JP3292206B2 - Nickel zinc battery - Google Patents

Nickel zinc battery

Info

Publication number
JP3292206B2
JP3292206B2 JP19757992A JP19757992A JP3292206B2 JP 3292206 B2 JP3292206 B2 JP 3292206B2 JP 19757992 A JP19757992 A JP 19757992A JP 19757992 A JP19757992 A JP 19757992A JP 3292206 B2 JP3292206 B2 JP 3292206B2
Authority
JP
Japan
Prior art keywords
battery
unit cell
temperature
zinc
heat
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP19757992A
Other languages
Japanese (ja)
Other versions
JPH0620716A (en
Inventor
敏之 温田
圭一 森
健吉 藤井
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Yuasa Corp
Original Assignee
Yuasa Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Yuasa Corp filed Critical Yuasa Corp
Priority to JP19757992A priority Critical patent/JP3292206B2/en
Publication of JPH0620716A publication Critical patent/JPH0620716A/en
Application granted granted Critical
Publication of JP3292206B2 publication Critical patent/JP3292206B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries

Landscapes

  • Secondary Cells (AREA)
  • Sealing Battery Cases Or Jackets (AREA)
  • Battery Mounting, Suspending (AREA)

Description

【発明の詳細な説明】DETAILED DESCRIPTION OF THE INVENTION

【0001】[0001]

【産業上の利用分野】この発明は、ニッケル亜鉛蓄電
池、更に詳しくは、電気自動車やソーラーカー等の車輛
に用いるために強制冷却できるようにした比較的大容量
のニッケル亜鉛蓄電池に関する。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a nickel zinc storage battery, and more particularly, to a nickel zinc storage battery having a relatively large capacity which can be forcibly cooled for use in vehicles such as electric vehicles and solar cars.

【0002】[0002]

【従来の技術】周知のごとく、電気自動車をはじめポー
タブル機器に至るまで電池の高エネルギー密度化あるい
は高性能化に対する要求はたいへん大きなものがある。
その中で亜鉛を負極活物質とした電池は単位重量当りの
エネルギー密度が大きくしかも安価であるといった利点
を有する。
2. Description of the Related Art As is well known, there is a great demand for higher energy density and higher performance of batteries, from electric vehicles to portable devices.
Among them, a battery using zinc as a negative electrode active material has an advantage that the energy density per unit weight is large and inexpensive.

【0003】一方、この亜鉛極を蓄電池の負極として動
作させる場合、亜鉛活物質が放電過程あるいは充電過程
において溶解析出していわゆるシェイプチェンジやデン
ドライトショートと言った問題を引き起こす。充電過程
では、亜鉛酸イオンから析出される亜鉛金属結晶は、特
に水素ガス発生を伴った場合、水素の触媒作用によって
デンドライト結晶になり易く、電池のショートを引き起
こす。
On the other hand, when this zinc electrode is operated as a negative electrode of a storage battery, the zinc active material dissolves and precipitates in a discharging process or a charging process, causing problems such as so-called shape change and dendrite short. In the charging process, zinc metal crystals precipitated from zincate ions tend to become dendrite crystals due to the catalytic action of hydrogen, especially when accompanied by generation of hydrogen gas, causing a short circuit in the battery.

【0004】そのため従来より充電末期になっても負極
から水素発生させぬよう負極の容量を正極の容量より増
加させ、電池を充電して充電末期の状態においても正極
から酸素ガスを優先させて発生するようにして、充電過
程全てにおいて負極からは水の電気化学的分解による水
素ガス発生を起こらないようにし、デンドライト状の析
出が発生しないように工夫されている。
Therefore, conventionally, the capacity of the negative electrode is increased from the capacity of the positive electrode so that hydrogen is not generated from the negative electrode even at the end of charging, and oxygen gas is generated from the positive electrode with priority even in the state of final charging after charging the battery. In this way, hydrogen gas is not generated from the negative electrode due to the electrochemical decomposition of water during the entire charging process, so that dendrite-like deposition is not generated.

【0005】また、上述の電池を充放電を行い2次電池
としてサイクル使用した場合において正極から発生した
酸素が電池の系外に漏れてしまうと正極と負極の容量バ
ランスが崩れてしまい、いずれ負極からの水素発生を生
じ、亜鉛のデンドライト析出により電池寿命となる。し
たがって、サイクル使用中の正極と負極の容量バランス
を保つために、電池の電解液量を制限し、充電末期に発
生した酸素ガスを負極で吸収リサイクルさせる密閉形ニ
ッケル亜鉛電池がある。
Further, when the above-mentioned battery is charged and discharged and cycled as a secondary battery, if oxygen generated from the positive electrode leaks out of the battery system, the capacity balance between the positive electrode and the negative electrode is lost, and eventually the negative electrode becomes negative. , And the battery life is shortened by zinc dendrite precipitation. Therefore, in order to maintain the capacity balance between the positive electrode and the negative electrode during cycle use, there is a sealed nickel-zinc battery in which the amount of electrolyte in the battery is limited and oxygen gas generated at the end of charging is absorbed and recycled by the negative electrode.

【0006】また、前述したシェイプチェンジは、電池
の温度と深く関係しており、電池の温度が高い程、電池
寿命が短くなるという特徴がある。
The above-mentioned shape change is closely related to the temperature of the battery, and the higher the temperature of the battery, the shorter the life of the battery.

【0007】[0007]

【発明が解決しようとする課題】ところで、ニッケル亜
鉛蓄電池を電気自動車やソーラーカーなどに使用した場
合、電池搭載場所の放熱性が悪く、電池の温度が上昇し
易く、特に室温より温度が上昇することにより電池寿命
の低下することが問題となっていた。
When a nickel-zinc storage battery is used in an electric vehicle or a solar car, the heat radiation of the battery mounting location is poor, and the temperature of the battery tends to rise, especially the temperature rises above room temperature. As a result, there is a problem that the battery life is shortened.

【0008】また、放電後において電池の温度が上昇し
たままであると、速やかに充電が行えないという問題が
ある。
[0008] If the temperature of the battery remains elevated after discharging, there is another problem that charging cannot be performed quickly.

【0009】そこで、この発明の目的は、電池を冷媒で
強制冷却し、温度を制御することにより寿命を向上させ
ることができると共に、放電使用後に速やかに充電する
ことができるニッケル亜鉛蓄電池を提供することにあ
る。
Accordingly, an object of the present invention is to provide a nickel-zinc storage battery capable of extending its life by controlling the temperature by forcibly cooling the battery with a refrigerant and controlling the temperature, and which can be quickly charged after discharge use. It is in.

【0010】[0010]

【課題を解決するための手段】上記のような課題を解決
するため、この発明は、吸気孔に連なる通風路を内部に
有する電池支持台上に、極板面が電槽の底面に対して対
向するように挿入したニッケル亜鉛蓄電池単位セルの複
数を集熱板を挟んで上下に積み重ねた単位セル集合体を
2以上と、この単位セル集合体群を囲うカバーとを載置
し、各単位セル集合体の外側に放熱板を前記集熱板と
接続した状態で設け、隣合う単位セル集合体の放熱板間
及び単位セル集合体の放熱板とカバーの間に電池支持台
の通風路より連なる冷媒の通路を形成した構成を採用し
たものである。
SUMMARY OF THE INVENTION In order to solve the above-mentioned problems, the present invention provides a ventilation passage connected to an intake hole therein.
On a battery support having a unit cell assembly in which a plurality of nickel-zinc storage battery unit cells inserted so that the electrode plate faces the bottom of the battery case are vertically stacked with a heat collecting plate interposed therebetween.
2 or more and a cover surrounding this unit cell assembly group
And, on the outside of each unit cell assemblies provided in a state in which the heat radiating plate is connected to the heat collecting plate, the heat dissipation plates of the adjacent unit cell collection
And a battery support between the heat sink and the cover of the unit cell assembly
Of the present invention employs a configuration in which a passage for a refrigerant connected to the ventilation path is formed.

【0011】[0011]

【作用】ニッケル亜鉛蓄電池単位セルに生じた熱は集熱
板で放熱板に伝わり、放熱板の外面に形成した通路を冷
媒が通過することにより放熱板を冷却し、これによって
単位セルの温度を低下させ、ニッケル亜鉛蓄電池の寿命
を向上させ、放電使用後に速やかな充電が可能になる。
The heat generated in the unit cell of the nickel-zinc storage battery is transmitted to the heat radiating plate by the heat collecting plate, and the refrigerant passes through the passage formed on the outer surface of the heat radiating plate to cool the heat radiating plate, thereby reducing the temperature of the unit cell. It lowers the life of the nickel-zinc storage battery, and allows quick charging after discharge use.

【0012】[0012]

【実施例】以下、この発明の実施例を添付図面に基づい
て、比較例と対比しながら説明する。
Embodiments of the present invention will be described below with reference to the accompanying drawings in comparison with comparative examples.

【0013】図1は単位セル集合体の構造を示し、同図
において、あらかじめ酸化亜鉛及び金属亜鉛を混合し、
さらにカレンダーロール法によりシート状の亜鉛活物質
層を作製し、そのシートを厚み0.1mmで開孔率約5
0%の銅パンチングメタル集電体の両サイドに加圧成形
し縦10cm×横10cm×厚み1.0mmの亜鉛極1
を得た。また、活物質はペースティング法により塗布し
てもかまわない。
FIG. 1 shows the structure of a unit cell assembly. In FIG. 1, zinc oxide and metal zinc are mixed in advance,
Further, a sheet-shaped zinc active material layer was prepared by a calender roll method, and the sheet was 0.1 mm thick and had a porosity of about 5%.
Press forming on both sides of a 0% copper punched metal current collector, zinc electrode 1 length 10cm x width 10cm x thickness 1.0mm
I got Further, the active material may be applied by a pasting method.

【0014】このようにして得られた亜鉛極1を15枚
と、同寸法の焼結式ニッケル極2を14枚とを、微孔性
フィルムからなるセパレータ3とPP不織布からなるリ
テーナ4及び5を介して交互に積重ね、電池容量が50
AH,11.9Vの極群を作製した。
The thus obtained 15 zinc electrodes 1 and 14 sintered nickel electrodes 2 of the same size are combined with a separator 3 made of a microporous film and retainers 4 and 5 made of a PP nonwoven fabric. And the battery capacity is 50
AH, 11.9V pole group was made.

【0015】その極群の極板面が電槽6の底面に対して
対向するように予め設計された電槽6に挿入し、正極,
負極,セパレータ3,保液層の全空隙の92%に相当す
る電解液量を注液して単位セル7を作製した。
The electrode group is inserted into a battery case 6 designed in advance so that the electrode plate surface faces the bottom surface of the battery case 6, and the positive electrode,
A unit cell 7 was prepared by injecting an electrolyte amount corresponding to 92% of the total gap of the negative electrode, the separator 3 and the liquid retaining layer.

【0016】なお、ここで極板面と電槽6の底面が対向
するとは、極板面の交差角度(小さい方の角度)が0゜
〜45以下で水平に置することをいうが、冷却にあ
たっては対向していなくてもかまわない。
[0016] Here, the electrode plate surface and the bottom surface of the battery container 6 faces A, but means that the crossing angle of the plate surface (smaller angle) is placed horizontally below 0 ° to 45 ° In cooling, it is not necessary to face each other.

【0017】次に、上記単位セル7を7個用い、熱伝導
性の良い金属材料で形成した集熱板8を挾んで各単位セ
ル7を上下に積み重ね、上下端部に電池集合用の押え板
9,10を重ね、更に単位セル集合体の両側にアルミ製
の放熱板11,11が設けられている。
Next, using the seven unit cells 7, the unit cells 7 are vertically stacked with a heat collecting plate 8 formed of a metal material having good thermal conductivity interposed therebetween. The plates 9 and 10 are stacked, and aluminum radiating plates 11 and 11 are provided on both sides of the unit cell assembly.

【0018】この放熱板11,11は、プレートの表面
に多数のフィン12を並べて形成され、各集熱板8の端
部接続部8aと接触する状態で取付けられ、単位セル7
を集合するための強度を保つ枠体として作用するだけで
なく、後述する空気を冷媒とする熱交換器としても作用
する。
The heat radiating plates 11, 11 are formed by arranging a large number of fins 12 on the surface of the plate, and are mounted so as to be in contact with the end connection portions 8a of each heat collecting plate 8, and the unit cells 7
Not only acts as a frame for maintaining the strength for assembling, but also acts as a heat exchanger using air as a refrigerant, which will be described later.

【0019】上記集熱板8は、単位セル7に生じた熱を
放熱板11,11に伝えるためのものであり、この集熱
板8の端部接合部8aと放熱板11,11の接合は熱伝
導の良い構造、例えばボルト締め、リベットでの結合の
ほか、シリコングリース等の熱伝導剤を重なり面に充填
するようにしてもよい。
The heat collecting plate 8 is for transmitting the heat generated in the unit cell 7 to the heat radiating plates 11, 11, and is joined to the end joint 8 a of the heat collecting plate 8 and the heat radiating plates 11, 11. May have a structure having good heat conductivity, for example, bolting, bonding with rivets, or filling the overlapping surface with a heat conductive agent such as silicon grease.

【0020】なお、図1において、単位セル7には、端
子接続金具13,レリーフ弁14,弁押え板15,電池
端子16等が設けられている。
In FIG. 1, the unit cell 7 is provided with a terminal fitting 13, a relief valve 14, a valve holding plate 15, a battery terminal 16 and the like.

【0021】図2は単位セル集合体の強制冷却構造を示
し、内部が通風路21となる電池支持台22上に複数の
単位セル集合体を並べて設置し、これら単位セル集合体
群の周囲をカバー23で囲み、隣接する単位セル群にお
ける放熱板11間及び放熱板11とカバー23の間の各
々に冷媒の通路24が形成され、各冷媒の通路24は通
風口25で通風路21と連通し、吸気26から供給さ
れた空気が冷媒の通路24を通過することにより放熱板
11を冷やし、各単位セル7を冷却する。
FIG. 2 shows a forced cooling structure of the unit cell assembly, in which a plurality of unit cell assemblies are arranged side by side on a battery support 22 having an air passage 21 therein. enclosed in a cover 23, the passage 24 of the refrigerant is formed in each of between the heat radiating plate 11 and between the heat radiating plate 11 and the cover 23 in the adjacent unit cell groups, the passage 24 air passage 21 and the communication with the vent holes 25 of the refrigerant Then, the air supplied from the intake holes 26 passes through the coolant passages 24 to cool the radiator plate 11 and cool the unit cells 7.

【0022】上記吸気孔26から通風路21及び冷媒の
通路24への空気の供給は車輛の走行による外気の流入
や送風機による強制吸気の何れでもよく、温度センサに
よる温度の検出で気を制御するようにしてもよい。
The ventilation hole 21 and the refrigerant
The supply of air to the passage 24 may be either forced intake by outside air inlet and the blower according to vehicle traveling may be controlled inspiratory temperature detected by the temperature sensor.

【0023】次に、単位セル集合体を、外部から強制送
風機により20℃の空気を電池設置場所外部から取り入
れ、該集合電池の熱交換部に1m3 /分の流量で供給
し、電池からの熱を電池設置位置より外部に排出して、
電池の温度を制御した。
Next, the unit cell assembly is taken in from the outside of the battery installation location with air at 20 ° C. from the outside by a forced blower and supplied to the heat exchange section of the assembled battery at a flow rate of 1 m 3 / min. Dissipates heat from the battery installation location to the outside,
The temperature of the battery was controlled.

【0024】なお、ここで述べる空気温度とは、該熱交
換部に供給される直前の温度であり、以下述べる空気温
度も、この直前の温度を意味するものである。
The air temperature described here is the temperature immediately before the air is supplied to the heat exchange section, and the air temperature described below also means the temperature immediately before this.

【0025】このようにして冷却装置と組み合わされた
電池(A)について、冷却時の電池温度の経時変化の一
例を空気を供給しない電池(B)と比較して図3に示し
た。
FIG. 3 shows an example of the change over time of the battery temperature during cooling of the battery (A) combined with the cooling device in comparison with the battery (B) not supplying air.

【0026】また、冷媒である空気温度の冷却効果を確
認するために、予め60℃に電池温度を制御した該集合
電池(イ)に、40℃に制御した空気を該電池の熱交換
部に供給した電池(C)を用意した。同様に60℃に電
池温度を制御した該電池に、それぞれ30℃と20℃に
制御した空気を供給した電池(D)、(E)を用意し
た。なお、(C)、(D)、(E)の各電池に供給する
空気の流量は1m3 /分である。これらの電池温度の経
時変化を図4に示した。温度の低い空気の方が早くしか
も低い温度まで冷却でき冷却能力が大きいことが示され
ている。
In order to confirm the cooling effect of the temperature of the air as the refrigerant, the battery (a) whose battery temperature was previously controlled to 60.degree. C. and the air whose temperature was controlled to 40.degree. The supplied battery (C) was prepared. Similarly, batteries (D) and (E) were prepared by supplying air controlled at 30 ° C. and 20 ° C. to the battery whose temperature was controlled at 60 ° C., respectively. The flow rate of air supplied to each of the batteries (C), (D) and (E) is 1 m 3 / min. FIG. 4 shows changes over time in these battery temperatures. It is shown that the cooler air has a higher cooling capacity because it can cool down to a lower temperature faster.

【0027】つづいてこれら温度制御の電池寿命に対す
る効果を確認するために、該集合電池(イ)にこれら
(C)、(D)、(E)の電池について、それぞれ充電
電流5Aで10.5時間充電し、放電電流25Aで8.
4Vまで放電することを繰り返し行い、充放電サイクル
寿命特性を調べた。その結果を図5に示した。
Next, in order to confirm the effect of the temperature control on the battery life, each of the batteries (C), (D) and (E) was added to the battery pack (A) at a charging current of 5 A and a charge current of 10.5. 7. Charging for hours and discharging current 25A
The discharge to 4 V was repeatedly performed, and the charge / discharge cycle life characteristics were examined. The results are shown in FIG.

【0028】図5から、冷却の効果については、冷媒で
ある空気温度が30℃より低い場合はサイクル寿命向上
の効果が認められることが示されているが、40℃の空
気を用いた場合は、反対にサイクル寿命特性を悪くする
結果となる。さらに、寿命特性向上に対する供給する空
気の温度の効果としては、30℃のものより20℃のも
のの方がサイクル寿命特性向上の効果が大きく、この原
因は冷却効果の差によるものである。
FIG. 5 shows that the effect of cooling can be improved when the air temperature of the refrigerant is lower than 30.degree. C., but when the air at 40.degree. C. is used. On the contrary, the cycle life characteristics are deteriorated. Furthermore, as for the effect of the temperature of the supplied air on the improvement of the life characteristics, the effect of improving the cycle life characteristics is greater at 20 ° C. than at 30 ° C. This is due to the difference in the cooling effect.

【0029】なお、電池を冷却する時期は、放置状態、
放電状態、充電状態それぞれにおいて行うことが可能な
ものである。
The time to cool the battery depends on whether it is left standing,
It can be performed in each of the discharging state and the charging state.

【0030】[0030]

【発明の効果】以上のように、この発明によると、アル
カリ電解液中で使用する密閉用ニッケル亜鉛蓄電池にお
いて、外部から放熱板に冷媒を供給し、電池を強制冷却
するようにしたので、簡単な構造で電池を冷却すること
ができ、電池の寿命向上を図り、サイクル寿命特性の優
れたニッケル亜鉛蓄電池を得ることができる。
As described above, according to the present invention, in a nickel-zinc storage battery for sealing used in an alkaline electrolyte, a coolant is supplied from the outside to a heat sink to forcibly cool the battery. The battery can be cooled with a simple structure, the life of the battery can be improved, and a nickel zinc storage battery having excellent cycle life characteristics can be obtained.

【0031】また、車輛に搭載した電池を走行しながら
冷却することができ、放電使用後においても電池温度が
低く、そのまま速やかに充電が行なえるようになる。
In addition, the battery mounted on the vehicle can be cooled while running, and the battery temperature is low even after the discharge use, so that the battery can be charged immediately.

【図面の簡単な説明】[Brief description of the drawings]

【図1】単位セルの集合体を示す斜視図。FIG. 1 is a perspective view showing an aggregate of unit cells.

【図2】同上における冷却装置の縦断面図。FIG. 2 is a longitudinal sectional view of the cooling device in the above.

【図3】冷却時の電池温度の経時変化の一例を示すグラ
フ。
FIG. 3 is a graph showing an example of a change over time in battery temperature during cooling.

【図4】電池温度の経時変化を示すグラフ。FIG. 4 is a graph showing changes over time in battery temperature.

【図5】充放電サイクル寿命特性を調べた結果を示すグ
ラフ。
FIG. 5 is a graph showing the results of examining charge / discharge cycle life characteristics.

【符号の説明】6 電槽 7 単位セル 8 集熱板 11 放熱板21 通風路22 電池支持台 23 カバー 24 冷媒の通路 [Description of Signs] 6 Battery case 7 Unit cell 8 Heat collecting plate 11 Heat radiating plate 21 Ventilation path 22 Battery support base 23 Cover 24 Refrigerant path

───────────────────────────────────────────────────── フロントページの続き (56)参考文献 特開 昭61−259464(JP,A) 特開 昭59−91658(JP,A) 特開 昭48−22937(JP,A) 実開 昭57−163671(JP,U) 実開 昭50−14524(JP,U) (58)調査した分野(Int.Cl.7,DB名) H01M 10/24 - 10/30 H01M 10/50 ──────────────────────────────────────────────────続 き Continuation of the front page (56) References JP-A-61-259464 (JP, A) JP-A-59-91658 (JP, A) JP-A-48-22937 (JP, A) Jpn. 163671 (JP, U) Actually open 50-1524 (JP, U) (58) Fields investigated (Int. Cl. 7 , DB name) H01M 10/24-10/30 H01M 10/50

Claims (1)

(57)【特許請求の範囲】(57) [Claims] 【請求項1】 吸気孔に連なる通風路を内部に有する電
池支持台上に、極板面が電槽の底面に対して対向するよ
うに挿入したニッケル亜鉛蓄電池単位セルの複数を集熱
板を挟んで上下に積み重ねた単位セル集合体を2以上
と、この単位セル集合体群を囲うカバーとを載置し、各
単位セル集合体の外側には放熱板を前記集熱板と接続し
た状態で設け、隣合う単位セル集合体の放熱板間及び単
位セル集合体の放熱板とカバーの間に電池支持台の通風
路より連なる冷媒の通路を形成したニッケル亜鉛蓄電
池。
1. A heat collecting plate comprising a plurality of nickel-zinc storage battery unit cells inserted on a battery support base having a ventilation passage connected to an intake hole therein such that an electrode plate surface is opposed to a bottom surface of a battery case. A state in which two or more unit cell assemblies stacked one above the other and a cover surrounding the unit cell assembly group are placed, and a heat sink is connected to the heat collecting plate outside each unit cell assembly. A zinc-zinc storage battery in which a refrigerant passage connected to the ventilation path of the battery support is formed between the radiator plates of adjacent unit cell assemblies and between the radiator plate and the cover of the unit cell assembly.
JP19757992A 1992-06-30 1992-06-30 Nickel zinc battery Expired - Fee Related JP3292206B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP19757992A JP3292206B2 (en) 1992-06-30 1992-06-30 Nickel zinc battery

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP19757992A JP3292206B2 (en) 1992-06-30 1992-06-30 Nickel zinc battery

Publications (2)

Publication Number Publication Date
JPH0620716A JPH0620716A (en) 1994-01-28
JP3292206B2 true JP3292206B2 (en) 2002-06-17

Family

ID=16376846

Family Applications (1)

Application Number Title Priority Date Filing Date
JP19757992A Expired - Fee Related JP3292206B2 (en) 1992-06-30 1992-06-30 Nickel zinc battery

Country Status (1)

Country Link
JP (1) JP3292206B2 (en)

Families Citing this family (13)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP3574175B2 (en) * 1994-05-27 2004-10-06 本田技研工業株式会社 Battery for electric vehicle
DE60100187T2 (en) 2000-09-07 2004-04-01 Chisso Corp. Organic electroluminescent device with a dipyridylthiophene derivative
JP2002289161A (en) * 2001-03-27 2002-10-04 Shin Kobe Electric Mach Co Ltd Battery pack body
JP4812345B2 (en) * 2005-06-30 2011-11-09 三洋電機株式会社 Power supply
US8426050B2 (en) * 2008-06-30 2013-04-23 Lg Chem, Ltd. Battery module having cooling manifold and method for cooling battery module
CN102792512A (en) * 2009-10-14 2012-11-21 江森自控帅福得先进能源动力系统有限责任公司 Prismatic cell system with thermal management features
EP2612777B1 (en) * 2010-08-31 2017-10-18 Toyota Jidosha Kabushiki Kaisha Vehicle and electric storage device
JP5198522B2 (en) 2010-08-31 2013-05-15 トヨタ自動車株式会社 Power storage device and vehicle
WO2012147331A1 (en) * 2011-04-28 2012-11-01 三洋電機株式会社 Battery module, battery system, electric vehicle, moving body, power storage device, and power supply device
JP5482864B1 (en) * 2012-11-05 2014-05-07 株式会社豊田自動織機 Battery module
WO2014109041A1 (en) * 2013-01-11 2014-07-17 株式会社 日立製作所 Cell module and cell system using same
KR101589996B1 (en) 2013-06-07 2016-01-29 주식회사 엘지화학 Battery Pack Having Improved Safety against Leakage of Liquid Refrigerant
CN104201297B (en) * 2014-08-01 2016-08-17 江苏春兰清洁能源研究院有限公司 A kind of Stackable batteries box structure

Also Published As

Publication number Publication date
JPH0620716A (en) 1994-01-28

Similar Documents

Publication Publication Date Title
JP2903913B2 (en) Storage battery system
US6653002B1 (en) Quick charge battery with thermal management
US5871859A (en) Quick charge battery with thermal management
CN101828299B (en) Device for storing electrical energy
JP3292206B2 (en) Nickel zinc battery
EP2509150B1 (en) Battery module having excellent cooling efficiency and compact structure and middle or large-sized battery pack
KR20120016590A (en) Battery module with compact structure and excellent heat radiation characteristics and middle or large-sized battery pack employed with the same
US11936024B2 (en) Battery pack, method for producing battery pack and vehicle
KR20130035192A (en) Battery pack having novel cooling structure
EP1321990A2 (en) Assembled battery, assembled battery module and vehicle equipped with the assembled battery or the assembled battery module
EP3933993B1 (en) Battery, electrical apparatus and cell installation method
KR20140142770A (en) Middle or Large-sized Battery Pack Having Efficient Cooling Structure
US11990592B2 (en) Battery, apparatus using battery, and manufacturing method and manufacturing device of battery
JP2023542942A (en) energy storage battery
CN109860951A (en) A kind of core strueture of the electric storage device of high efficiency and heat radiation
CN112582703B (en) Novel battery cooling structure based on coupling of heat pipe and liquid cooling plate
KR101561121B1 (en) Middle or Large-sized Battery Pack Having Efficient Cooling Structure
KR20120006136A (en) Cooling member having improved reliability to cooling design and battery module employed with the same
CN117175059A (en) Battery thermal management system and thermal management method
CN218215467U (en) Lithium battery placing box convenient to use
JP7574290B2 (en) Batteries, power consuming devices, battery manufacturing methods and devices
JP2008287916A (en) Battery pack
CN113629319A (en) Heat conduction plate for high-power storage battery of rail transit vehicle
CN209401799U (en) A kind of core strueture of the electric storage device of high efficiency and heat radiation
CN113161662A (en) Battery package and battery cooling system

Legal Events

Date Code Title Description
S111 Request for change of ownership or part of ownership

Free format text: JAPANESE INTERMEDIATE CODE: R313111

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

LAPS Cancellation because of no payment of annual fees