JP3297650B2 - Semiconductor processing equipment - Google Patents

Semiconductor processing equipment

Info

Publication number
JP3297650B2
JP3297650B2 JP11593299A JP11593299A JP3297650B2 JP 3297650 B2 JP3297650 B2 JP 3297650B2 JP 11593299 A JP11593299 A JP 11593299A JP 11593299 A JP11593299 A JP 11593299A JP 3297650 B2 JP3297650 B2 JP 3297650B2
Authority
JP
Japan
Prior art keywords
processing
transmitted light
light intensity
concentration
cleaning
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP11593299A
Other languages
Japanese (ja)
Other versions
JPH11340186A (en
Inventor
誠一郎 佐藤
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Screen Holdings Co Ltd
Dainippon Screen Manufacturing Co Ltd
Original Assignee
Screen Holdings Co Ltd
Dainippon Screen Manufacturing Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Screen Holdings Co Ltd, Dainippon Screen Manufacturing Co Ltd filed Critical Screen Holdings Co Ltd
Priority to JP11593299A priority Critical patent/JP3297650B2/en
Publication of JPH11340186A publication Critical patent/JPH11340186A/en
Application granted granted Critical
Publication of JP3297650B2 publication Critical patent/JP3297650B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Description

【発明の詳細な説明】DETAILED DESCRIPTION OF THE INVENTION

【0001】[0001]

【産業上の利用分野】本発明は、複数種の処理液の供給
を受けて処理を行なう処理部を備える半導体処理処理装
置に関し、特に、処理部へ供給される処理液の濃度を、
複数種の処理液に対して濃度測定できるようにした半導
体処理装置に関する。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a semiconductor processing apparatus having a processing section for performing processing by receiving a plurality of types of processing liquids.
The present invention relates to a semiconductor processing apparatus capable of measuring the concentration of a plurality of types of processing liquids.

【0002】[0002]

【従来の技術】この半導体処理装置では、半導体ウェハ
を洗浄するための処理槽の下部に連通接続される洗浄液
供給管に、薬液としてアンモニア(NH3)、過酸化水
素(H22)、フッ酸(HF)と塩酸(HCl)等とイ
オンを脱した水である純水とが、所定の比率で混合調製
されて洗浄液として供給される。この洗浄液供給管の途
中には、管内を流れる洗浄液に光を照射し、透過した光
の所定波長における強度(透過光強度)を測定するため
の透過光測定用光学部が配設される。この光学部は、光
源と、管内の洗浄液に前記光源の光を照射・透過させる
ための間隙をもつ光透過部(以下、セル部と称する)を
備えたフローセルと、前記セル部を透過した光の強度を
検出する光検出器からなる光検出部とから構成される。
2. Description of the Related Art In this semiconductor processing apparatus, ammonia (NH 3 ), hydrogen peroxide (H 2 O 2 ) and ammonia (H 2 O 2 ) as chemicals are supplied to a cleaning liquid supply pipe connected to a lower part of a processing tank for cleaning a semiconductor wafer. Hydrofluoric acid (HF), hydrochloric acid (HCl), etc., and pure water, which is water from which ions have been removed, are mixed and prepared at a predetermined ratio and supplied as a cleaning liquid. An optical part for transmitted light measurement for irradiating the cleaning liquid flowing in the pipe with light and measuring the intensity of transmitted light at a predetermined wavelength (transmitted light intensity) is provided in the middle of the cleaning liquid supply pipe. The optical unit includes a light source, a flow cell including a light transmitting unit (hereinafter, referred to as a cell unit) having a gap for irradiating and transmitting the light of the light source to the cleaning liquid in the tube, and a light transmitted through the cell unit. And a photodetector comprising a photodetector for detecting the intensity of the light.

【0003】上記のような構成の半導体洗浄装置におい
て洗浄液の濃度を測定するには、以下の方法がある。
The following method is used to measure the concentration of the cleaning liquid in the semiconductor cleaning apparatus having the above configuration.

【0004】第1の方法は、フローセルへ入射する所定
波長の光の強度(入射光強度I0)と、洗浄液供給管を
流れる洗浄液の透過光強度Imを測定し、ランベルト−
ベールの法則(Lambert-Beer'sLaw)に基づいて、洗浄
液の濃度を算出する。具体的には、測定された入射光強
度I0と洗浄液の透過光強度Imとを下記(1)式に代入
する。ただし、式中における記号kは、洗浄液が光を吸
収する度合いを表す各洗浄液固有の吸光係数(/mm・
%)、記号dは、流体を透過する光の強度を測定するフ
ローセルに設けられたセル部の長さ、すなわち透過光の
光路長(mm)、記号cは、洗浄液の濃度(%)であ
る。 c=−1/kd・ln(Im/I0) ・・・・・ (1)
The first method is to measure the light intensity of a predetermined wavelength incident on the flow cell (incident light intensity I 0), the transmitted light intensity I m of the cleaning liquid flowing through the cleaning liquid supply pipe, Lambert -
The concentration of the cleaning solution is calculated based on Beer's law (Lambert-Beer's Law). Specifically, substituting the transmitted light intensity I m of the measured incident light intensity I 0 and the washing solution in the following equation (1). Here, the symbol k in the formula is the extinction coefficient (/ mm ·) specific to each cleaning solution, which represents the degree to which the cleaning solution absorbs light.
%), Symbol d is the length of the cell portion provided in the flow cell for measuring the intensity of light transmitted through the fluid, that is, the optical path length of transmitted light (mm), and symbol c is the concentration (%) of the cleaning liquid. . c = −1 / kd · ln (I m / I 0 ) (1)

【0005】第2の方法は、半導体洗浄装置で半導体ウ
ェハを洗浄してないときに、洗浄液供給管を流れる純水
の透過光強度ICを予め測定しておく。次に、半導体ウ
ェハを洗浄しているときに、洗浄液供給管を流れる洗浄
液の透過光強度Imを測定し、ランベルト−ベールの法
則に基づき、すなわち、測定された純水の透過光強度I
Cと洗浄液の透過光強度Imとを下記(2)式に代入する
ことによって、洗浄液の濃度を算出する。 c=−1/k’d・ln(Im/Ic) ・・・・・ (2) ただし、記号k’は、互いに等しい光路長のセル部にお
いて、光が純水を透過したときの光強度に対して定義さ
れた各洗浄液固有の吸光係数である。
[0005] The second method, when not cleaning a semiconductor wafer in semiconductor cleaning device, measured in advance transmitted light intensity I C of the pure water flowing through the cleaning liquid supply pipe. Then, when you are washing the semiconductor wafer, measuring the transmitted light intensity I m of the cleaning liquid flowing through the cleaning liquid supply pipe, Lambert - based on Beer's law, i.e., the transmitted light intensity I of pure water measured
By substituting the transmitted light intensity I m C and the cleaning solution to the following equation (2) to calculate the concentration of the cleaning liquid. c = −1 / k′d · ln (I m / I c ) (2) where k ′ is a value when light passes through pure water in cell portions having the same optical path length. It is the extinction coefficient specific to each washing solution defined for the light intensity.

【0006】[0006]

【発明が解決しようとする課題】しかしながら、上述し
た方法で濃度測定する従来装置には、次のような問題点
がある。第1の方法と第2の方法のいずれの方法で濃度
測定するにせよ、洗浄液の種類ごとに吸光係数(第1の
方法では洗浄液が光を吸収する度合いを表す各洗浄液固
有の吸光係数k、第2の方法では互いに等しい光路長に
て純水を透過したときの光強度に対して定義された各洗
浄液固有の吸光係数k’)が違うので、各種の洗浄液の
薬液供給部ごとに、個々の洗浄液に専用の濃度測定装置
を設けているので、部品点数が増え、装置の価格が増大
する要因になっていた。
However, the conventional apparatus for measuring the concentration by the above-described method has the following problems. Regardless of whether the concentration is measured by the first method or the second method, the extinction coefficient (the extinction coefficient k, which represents the degree to which the washing liquid absorbs light in the first method) In the second method, the extinction coefficient k ′) unique to each cleaning solution defined with respect to the light intensity when passing through pure water with the same optical path length is different. Since a dedicated concentration measuring device is provided for the cleaning liquid, the number of parts increases, which is a factor of increasing the price of the device.

【0007】本発明は、このような事情に鑑みてなされ
たものであって、複数種の処理液の供給を受けて処理を
行なう半導体処理装置にて、複数種の処理液の濃度を測
定するにつけ、従来よりも、部品点数を少なく、装置価
格も軽減化できるようにした半導体処理装置を提供する
ことを目的とする。
The present invention has been made in view of such circumstances, and measures the concentrations of a plurality of types of processing solutions in a semiconductor processing apparatus that performs processing by supplying a plurality of types of processing solutions. In addition, an object of the present invention is to provide a semiconductor processing apparatus capable of reducing the number of parts and reducing the cost of the apparatus as compared with the related art.

【0008】[0008]

【課題を解決するための手段】本発明は、このような目
的を達成するために、次のような構成をとる。すなわ
ち、複数種の薬液タンクを有し、複数種の処理液を供給
する薬液供給部と、複数種の処理液により処理を行なう
処理部と、薬液供給部から供給される処理液を前記処理
部へ供給する処理液供給管とを備える半導体処理装置に
おいて、前記複数種の薬液タンクと前記処理液供給管の
間に介し、前記複数種の薬液タンクを前記処理液供給管
へ接続する分岐管と、各薬液タンクごとに、各薬液タン
クから前記処理液供給管への流路を開閉制御する操作弁
と、前記操作弁を制御する制御部と、分岐管と前記処理
部との間に設けられ、処理液を透過する光強度を検出す
る透過光測定用光学部と、各処理液に固有の吸光係数ま
たは、各処理液に固有の処理液の濃度に対応づけての透
過光強度に関する検量線データを保存しており、前記制
御部から与えられた操作弁の制御情報を基に、処理液供
給管を流れる処理液に対応する前記吸光係数または前記
検量線データから、前記透過光測定用光学部が検出する
透過光強度より、処理配管を流れる処理液の濃度を得る
濃度算出部とを備えることを特徴とする半導体処理装置
である。
The present invention has the following configuration in order to achieve the above object. That is, a chemical liquid supply unit that has a plurality of types of chemical liquid tanks and supplies a plurality of types of processing liquids, a processing unit that performs processing using a plurality of types of processing liquids, and a processing liquid that is supplied from the chemical liquid supply unit. A processing liquid supply pipe that supplies the plurality of types of chemical liquid tanks and the processing liquid supply pipe, and a branch pipe that connects the plurality of types of chemical liquid tanks to the processing liquid supply pipe. A control valve for controlling the opening and closing of a flow path from each of the chemical tanks to the processing liquid supply pipe, a control unit for controlling the operation valve, and a control pipe provided between the branch pipe and the processing unit. , A transmitted light measurement optical unit for detecting the light intensity transmitted through the processing solution, and a calibration curve for the transmitted light intensity associated with the absorption coefficient specific to each processing solution or the concentration of the processing solution specific to each processing solution. The data is stored and provided by the control unit. From the extinction coefficient or the calibration curve data corresponding to the processing liquid flowing through the processing liquid supply pipe, based on the control information of the operation valve, the processing pipe is set based on the transmitted light intensity detected by the transmitted light measuring optical unit. A semiconductor processing apparatus comprising: a concentration calculating unit that obtains a concentration of a flowing processing liquid.

【0009】[0009]

【作用】本発明の作用は次のとおりである。すなわち、
前記操作弁を制御する制御部が、薬液供給部にある複数
種の薬液タンクのうち所要の薬液タンクからの流路の操
作弁を開けると、前記制御部から与えられた操作弁の制
御情報に基づいて、濃度算出部では、処理液供給管を流
れる処理液に対応する前記吸光係数または前記検量線デ
ータから、透過光測定用光学部が検出する透過光強度よ
り、処理配管を流れる処理液の濃度を算出する。操作弁
を制御する制御部が、先とは別の薬液タンクからの流路
の操作弁を開けると、前記制御部から与えられた先とは
別の操作弁の制御情報に基づいて、濃度算出部では、処
理液供給管を流れる先とは別の処理液に対応する前記吸
光係数または前記検量線データから、透過光測定用光学
部が検出する透過光強度より、処理配管を流れる先とは
別の処理液の濃度を算出する。
The operation of the present invention is as follows. That is,
When the control unit that controls the operation valve opens an operation valve of a flow path from a required chemical liquid tank among a plurality of types of chemical liquid tanks in the chemical liquid supply unit, the control information of the operation valve given from the control unit Based on the concentration calculator, from the extinction coefficient or the calibration curve data corresponding to the processing liquid flowing through the processing liquid supply pipe, the transmitted light intensity detected by the transmitted light measuring optical unit is used to calculate the processing liquid flowing through the processing pipe. Calculate the concentration. When the control unit that controls the operation valve opens the operation valve of the flow path from the chemical liquid tank that is different from the previous one, the concentration calculation is performed based on the control information of the operation valve that is different from the one provided from the control unit. In the part, from the extinction coefficient or the calibration curve data corresponding to a processing liquid different from the one flowing through the processing liquid supply pipe, the transmitted light intensity detected by the transmitted light measurement optical unit, Calculate the concentration of another processing solution.

【0010】[0010]

【実施例】以下、図面を参照して本発明の一実施例を説
明する。
An embodiment of the present invention will be described below with reference to the drawings.

【0011】まず最初に、本発明の半導体処理装置につ
いて概略を説明する。図1は、本発明の一実施例である
濃度測定方法を使用した、複数の洗浄液によって半導体
ウェハを順に洗浄処理する半導体洗浄装置での洗浄工程
を示す図である。この半導体洗浄装置では、一般的にR
CA洗浄法として知られる方法を用いて洗浄を行ない、
一例として以下の洗浄液と時間とで処理を順に行なう。 (1)純水リンス 10分 (2)アンモニア(NH3 )・過酸化水素(H2 2
10分 (3)純水リンス 20分 (4)フッ酸(HF) 5分 (5)純水リンス 20分 (6)塩酸(HCl)・過酸化水素(H2 2 ) 10
分 (7)純水リンス 20分
First, the outline of the semiconductor processing apparatus of the present invention will be described. FIG. 1 is a diagram showing a cleaning step in a semiconductor cleaning apparatus for sequentially cleaning a semiconductor wafer with a plurality of cleaning liquids using a concentration measuring method according to one embodiment of the present invention. In this semiconductor cleaning apparatus, generally, R
Cleaning is performed using a method known as a CA cleaning method,
As an example, the processing is sequentially performed using the following cleaning liquid and time. (1) Rinse with pure water for 10 minutes (2) Ammonia (NH 3 ) / hydrogen peroxide (H 2 O 2 )
10 minutes (3) Pure water rinse 20 minutes (4) Hydrofluoric acid (HF) 5 minutes (5) Pure water rinse 20 minutes (6) Hydrochloric acid (HCl) / hydrogen peroxide (H 2 O 2 ) 10
Minutes (7) Rinse with pure water 20 minutes

【0012】このような処理工程の中で、各洗浄処理
(2),(4),(6)の前工程にあたる純水リンス
(1),(3),(5)時に純水の透過光強度Ic (I
c1 ,Ic 2 ,Ic3 )を測定し、次に、各洗浄液の透過
光強度Im (Im1 ,Im2 ,Im3)を測定する。そし
て、各純水の透過光強度Ic と対応する洗浄液の透過光
強度Iをそれぞれ上記(2)式に代入することにより、
各洗浄液の濃度C1 ,C2 ,C3 を算出する。
[0012] In such processing steps, the transmitted light of pure water during pure water rinsing (1), (3), and (5), which is a pre-process of each of the cleaning processes (2), (4), and (6). Intensity I c (I
c1, I c 2, I c3 ) were measured, then measures the transmitted light intensity I m (I m1, I m2 , I m3) of each wash. Then, by substituting the transmitted light intensity I of the corresponding cleaning liquid and the transmitted light intensity I c of each pure water respectively above (2),
The concentrations C 1 , C 2 , and C 3 of each cleaning solution are calculated.

【0013】次に、本発明の一実施例について詳細に説
明する。図2は、本発明の一実施例である半導体洗浄装
置の概略構成を示す図である。
Next, an embodiment of the present invention will be described in detail. FIG. 2 is a diagram showing a schematic configuration of a semiconductor cleaning apparatus according to one embodiment of the present invention.

【0014】図中、符号10は、洗浄液が流れる洗浄液
供給管である。この洗浄液供給管10の始端には、イオ
ンを脱した水である純水が所定圧力で供給され、終端に
は、供給された洗浄液により半導体ウェハを洗浄処理す
る処理槽等からなる洗浄処理部20が配設される。
In the drawing, reference numeral 10 denotes a cleaning liquid supply pipe through which the cleaning liquid flows. Pure water, which is water from which ions have been removed, is supplied at a predetermined pressure to a start end of the cleaning liquid supply pipe 10, and a cleaning processing unit 20 including a processing tank for cleaning a semiconductor wafer with the supplied cleaning liquid is provided at an end. Is arranged.

【0015】洗浄液供給管10の途中には、洗浄液を調
合するために、所定量の薬液を供給するための薬液供給
部40が分岐管30を介して接続されている。薬液供給
部40は、4個の薬液タンク41a〜41dと、各薬液
タンク内の薬液を圧送するためのポンプPと、分岐流路
を開閉制御する供給弁と、薬液の流量を調節する流量調
節弁を含む操作弁42a〜42dとを備えている。本実
施例では、一例として、各薬液タンク41a〜41dに
フッ酸(HF)、アンモニア(NH3 )、過酸化水素
(H2 2 )、塩酸(HCl)がその順に貯蔵されてい
る。
In the middle of the cleaning liquid supply pipe 10, a chemical liquid supply section 40 for supplying a predetermined amount of a chemical liquid for preparing a cleaning liquid is connected via a branch pipe 30. The chemical solution supply unit 40 includes four chemical solution tanks 41a to 41d, a pump P for pumping the chemical solution in each of the chemical solution tanks, a supply valve for controlling the opening and closing of the branch flow path, and a flow rate control for adjusting the flow rate of the chemical solution. Operation valves 42a to 42d including valves are provided. In this embodiment, as an example, hydrofluoric acid (HF), ammonia (NH 3 ), hydrogen peroxide (H 2 O 2 ), and hydrochloric acid (HCl) are stored in this order in each of the chemical liquid tanks 41a to 41d.

【0016】この薬液供給部40は制御部50によって
制御される。具体的には、制御部50は、例えば図1に
示したような順序で処理を実行するために、薬液供給部
40の各操作弁42a〜42dを制御する。この制御部
50は、処理プログラムを記憶したROM51、プログ
ラムを解釈実行するCPU52、各処理の実行過程で作
業領域として使用されるRAM53、制御状態等を表示
するCRT54、および双方向にデータを転送可能なイ
ンターフェイス55等から構成されている。
The chemical supply section 40 is controlled by a control section 50. Specifically, the control unit 50 controls each of the operation valves 42a to 42d of the chemical liquid supply unit 40, for example, in order to execute processing in the order shown in FIG. The control unit 50 includes a ROM 51 storing a processing program, a CPU 52 interpreting and executing the program, a RAM 53 used as a work area in the execution process of each processing, a CRT 54 displaying a control state and the like, and capable of bidirectional data transfer. Interface 55 and the like.

【0017】洗浄処理部20と分岐管との間の洗浄液供
給管10には、流体(純水または洗浄液)の透過光強度
を測定するための透過光測定用光学部60が設けられ
る。これは、紫外から赤外領域まで含む光を放射するハ
ロゲンランプ等の光源61、前記光源61の光を洗浄液
供給管10中の流体に照射・透過させるためのセル長d
をもつ光透過部からなるフローセル62、およびフロー
セル62を透過した所定波長の光強度を検出する光強度
検出器63等から構成される。洗浄液の濃度測定には、
必要に応じて、光源61から照射された光中に含まれる
紫外光および/または赤外光が使用される。光強度検出
器63としては、紫外光を使用する場合には、紫外光に
対する感度が高いGaP等の半導体素子や紫外光電管が
用いられ、また赤外光を使用する場合には、赤外光に対
する感度が高いPbS等の半導体素子が用いられる。
The cleaning liquid supply pipe 10 between the cleaning processing section 20 and the branch pipe is provided with a transmitted light measuring optical section 60 for measuring the transmitted light intensity of a fluid (pure water or cleaning liquid). This is because a light source 61 such as a halogen lamp that emits light including the ultraviolet to infrared region, and a cell length d for irradiating and transmitting the light of the light source 61 to the fluid in the cleaning liquid supply pipe 10.
And a light intensity detector 63 for detecting the light intensity of a predetermined wavelength transmitted through the flow cell 62, and the like. To measure the concentration of the cleaning solution,
If necessary, ultraviolet light and / or infrared light included in the light emitted from the light source 61 is used. As the light intensity detector 63, when ultraviolet light is used, a semiconductor element such as GaP or an ultraviolet photoelectric tube having high sensitivity to ultraviolet light is used, and when infrared light is used, infrared light is used. A semiconductor element such as PbS having high sensitivity is used.

【0018】光強度検出器63で検出された透過光強度
は濃度算出部70に与えられる。濃度算出部70は、制
御部50から与えられた操作弁42a〜42dの制御情
報を基に洗浄液供給管10を流れる流体の種類を判別し
て、該当する洗浄液に応じた濃度算出処理を決定すると
ともに、光強度検出器63から与えられた透過光強度に
基づき被測定洗浄液の濃度を算出する。この濃度算出部
70は、濃度算出処理プログラムを記憶したROM7
1、前記プログラムを実行するCPU72、主に演算等
の作業領域として使用されるRAM73、算出された濃
度等を表示するCRT74、およびインターフェース7
5等で構成されている。
The transmitted light intensity detected by the light intensity detector 63 is given to a density calculator 70. The concentration calculation unit 70 determines the type of fluid flowing through the cleaning liquid supply pipe 10 based on the control information of the operation valves 42a to 42d given from the control unit 50, and determines a concentration calculation process according to the corresponding cleaning liquid. At the same time, the concentration of the cleaning liquid to be measured is calculated based on the transmitted light intensity given from the light intensity detector 63. The density calculation unit 70 is a ROM 7 storing a density calculation processing program.
1, a CPU 72 for executing the program, a RAM 73 mainly used as a work area for operations, etc., a CRT 74 for displaying the calculated density and the like, and an interface 7
5 and so on.

【0019】次に、上述した半導体洗浄装置における濃
度測定を図3に示したフローチャートを参照して説明す
る。
Next, the concentration measurement in the above-described semiconductor cleaning apparatus will be described with reference to the flowchart shown in FIG.

【0020】ステップS1では、薬液供給部40の操作
弁42a〜42dの操作弁制御情報を制御部50が取得
する。
In step S1, the control unit 50 acquires operation valve control information of the operation valves 42a to 42d of the chemical liquid supply unit 40.

【0021】ステップS2では、ステップS1で取得し
た操作弁制御情報から全ての操作弁が閉止されているか
を判断し、NOであればいずれかの洗浄液が使用されて
いる状態と判断して、後述するステップS4以降の処理
を行い、YESであればどの洗浄液も使用されていない
純水だけが流れている状態と判断する。本実施例では、
NH3 +H2 2 洗浄工程(2)の前処理の純水リンス
工程(1)は、10分間行なわれるので、この純水だけ
が流れる状態が10分間続く。
In step S2, it is determined whether all the operating valves are closed from the operating valve control information obtained in step S1, and if NO, it is determined that one of the cleaning liquids is being used. The processing after step S4 is performed, and if YES, it is determined that only pure water in which no cleaning liquid is used is flowing. In this embodiment,
Since the pure water rinsing step (1) of the pretreatment of the NH 3 + H 2 O 2 washing step (2) is performed for 10 minutes, the state where only the pure water flows continues for 10 minutes.

【0022】ステップS3では、純水の透過光強度IC
を測定する。測定は、純水リンスが行なわれる20分の
間、適宜の周期で繰り返し行なわれ、各測定値の平均値
が透過光強度IC として濃度算出部70のRAM73に
保存される。
In step S3, the transmitted light intensity I C of pure water
Is measured. Measurements during the 20 minute deionized water rinse is performed, is repeatedly performed at appropriate periods, the average value of each measured value is stored in the RAM73 of the concentration calculation section 70 as a transmitted light intensity I C.

【0023】そして、洗浄工程が次のNH3 +H2 2
洗浄工程(2)に移ると、濃度算出部70はステップS
1で得られた操作弁制御情報(ここでは、操作弁42
b,42cが開、操作弁42a,42dが閉)を基に、
現在使用されている洗浄液の種類を判別する。すなわ
ち、ステップS2ではNO(全操作弁が閉止状態でな
い)と判断されてステップS4に進み、ここでYES
(操作弁42b,42cが開、操作弁42a,42dが
閉)と判断されることにより、ステップS5以降のNH
3 +H2 2 洗浄液の濃度算出処理に移る。
Then, the washing step is performed for the next NH.Three+ HTwoOTwo
When the process proceeds to the cleaning step (2), the concentration calculation unit 70 determines in step S
1 (in this case, the operating valve 42
b, 42c are open and the operating valves 42a, 42d are closed).
Determine the type of cleaning solution currently used. Sand
In step S2, NO (all operating valves are not closed).
) And the process proceeds to step S4, where YES
(The operation valves 42b and 42c are open, and the operation valves 42a and 42d are
(Closed), the NH after step S5 is determined.
Three+ HTwoOTwoMove on to the cleaning solution concentration calculation process.

【0024】ステップS5では、NH3 +H2 2 洗浄
液の透過光強度Im を測定する。ここでも、上述した純
水の透過光強度の測定と同様に、所定の洗浄時間(10
分)の間、透過光強度Im が繰り返し測定され、その平
均値がNH3 +H2 2 洗浄液の透過光強度Im として
濃度算出部70のRAM73に保存される。
[0024] In step S5, measuring the transmitted light intensity I m of NH 3 + H 2 O 2 cleaning solution. Here, similarly to the measurement of the transmitted light intensity of the pure water described above, a predetermined cleaning time (10
During minute) is measured repeatedly transmitted light intensity I m, the average value is stored in the RAM73 of NH 3 + H 2 O 2 cleaning solution concentration calculator 70 as transmitted light intensity I m of.

【0025】ステップS6では、ステップS3で得られ
た純水の透過光強度IC と、ステップS5で得られたN
3 +H2 2 洗浄液の透過光強度Im とを使い、予め
定められたNH3 +H2 2 洗浄液の濃度算出処理に従
って濃度を算出する。この濃度算出処理については後述
する。
In step S6, the transmitted light intensity I C of the pure water obtained in step S3 and the N
H 3 + H 2 O 2 using a transmitted light intensity I m of the cleaning liquid, to calculate the concentration according to the concentration calculating process of NH 3 + H 2 O 2 cleaning solution which is determined in advance. This density calculation processing will be described later.

【0026】ステップS7では、ステップS6で求めら
れたNH3 +H2 2 洗浄液の濃度をCRT74に表示
する。
In step S7, the concentration of the NH 3 + H 2 O 2 cleaning solution obtained in step S6 is displayed on the CRT 74.

【0027】次の純水リンス工程(3)では、上述のス
テップS1〜S3の処理により、新たに純水の透過光強
度IC が測定される。そして、次のHF洗浄工程(4)
では、ステップS1から、S2、S4、S8と進む。ス
テップS8でHF洗浄液が使われていると判断される
と、ステップS9でHF洗浄液の透過光強度Im が測定
され、次のステップS10で、直前に求められた純水の
透過光強度IC と、HF洗浄液の透過光強度Im とを使
い、HF洗浄液の濃度算出処理に従って濃度を算出す
る。
In the next pure water rinsing step (3), the transmitted light intensity I C of the pure water is newly measured by the above-described steps S1 to S3. Then, the next HF cleaning step (4)
Then, the process proceeds from step S1 to S2, S4, and S8. If it is determined that HF cleaning solution is used in step S8, the measured transmitted light intensity I m of HF cleaning solution in step S9, in the next step S10, the transmitted light intensity of the pure water obtained just before I C When, using the transmitted light intensity I m of HF cleaning solution, to calculate the concentration according to the concentration calculating process of HF cleaning solution.

【0028】以下、同様に、所定の洗浄処理の直前の純
水リンス工程で、純水の透過光強度を測定し、この透過
光強度と当該洗浄液の透過光強度とを使って、所定の濃
度算出処理に従って洗浄液の濃度が算出される。
Similarly, in the pure water rinsing step immediately before the predetermined cleaning treatment, the transmitted light intensity of pure water is measured, and the transmitted light intensity and the transmitted light intensity of the cleaning liquid are used to obtain a predetermined concentration. The concentration of the cleaning liquid is calculated according to the calculation processing.

【0029】以上のように、濃度算出処理において基準
となる純水の透過光強度を、当該洗浄工程の直前の純水
リンス工程で測定しているので、純水の透過光強度を測
定してから、被測定洗浄液の透過光強度を測定するまで
の時間は極めて短い。したがって、この間の光源の光量
の変動等は僅かであり、洗浄液の濃度を精度よく測定す
ることができる。また、純水の透過光強度は、純水リン
ス工程の最中に測定されるので、純水の透過光強度を測
定するために洗浄装置を停止させる必要もない。
As described above, since the transmitted light intensity of pure water, which is a reference in the concentration calculation process, is measured in the pure water rinsing step immediately before the cleaning step, the transmitted light intensity of pure water is measured. , The time from when the transmitted light intensity of the cleaning liquid to be measured is measured is extremely short. Therefore, the fluctuation of the light amount of the light source during this period is slight, and the concentration of the cleaning liquid can be accurately measured. Further, since the transmitted light intensity of the pure water is measured during the pure water rinsing step, it is not necessary to stop the cleaning device to measure the transmitted light intensity of the pure water.

【0030】次に、洗浄液の濃度算出処理を、HF洗浄
液を例に、簡単に説明する。濃度算出処理は、上述した
濃度算出式(2)を用いて算出する手法と、検量線を用
いて求める手法とが例示される。
Next, the processing for calculating the concentration of the cleaning liquid will be briefly described by taking the HF cleaning liquid as an example. Examples of the concentration calculation process include a method of calculating using the above-described concentration calculation formula (2) and a method of obtaining using a calibration curve.

【0031】上述のHF洗浄液の濃度測定では、濃度算
出式(2)を用いている。すなわち、純水リンス工程
(3)時のステップS3で求められた純水の透過光強度
C と、ステップS9で求められたHF洗浄液の透過光
強度Im を濃度算出式(2)に代入して、濃度cを求め
る。このとき、吸光係数k’としては、HF溶液固有の
値が設定されている。
In the above-described concentration measurement of the HF cleaning solution, the concentration calculation formula (2) is used. That is, substituting the transmitted light intensity I C of the pure water obtained in step S3 when the pure water rinsing step (3), the transmitted light intensity I m of HF cleaning solution obtained in step S9 to the concentration calculation formula (2) Then, the density c is obtained. At this time, a value specific to the HF solution is set as the absorption coefficient k '.

【0032】検量線を用いて濃度を求める方法について
は、まず、検量線データを次のように作成する。始め
に、純水と濃度の異なる複数のHF洗浄液を用意し、赤
外光に対する純水の透過光強度、各HF洗浄液の透過光
強度を測定する。そして、純水の透過光強度に対する各
HF洗浄液の透過光強度比Tを算出し、各透過光強度比
TにHF洗浄液の濃度cを対応づけて、濃度演算部70
のRAM73に保存する。図4は、検量線データとし
て、透過光強度比Tと濃度cの関係を示した図である。
As to the method for obtaining the concentration using the calibration curve, first, the calibration curve data is prepared as follows. First, a plurality of HF cleaning solutions having different concentrations from pure water are prepared, and the transmitted light intensity of pure water with respect to infrared light and the transmitted light intensity of each HF cleaning solution are measured. Then, the transmitted light intensity ratio T of each HF cleaning liquid to the transmitted light intensity of pure water is calculated, and the transmitted light intensity ratio T is associated with the concentration c of the HF cleaning liquid, and the concentration calculating unit 70.
In the RAM 73. FIG. 4 is a diagram showing the relationship between the transmitted light intensity ratio T and the concentration c as calibration curve data.

【0033】HF洗浄液の濃度を求めるとき(図3ステ
ップS10)は、まず、ステップS3で測定した純水の
透過光強度Icと、ステップS9で測定したHF洗浄液
の透過光強度Im との比T1を算出する。そして、濃度
演算部70のRAM73において、比T1と等しい透過
光強度比Tを検索し、それに対応する濃度cを得る。
[0033] When determining the concentration of HF cleaning solution (Fig. 3 step S10), first, the ratio of the transmitted light intensity Ic of pure water measured in step S3, the transmitted light intensity I m of HF cleaning liquid measured in step S9 Calculate T1. Then, in the RAM 73 of the density calculator 70, a transmitted light intensity ratio T equal to the ratio T1 is searched to obtain a density c corresponding thereto.

【0034】なお、上述した実施例では、基準となる純
水の透過光強度を被測定洗浄液を使用する洗浄工程の直
前の純水リンス工程で測定したが、本発明はこれに限定
されず、純水の透過光強度を該当洗浄工程の直後の純水
リンス工程で測定してもよい。
In the above embodiment, the transmitted light intensity of the reference pure water was measured in the pure water rinsing step immediately before the cleaning step using the cleaning liquid to be measured. However, the present invention is not limited to this. The transmitted light intensity of pure water may be measured in a pure water rinsing step immediately after the corresponding cleaning step.

【0035】[0035]

【発明の効果】以上の説明から明らかなように、本発明
によれば、複数種の処理液の供給を受けて処理を行なう
半導体処理装置にて、複数種の処理液の濃度を測定する
につけ、操作弁の制御情報に基づいて、濃度算出部で
は、処理液供給管を流れる処理液に対応する前記吸光係
数または前記検量線データから、透過光測定用光学部が
検出する透過光強度より、処理配管を流れる処理液の濃
度を算出するようにしたので、処理液の数に相当する台
数の濃度測定する手段を必要とせず、部品点数を少な
く、装置価格も軽減化できる。
As is apparent from the above description, according to the present invention, it is possible to measure the concentrations of a plurality of types of processing solutions in a semiconductor processing apparatus which performs processing by receiving a plurality of types of processing solutions. Based on the control information of the operation valve, the concentration calculator, from the absorption coefficient or the calibration curve data corresponding to the processing liquid flowing through the processing liquid supply pipe, from the transmitted light intensity detected by the transmitted light measurement optical unit, Since the concentration of the processing liquid flowing through the processing pipe is calculated, there is no need for a means for measuring the concentration of the number of processing liquids corresponding to the number of processing liquids, the number of parts is reduced, and the cost of the apparatus can be reduced.

【図面の簡単な説明】[Brief description of the drawings]

【図1】本発明が適用される一例である半導体洗浄工程
の工程図である。
FIG. 1 is a process diagram of a semiconductor cleaning process as an example to which the present invention is applied.

【図2】本発明を適用した一実施例に係る半導体洗浄装
置の概略構成を示す図である。
FIG. 2 is a view showing a schematic configuration of a semiconductor cleaning apparatus according to one embodiment to which the present invention is applied.

【図3】実施例装置の濃度測定手順を示すフローチャー
トである。
FIG. 3 is a flowchart illustrating a procedure for measuring the concentration of the apparatus according to the embodiment.

【図4】濃度測定に用いられる検量線の模式図である。FIG. 4 is a schematic diagram of a calibration curve used for concentration measurement.

【符号の説明】 10… 洗浄液供給管 40… 薬液供給部 50… 制御部 60… 透過光測定用光学部 70… 濃度算出部[Description of Signs] 10 ... Cleaning solution supply pipe 40 ... Chemical solution supply unit 50 ... Control unit 60 ... Transmitted light measurement optical unit 70 ... Concentration calculation unit

Claims (1)

(57)【特許請求の範囲】(57) [Claims] 【請求項1】 複数種の薬液タンクを有し、複数種の処
理液を供給する薬液供給部と、 複数種の処理液により処理を行なう処理部と、 薬液供給部から供給される処理液を前記処理部へ供給す
る処理液供給管とを備える半導体処理装置において、 前記複数種の薬液タンクと前記処理液供給管の間に介
し、前記複数種の薬液タンクを前記処理液供給管へ接続
する分岐管と、 各薬液タンクごとに、各薬液タンクから前記処理液供給
管への流路を開閉制御する操作弁と、 前記操作弁を制御する制御部と、分岐管と前記処理部と
の間に設けられ、処理液を透過する光強度を検出する透
過光測定用光学部と、 各処理液に固有の吸光係数または、各処理液に固有の処
理液の濃度に対応づけての透過光強度に関する検量線デ
ータを保存しており、前記制御部から与えられた操作弁
の制御情報を基に、処理液供給管を流れる処理液に対応
する前記吸光係数または前記検量線データから、前記透
過光測定用光学部が検出する透過光強度より、処理配管
を流れる処理液の濃度を得る濃度算出部とを備えること
を特徴とする半導体処理装置。
A liquid supply unit configured to supply a plurality of types of processing liquids; a processing unit configured to perform processing using the plurality of types of processing liquids; In a semiconductor processing apparatus having a processing liquid supply pipe for supplying to the processing unit, the plurality of types of chemical liquid tanks are connected to the processing liquid supply pipe via the plurality of types of chemical liquid tanks and the processing liquid supply pipe. A branch pipe, an operating valve for controlling opening and closing of a flow path from each chemical tank to the processing liquid supply pipe, for each chemical liquid tank, a control unit for controlling the operation valve, and a branch pipe and the processing unit. And a transmitted light measuring optical unit for detecting the intensity of light transmitted through the processing solution, and the transmitted light intensity corresponding to the absorption coefficient unique to each processing solution or the concentration of the processing solution unique to each processing solution. Calibration curve data for the control unit From the extinction coefficient or the calibration curve data corresponding to the processing liquid flowing through the processing liquid supply pipe, based on the transmitted light intensity detected by the transmitted light measuring optical unit, based on the control information of the operation valve given from A semiconductor processing apparatus, comprising: a concentration calculating unit that obtains a concentration of a processing liquid flowing through a pipe.
JP11593299A 1999-04-23 1999-04-23 Semiconductor processing equipment Expired - Fee Related JP3297650B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP11593299A JP3297650B2 (en) 1999-04-23 1999-04-23 Semiconductor processing equipment

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP11593299A JP3297650B2 (en) 1999-04-23 1999-04-23 Semiconductor processing equipment

Related Parent Applications (1)

Application Number Title Priority Date Filing Date
JP5187038A Division JP3032410B2 (en) 1993-06-29 1993-06-29 Concentration measurement method

Publications (2)

Publication Number Publication Date
JPH11340186A JPH11340186A (en) 1999-12-10
JP3297650B2 true JP3297650B2 (en) 2002-07-02

Family

ID=14674764

Family Applications (1)

Application Number Title Priority Date Filing Date
JP11593299A Expired - Fee Related JP3297650B2 (en) 1999-04-23 1999-04-23 Semiconductor processing equipment

Country Status (1)

Country Link
JP (1) JP3297650B2 (en)

Families Citing this family (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP4654534B2 (en) * 2000-05-22 2011-03-23 上村工業株式会社 Automatic analysis and management equipment for electroless composite nickel plating solution
TWI259215B (en) * 2000-05-22 2006-08-01 Uyemura C & Co Ltd Automatic analyser and controller of electroless composite plating liquid
JP4658917B2 (en) * 2006-12-28 2011-03-23 株式会社堀場製作所 Analysis equipment for semiconductor manufacturing systems
DE102012204680B4 (en) * 2012-03-23 2019-04-25 Olympus Winter & Ibe Gmbh Method and system for flushing solution supply during endoscopic procedures

Family Cites Families (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH03251744A (en) * 1990-02-28 1991-11-11 Tonen Corp Measuring apparatus of concentration of organic substance provided with washing function
JP3074366B2 (en) * 1993-02-22 2000-08-07 東京エレクトロン株式会社 Processing equipment

Also Published As

Publication number Publication date
JPH11340186A (en) 1999-12-10

Similar Documents

Publication Publication Date Title
US11400175B2 (en) Apparatus and method to measure concentration of disinfectant in medical device reprocessing system
US6943878B2 (en) Methods and systems for controlling the concentration of a component in a composition with absorption spectroscopy
US20110027893A1 (en) Method and apparatus for automated determining of chemical oxygen demand of a liquid sample
US6463941B1 (en) Concentration control apparatus of liquid chemical
JP3297650B2 (en) Semiconductor processing equipment
JPS61281532A (en) Concentration adjustment of washing liquid for semiconductor and its device
JP3032410B2 (en) Concentration measurement method
JPS628040A (en) Washing apparatus
JP2798346B2 (en) Concentration measuring device
JP6665751B2 (en) Water quality analyzer
US20110293476A1 (en) Sample analyzing device
CN205027662U (en) Scope antiseptic solution performance detecting system
EP3855167A1 (en) Instrument for sequential analysis for silica and phosphate in aqueous solution
JP2000218148A (en) Mixing apparatus
US20220229037A1 (en) Apparatus and method for determining filming amine concentration in water
JP2001269633A (en) Concentration measurement method for respective components in fluid mixture and concentration controller therefor
JP3078199B2 (en) Concentration control method and substrate processing apparatus using the same
JP2533460Y2 (en) Substrate cleaning device
WO2020214707A1 (en) Colorimetric detection of fluoride in an aqueous sample
JP3211196B2 (en) Pipe turbidity evaluation device
JP7454629B2 (en) Treatment unit including a measuring unit for measuring antibacterial active ingredients and method for measuring the content of antibacterial agents in treated water
US20230375514A1 (en) Thiocarbamate-based indicator detection of ozone
Taygun et al. Design of a smart sensor for dyebath concentration measurement in textile industry
JPH11174011A (en) Ammonia concentration meter
JP2818689B2 (en) Development method

Legal Events

Date Code Title Description
R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090412

Year of fee payment: 7

LAPS Cancellation because of no payment of annual fees