-04 Polylactic acid having hydroxyl-terminated ester ester and method for producing the same

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP01760193A JP3287425B2 (en) 1993-02-04 1993-02-04 Polylactic acid having hydroxyl-terminated ester ester and method for producing the same

Publications (2)

Publication Number Publication Date
JPH06228287A JPH06228287A (en) 1994-08-16
JP3287425B2 true JP3287425B2 (en) 2002-06-04

Family

ID=11948411

Family Applications (1)

Application Number Title Priority Date Filing Date
JP01760193A Expired - Fee Related JP3287425B2 (en) 1993-02-04 1993-02-04 Polylactic acid having hydroxyl-terminated ester ester and method for producing the same

Country Status (1)

Country Link
JP (1) JP3287425B2 (en)

Families Citing this family (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP3287426B2 (en) * 1993-02-04 2002-06-04 東洋紡績株式会社 Method for producing aliphatic polyester
JPH0959218A (en) * 1995-08-25 1997-03-04 Shimadzu Corp L-lactic acid oligomer derivative
JP2002265420A (en) * 2001-03-13 2002-09-18 Tendou Seiyaku Kk Linear oligolactic acid ester
KR101224004B1 (en) * 2009-12-29 2013-01-22 주식회사 삼양바이오팜 A polymer for protein, polypeptide or peptide drug delivery and a method for preparing the same, and a composition for sustained release of protein, polypeptide or peptide drug and a method for preparing the same
US8383851B2 (en) * 2010-09-15 2013-02-26 Caravan Ingredients Inc. Lactylate synthesis methods using dilactides
US20140275439A1 (en) * 2011-10-21 2014-09-18 National Institute Of Advanced Industrial Science And Technology Biodegradable polymer with controlled biodegradability
CN106146817B (en) * 2015-04-21 2019-04-05 上海浦景化工新材料有限公司 Hydroxy alkanoic acid zinc polyester catalyst, the application of preparation method and the catalyst
WO2017033613A1 (en) * 2015-08-21 2017-03-02 国立大学法人奈良先端科学技術大学院大学 Poly(lactic acid) derivative, method for producing same, and poly(lactic acid)-based stereocomplex

Also Published As

Publication number Publication date
JPH06228287A (en) 1994-08-16

Similar Documents

Publication Publication Date Title
US5618911A (en) Polymer containing lactic acid as its constituting unit and method for producing the same
JP2002539309A (en) A simple method for producing biodegradable aliphatic polyesters
CN1927911A (en) Preparation method of biodegradation polylactic acid based multicomponent block polymer
US6096855A (en) Process for the preparation of polyhydroxy acids
JP3287425B2 (en) Polylactic acid having hydroxyl-terminated ester ester and method for producing the same
JP3319553B2 (en) Polylactic acid based resin composition
JP3387052B2 (en) Biodegradable polyester resin composition and its use
JP3367577B2 (en) Acid-blocked polylactic acid
JP3287426B2 (en) Method for producing aliphatic polyester
JP3339601B2 (en) Polylactic acid based polyester block copolymer
JP2005041980A (en) Plasticizer for resin and resin composition containing the plasticizer, and molded form obtained by molding the resin composition
JP3353853B2 (en) Polylactic acid having ester-blocked substantially all terminal hydroxyl groups and process for producing the same
JPH11302374A (en) Polylactic acid block copolymer having amide bond
JP3339600B2 (en) Polylactic acid and / or its copolymer
JP3248597B2 (en) Method for producing aliphatic polyester
JP3520609B2 (en) Method for producing aliphatic polyester
JP3144231B2 (en) Aliphatic polyester and / or copolymer thereof
JP3765156B2 (en) POLYLACTIC ACID COMPOSITION, PROCESS FOR PRODUCING THE SAME, AND MOLDED ARTICLE OF THE COMPOSITION
JPH10287735A (en) Polylactic acid composition, production thereof, and molded article prepared therefrom
JP3301505B2 (en) Polylactic acid copolymer
JP3374530B2 (en) Method for producing aliphatic polyester copolymer
JP3144416B2 (en) Aliphatic polyester and / or copolymer thereof
JPH01225622A (en) Block copolymer and manufacture thereof
JP2003137983A (en) Polylactic acid
JPH0616790A (en) Aliphatic polyester and its production

Legal Events

Date Code Title Description
FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20080315

Year of fee payment: 6

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090315

Year of fee payment: 7

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090315

Year of fee payment: 7

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100315

Year of fee payment: 8

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100315

Year of fee payment: 8

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110315

Year of fee payment: 9

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110315

Year of fee payment: 9

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120315

Year of fee payment: 10

LAPS Cancellation because of no payment of annual fees