WO2014109041A1 - Cell module and cell system using same - Google Patents

Cell module and cell system using same Download PDF

Info

Publication number
WO2014109041A1
WO2014109041A1 PCT/JP2013/050351 JP2013050351W WO2014109041A1 WO 2014109041 A1 WO2014109041 A1 WO 2014109041A1 JP 2013050351 W JP2013050351 W JP 2013050351W WO 2014109041 A1 WO2014109041 A1 WO 2014109041A1
Authority
WO
WIPO (PCT)
Prior art keywords
cell
cell group
battery module
battery
cells
Prior art date
Application number
PCT/JP2013/050351
Other languages
French (fr)
Japanese (ja)
Inventor
本田 光利
晋 山内
賢治 武田
田中 融
Original Assignee
株式会社 日立製作所
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 株式会社 日立製作所 filed Critical 株式会社 日立製作所
Priority to PCT/JP2013/050351 priority Critical patent/WO2014109041A1/en
Publication of WO2014109041A1 publication Critical patent/WO2014109041A1/en

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M50/00Constructional details or processes of manufacture of the non-active parts of electrochemical cells other than fuel cells, e.g. hybrid cells
    • H01M50/20Mountings; Secondary casings or frames; Racks, modules or packs; Suspension devices; Shock absorbers; Transport or carrying devices; Holders
    • H01M50/204Racks, modules or packs for multiple batteries or multiple cells
    • H01M50/207Racks, modules or packs for multiple batteries or multiple cells characterised by their shape
    • H01M50/209Racks, modules or packs for multiple batteries or multiple cells characterised by their shape adapted for prismatic or rectangular cells
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M50/00Constructional details or processes of manufacture of the non-active parts of electrochemical cells other than fuel cells, e.g. hybrid cells
    • H01M50/20Mountings; Secondary casings or frames; Racks, modules or packs; Suspension devices; Shock absorbers; Transport or carrying devices; Holders
    • H01M50/289Mountings; Secondary casings or frames; Racks, modules or packs; Suspension devices; Shock absorbers; Transport or carrying devices; Holders characterised by spacing elements or positioning means within frames, racks or packs
    • H01M50/293Mountings; Secondary casings or frames; Racks, modules or packs; Suspension devices; Shock absorbers; Transport or carrying devices; Holders characterised by spacing elements or positioning means within frames, racks or packs characterised by the material
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M50/00Constructional details or processes of manufacture of the non-active parts of electrochemical cells other than fuel cells, e.g. hybrid cells
    • H01M50/50Current conducting connections for cells or batteries
    • H01M50/572Means for preventing undesired use or discharge
    • H01M50/574Devices or arrangements for the interruption of current
    • H01M50/583Devices or arrangements for the interruption of current in response to current, e.g. fuses
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M2200/00Safety devices for primary or secondary batteries
    • H01M2200/10Temperature sensitive devices
    • H01M2200/103Fuse
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M2220/00Batteries for particular applications
    • H01M2220/10Batteries in stationary systems, e.g. emergency power source in plant
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M50/00Constructional details or processes of manufacture of the non-active parts of electrochemical cells other than fuel cells, e.g. hybrid cells
    • H01M50/20Mountings; Secondary casings or frames; Racks, modules or packs; Suspension devices; Shock absorbers; Transport or carrying devices; Holders
    • H01M50/271Lids or covers for the racks or secondary casings
    • H01M50/273Lids or covers for the racks or secondary casings characterised by the material
    • H01M50/278Organic material
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries

Definitions

  • the present invention relates to a battery module and a battery system using the same.
  • Battery systems are used to store electricity generated using natural energy, as well as for facility backup power. Conventionally, such a large battery system has been constructed with a lead-acid battery. However, due to recent demands for space saving and lead-free, a large battery system using a lithium ion secondary battery for the battery system. Development is progressing.
  • lithium ion secondary batteries such as a wound type and a laminated type.
  • a laminate-type lithium ion secondary battery is composed of a laminate in which positive and negative electrode plates are alternately laminated, a cell film that accommodates the laminate, an electrolyte filled in the cell film, and the like. Yes.
  • a plurality of such secondary batteries are generally combined and housed in a module case and used as a battery module.
  • an internal short-circuit detection plate is provided between cells, and when the internal short-circuit detection plates are short-circuited, the conductivity detection unit detects a short-circuit current, and is provided between cells by a signal from the conductivity detection unit.
  • a battery module is disclosed in which a bypass circuit is provided by turning on the relay to prevent abnormal heat generation of the cell.
  • Patent Document 1 if a short circuit does not occur up to the internal short circuit detection plate, there is a possibility that thermal runaway cannot be suppressed.
  • an object of the present invention is to provide a battery module that can reliably cut off the current flowing in the battery module no matter what the short circuit occurs.
  • the battery module according to the present invention includes a first cell group in which at least two or more cells are arranged in a row on a plane and electrically connected in series, and at least two or more cells in a row on a plane.
  • a first cell group and a second cell group electrically connected in series, and the first cell group and the second cell group are electrically connected in series via a current blocking mechanism.
  • each of the cells constituting the first cell group is arranged opposite to at least one of the cells constituting the second cell group.
  • the battery module 200a schematic diagram.
  • the cross-sectional schematic diagram of the battery module 220 which concerns on 3rd embodiment. Schematic which concerns on 4th embodiment.
  • Schematic of the battery module 200b. 1 is a schematic diagram of a battery system 300.
  • FIG. 1 is a schematic view of a battery module.
  • the battery module 200a includes a cell 101, a fuse 102, a partition plate 103, a bus bar 104, a positive terminal 105a, a negative terminal 105b, a module case 106, and output terminals 107 and 108.
  • the bus bar 104 that electrically connects the cells is fixed by an electrode fixture (not shown).
  • the cell 101 is composed of a laminated lithium ion battery cell.
  • the cell 101 is divided into a plurality of cells 101a arranged in one plane and a cell 101b arranged in a plane different from the plane in which the cells 101a are arranged.
  • the first cell group 201a includes a plurality of cells 101a arranged in one plane
  • the second cell group includes a plurality of cells 101b arranged in a plane different from the plane in which the cells 101a are arranged.
  • Called 201b The first cell group 201a and the second cell group 201b are arranged via a partition plate 103 made of metal.
  • at least one cell 101 (b) constituting the second cell group 201b is arranged at a position facing each cell 101 (a) constituting the first cell group 201a. It has become.
  • the first cell group 201a and the second cell group 201b are electrically connected via the fuse 102, so that a fuse can be reliably connected regardless of which cell is short-circuited.
  • a current loop through 102 is formed, and the fuse 102 can be reliably broken.
  • FIG. 2A shows a cross-sectional view of the battery module 200a.
  • the cells having the bus bar 104201 positive electrode terminal 105a and the negative electrode terminal 105b are arranged in a line on one plane to constitute the cell group 201.
  • the positive electrode terminal 105 a and the adjacent negative electrode terminal 105 b of each cell are connected in series via the bus bar 104.
  • any of a method using a crimping fitting, a welding method, and screwing may be employed.
  • the cells 101a and 101b are arranged so that the main surfaces of the cells constituting each cell group 105 face each other.
  • each cell 101a constituting the first battery cell group 201a is configured such that the cell 101b constituting the second cell group 201b is always arranged at an opposing position.
  • the fuse 102 can be surely broken and the short-circuit current can be interrupted.
  • the short circuit current can follow the current path 202 through the fuse 102, and the fuse 102 can be reliably connected. Can be broken.
  • FIG. 3A shows an overall perspective view of the battery module 200a
  • FIG. 3B is a diagram with the module cover of the battery module 200a shown in FIG. 3A removed.
  • the module cover is composed of two types, 110 and 111.
  • the cover 110 corresponds to the outer frame of the module and is made of resin.
  • the heat sink 111 covers the main surface of the cell. It is provided.
  • the heat radiating plate 111 is formed of a member having good heat dissipation.
  • it may be made of a metal such as copper or aluminum, or a resin material having better heat dissipation than the resin constituting the cover 110.
  • a heat sink 111 is also provided on the main surface of the cell 101b constituting the second cell group 201b.
  • the partition plate 103 may be made of either metal or resin, the metal is more likely to release heat generated from the inside of the battery module 200a during charging and discharging. With such a configuration, even if a short circuit occurs and a large amount of heat is generated instantaneously, it is possible to sufficiently dissipate heat and prevent secondary abnormalities due to temperature rise. .
  • the material of the bus bar 104 may be another metal plate such as aluminum or a copper plate plated.
  • the material of the module case 106 may be resin or metal, but the metal is more likely to release heat generated from the inside of the module during charging and discharging. Therefore, with this configuration, the thermal conductivity is improved not only in the main surface direction of the cell 101 but also in the inter-cell direction to which the bus bar 104 is connected. Therefore, a short circuit occurs temporarily, and a large amount of heat is instantaneously generated. Even if it occurs, it is possible to sufficiently dissipate heat, and it is possible to prevent the occurrence of secondary abnormality due to temperature rise.
  • the cell 101 is a laminated lithium ion battery cell.
  • the cell 101 has a rectangular shape.
  • a type cell may be used.
  • FIG. 4 shows a configuration using a square cell 115.
  • the heat dissipation is reduced as compared with the structure of the laminated lithium ion battery cell. Since the battery capacity increases, the battery module can be applied to a larger system.
  • the battery is not limited to the lithium ion secondary battery, and may be a nickel hydride battery or a lead storage battery.
  • the second embodiment will be described.
  • the number similar to the drawing number used in 1st embodiment is used.
  • the difference from the first embodiment is that the fuse 102 is used as the current interruption mechanism in the first embodiment, but in this embodiment, the combination of the current sensor 112, the switch 114, and the control circuit 113 is used. Is.
  • FIG. 5 shows a cross-sectional view of the battery module 210 of the second embodiment.
  • a current sensor 112 and a switch 114 are provided between the first cell group 101a and the second cell group 101b.
  • the current information acquired by the current sensor 112 is output to the control circuit 113.
  • the control circuit 113 converts the current sensor 110 into a current value and outputs a signal for turning off the switch 114 when a current of a certain level or more flows.
  • the current sensor 112 may be a shunt resistor or a Hall sensor.
  • the switch 114 may be a semiconductor switch or a mechanical switch.
  • the connection between the first cell group 101a and the second cell group 101b with a current value input in advance to the control circuit. Can be cut off. Therefore, by configuring the circuit to turn off the switch 113 when a minute current at the initial stage of a short circuit is detected, the short circuit current can be eliminated before a complete short circuit occurs, thereby preventing a dangerous phenomenon such as ignition. The safety of the battery module 210 is improved.
  • FIG. 6 shows the structure of the battery module 220 when three layers are stacked. In this embodiment, it has the 1st cell group 221a comprised from the cell 101a, the 2nd cell group 221b comprised from the cell 101b, and the 3rd cell group 221c comprised from the cell 101c.
  • the fourth embodiment will be described.
  • the number similar to the drawing number used in 1st embodiment is used.
  • This embodiment is different from the first embodiment in that the cells 101 are arranged in the depth direction.
  • FIG. 7 shows a configuration example of the battery module 230 when the cells 101 are also arranged in the depth direction.
  • a cell in which the positive electrode terminal 105a and the negative electrode terminal 105b are protruded from only one side of the cell 101 is used.
  • a laminated battery cell is used.
  • the bus bar 104 and the terminal 105 may be connected by any method of using a crimp fitting, a welding method, and screwing.
  • the cells 101 constituting the first cell group 231a are arranged to face at least one of the cells 101b constituting the second cell group 231b.
  • the fifth embodiment will be described.
  • the number similar to the drawing number used in 1st embodiment is used.
  • the battery system 300 is configured by assembling the battery module described in the first embodiment.
  • FIG. 8 shows a battery module 200b in which through holes 150 are provided at the four corners of the battery module 200a in order to improve assembly.
  • the battery system 300 shown in FIG. 9 is created by fixing and fixing the fixing rod 121 to the through hole 150.
  • a gap 122 having a predetermined interval is provided between the battery modules 200b.
  • this interval is preferably 1 mm or more from the viewpoint of generating ascending air current, and preferably 5 cm or less from the viewpoint of miniaturization. More preferably, it is 6 mm or more and 10 mm or less.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Electrochemistry (AREA)
  • General Chemical & Material Sciences (AREA)
  • Connection Of Batteries Or Terminals (AREA)

Abstract

In order to prevent short-circuit current due to nail penetration, a fuse must be provided between cells. Therefore, the number of fuses must correspond to the number of cells. This cell module is characterized in having: a first cell group in which at least two cells are aligned in one row in a plane, and are electrically connected in series; and a second cell group in which at least two cells are aligned in one row in a plane, and are electrically connected in series, the first cell group and the second cell group being electrically connected in series to each other via a current interruption mechanism, and being disposed facing each other, and each cell comprising the first cell group further being disposed facing at least one cell comprising the second cell group.

Description

電池モジュール並びにそれを用いた電池システムBattery module and battery system using the same
 本発明は,電池モジュール並びにそれを用いた電池システムに関する。 The present invention relates to a battery module and a battery system using the same.
 電池システムは、自然エネルギーを利用して発電した電力の蓄電や、施設のバックアップ電源などに利用されている。従来、このような大型の電池システムは鉛蓄電池で構築されていたが、近年の省スペース化の要求や、鉛フリー化の要求から、当該電池システムにリチウムイオン二次電池を用いた大型電池システムの開発が進んでいる。 Battery systems are used to store electricity generated using natural energy, as well as for facility backup power. Conventionally, such a large battery system has been constructed with a lead-acid battery. However, due to recent demands for space saving and lead-free, a large battery system using a lithium ion secondary battery for the battery system. Development is progressing.
 このリチウムイオン二次電池には、捲回型やラミネート型等様々な種類の形態がある。例えば、ラミネート型のリチウムイオン二次電池は、正負の電極板が交互に積層された積層体と、この積層体を収容するセルフィルムと、セルフィルム内部に充填された電解液などによって構成されている。このような二次電池は、一般的に複数組み合わせてモジュールケース内に収納して電池モジュールとして使用する。 There are various types of lithium ion secondary batteries such as a wound type and a laminated type. For example, a laminate-type lithium ion secondary battery is composed of a laminate in which positive and negative electrode plates are alternately laminated, a cell film that accommodates the laminate, an electrolyte filled in the cell film, and the like. Yes. A plurality of such secondary batteries are generally combined and housed in a module case and used as a battery module.
 近年、電池モジュールは小型化並びに大容量化の傾向にある。このため、電池モジュールの安全性に対する要求が厳しくなっている。安全性試験項目の1つに釘刺し試験がある。この試験の合格基準は、電池モジュールに対して釘をさしても発火・発煙を生じないことである。電池を積層した電池モジュールの場合、モジュールに対して釘をセルの積層方向に平行に刺すと、釘とセル間を介した短絡電流が継続的に流れる。この結果熱暴走が生じ、発火や発煙といった危険現象が生じる可能性が高くなる。このため、短絡電流の発生による熱暴走を防止する機構が必要である。 In recent years, battery modules tend to be smaller and larger in capacity. For this reason, the request | requirement with respect to the safety | security of a battery module has become severe. One of the safety test items is a nail penetration test. The acceptance criteria for this test is that no fire or smoke is generated even if a nail is applied to the battery module. In the case of a battery module in which batteries are stacked, when a nail is inserted into the module in parallel with the cell stacking direction, a short-circuit current between the nail and the cell flows continuously. As a result, thermal runaway occurs, and there is a high possibility that dangerous phenomena such as ignition and smoke will occur. For this reason, a mechanism for preventing thermal runaway due to occurrence of a short-circuit current is necessary.
 特許文献1には、セル間に内部短絡検出板を設け、当該内部短絡検出板同士が短絡した場合に導電検出部が短絡電流を検知し、当該導電検出部からの信号によりセル間に設けられたリレーをオンすることによってバイパス回路を設け、セルの異常発熱を防止する電池モジュールが開示されている。 In Patent Document 1, an internal short-circuit detection plate is provided between cells, and when the internal short-circuit detection plates are short-circuited, the conductivity detection unit detects a short-circuit current, and is provided between cells by a signal from the conductivity detection unit. A battery module is disclosed in which a bypass circuit is provided by turning on the relay to prevent abnormal heat generation of the cell.
特開2007-141511JP2007-141511
 しかし、特許文献1に開示されている発明では、内部短絡検出板まで短絡が発生しなかった場合には、熱暴走を抑制できない恐れがある。また、複数の内部短絡検出板を設けることが必要であり、さらに導電検出部も必要であるので部品点数が増大し、電池モジュールの大型化を招いてしまう。さらに、バイパス回路を設けるだけの構成であるので、完全にセルの電流を遮断することができない。 However, in the invention disclosed in Patent Document 1, if a short circuit does not occur up to the internal short circuit detection plate, there is a possibility that thermal runaway cannot be suppressed. In addition, it is necessary to provide a plurality of internal short-circuit detection plates, and further a conductivity detection unit is required, which increases the number of parts and leads to an increase in the size of the battery module. Furthermore, since it is a structure which only provides a bypass circuit, the electric current of a cell cannot be interrupted | blocked completely.
 上記課題に鑑み、本発明ではどのような状態で短絡が起こったとしても、確実に電池モジュール内に流れる電流を遮断することができる電池モジュールを提供することを課題とする。 In view of the above problems, an object of the present invention is to provide a battery module that can reliably cut off the current flowing in the battery module no matter what the short circuit occurs.
本発明に係る電池モジュールは、少なくとも2以上のセルが平面に1列に並べられ、かつそれぞれ電気的に直列に接続された第一のセル群と、少なくとも2以上のセルが平面に1列に並べられ、かつそれぞれ電気的に直列に接続された第二のセル群とを有し、前記第一のセル群と第二のセル群は互いに電流遮断機構を介して電気的に直列に接続され、かつ互いに対向して配置され、さらに前記第一のセル群を構成する各セルが、第二のセル群を構成する各セルの少なくとも1つと対向して配置されることを特徴とする。 The battery module according to the present invention includes a first cell group in which at least two or more cells are arranged in a row on a plane and electrically connected in series, and at least two or more cells in a row on a plane. A first cell group and a second cell group electrically connected in series, and the first cell group and the second cell group are electrically connected in series via a current blocking mechanism. And each of the cells constituting the first cell group is arranged opposite to at least one of the cells constituting the second cell group.
 本発明によれば、どのような状態で短絡が起こったとしても、確実に電池モジュール内に流れる電流を遮断することができる電池モジュールを提供することを課題とする。 According to the present invention, it is an object of the present invention to provide a battery module that can reliably cut off the current flowing in the battery module no matter what the short circuit occurs.
電池モジュール200a概略図。The battery module 200a schematic diagram. (a)電池モジュール200aを断面模式図、及び(b)(a)の一部拡大図。(A) The cross-sectional schematic diagram of the battery module 200a, and (b) A partially enlarged view of (a). (a)電池モジュール200aの斜視図、及び(b)電池モジュール200の分解斜視図。(A) The perspective view of the battery module 200a, (b) The exploded perspective view of the battery module 200. 電池モジュール202の概略図。Schematic of the battery module 202. FIG. 第二の実施形態に係る電池モジュール210の断面模式図。The cross-sectional schematic diagram of the battery module 210 which concerns on 2nd embodiment. 第三の実施形態に係る電池モジュール220の断面模式図。The cross-sectional schematic diagram of the battery module 220 which concerns on 3rd embodiment. 第四の実施形態に係る概略図。Schematic which concerns on 4th embodiment. 電池モジュール200bの概略図。Schematic of the battery module 200b. 電池システム300の概略図。1 is a schematic diagram of a battery system 300. FIG.
 以下,本発明の実施の形態について図面を参照して説明する。図1は、電池モジュールの概略図である。電池モジュール200aは、セル101、ヒューズ102、仕切り板103、バスバー104、正極端子105a、負極端子105b、モジュールケース106、出力端子107、108から構成される。なお、各セル間を電気的に接続するバスバー104は、図示しない電極固定具で固定されている。また、本実施形態ではセル101は、ラミネート型リチウムイオン電池セルで構成されている。ラミネート型リチウムイオン電池セルで構成することによって、仮に短絡が発生し、瞬間的に大きな熱が発生したとしても薄くて放熱性が良いため、温度上昇による二次的な異常の発生を防ぐことが可能となるので好ましい。 Hereinafter, embodiments of the present invention will be described with reference to the drawings. FIG. 1 is a schematic view of a battery module. The battery module 200a includes a cell 101, a fuse 102, a partition plate 103, a bus bar 104, a positive terminal 105a, a negative terminal 105b, a module case 106, and output terminals 107 and 108. The bus bar 104 that electrically connects the cells is fixed by an electrode fixture (not shown). In the present embodiment, the cell 101 is composed of a laminated lithium ion battery cell. By configuring with laminated lithium ion battery cells, even if a short circuit occurs, even if a large amount of heat is generated instantaneously, it is thin and has good heat dissipation, so that secondary abnormalities due to temperature rise can be prevented. This is preferable because it becomes possible.
 また、セル101は、一つの平面に複数枚並べられたセル101aと、セル101aが並べられた平面とは異なる平面に複数枚並べられたセル101bに分けられる。以下説明の便宜上、一つの平面に複数枚並べられたセル101aを第一のセル群201aと、セル101aが並べられた平面とは異なる平面に複数枚並べられたセル101bを第二のセル群201bと呼ぶ。第一のセル群201aと第二のセル群201bは金属で構成された仕切り板103を介して配置されている。また、第一のセル群201aを構成する各セル101(a)と対向する位置には、それぞれ第二のセル群201bを構成する各セル101(b)が少なくとも1枚配置されるような構成となっている。このような構成にした上で、第一のセル群201aと第二のセル群201bとがヒューズ102を介して電気的に接続することによって、どのセル間で短絡が起こったとしても確実にヒューズ102を介した電流ループが構成されることになり、確実にヒューズ102を破断させることができる。なお、より詳細な原理については、図2を用いて説明する。 The cell 101 is divided into a plurality of cells 101a arranged in one plane and a cell 101b arranged in a plane different from the plane in which the cells 101a are arranged. For convenience of explanation, the first cell group 201a includes a plurality of cells 101a arranged in one plane, and the second cell group includes a plurality of cells 101b arranged in a plane different from the plane in which the cells 101a are arranged. Called 201b. The first cell group 201a and the second cell group 201b are arranged via a partition plate 103 made of metal. Further, at least one cell 101 (b) constituting the second cell group 201b is arranged at a position facing each cell 101 (a) constituting the first cell group 201a. It has become. In such a configuration, the first cell group 201a and the second cell group 201b are electrically connected via the fuse 102, so that a fuse can be reliably connected regardless of which cell is short-circuited. A current loop through 102 is formed, and the fuse 102 can be reliably broken. A more detailed principle will be described with reference to FIG.
 図2(a)に電池モジュール200aの断面図を示す。バスバー104201正極端子105aと負極端子105bを有するセルが、一つの平面上に1列に並べられてセル群201を構成する。各セルの正極端子105aと隣の負極端子105bはバスバー104を介して直列に接続される。この接続は、圧着金具を用いる方法、溶接方法、ネジ止めのいずれの手法を採用しても構わない。各々のセル群105を構成するセルの主面がそれぞれ対向するようにセル101a、101bを配置する。ここで重要なのは、第一の電池セル群201aを構成するそれぞれのセル101aには、対向する位置に必ず第二のセル群201bを構成するセル101bが配置されている構成にすることである。このように配置することにより、いずれの場所を釘刺ししても釘とセルを介した短絡電流がヒューズを介して流れる構成となる。そのため、確実にヒューズ102を破断させることができ、短絡電流を遮断することが可能となる。例えば一例としては、図2(b)に示す位置でセル101a、101b間に短絡が起きた場合には、短絡電流がヒューズ102を介した電流経路202をたどらせることができ、確実にヒューズ102を破断させることができる。 FIG. 2A shows a cross-sectional view of the battery module 200a. The cells having the bus bar 104201 positive electrode terminal 105a and the negative electrode terminal 105b are arranged in a line on one plane to constitute the cell group 201. The positive electrode terminal 105 a and the adjacent negative electrode terminal 105 b of each cell are connected in series via the bus bar 104. For this connection, any of a method using a crimping fitting, a welding method, and screwing may be employed. The cells 101a and 101b are arranged so that the main surfaces of the cells constituting each cell group 105 face each other. What is important here is that each cell 101a constituting the first battery cell group 201a is configured such that the cell 101b constituting the second cell group 201b is always arranged at an opposing position. By arranging in this way, a short-circuit current through the nail and the cell flows through the fuse regardless of where the nail is inserted. Therefore, the fuse 102 can be surely broken and the short-circuit current can be interrupted. For example, as an example, when a short circuit occurs between the cells 101 a and 101 b at the position shown in FIG. 2B, the short circuit current can follow the current path 202 through the fuse 102, and the fuse 102 can be reliably connected. Can be broken.
 また、本実施形態では、セル群105を構成するセル101が複数枚積層されるような電池モジュールの構成となっていないため、確実に短絡防止するために各セル間に短絡電流の遮断機構を設ける必要が無いため、部品点数が削減することが可能となる。さらに、本実施形態の副次的な効果として、セル群105を構成するセル101が複数枚積層されるような構成となっていないため、各セルの放熱性が向上する。こ
 なお、本実施例は、1つのセル群に4セルが含まれる構成としたが、2セル以上並べた全ての場合に適用できるのは言うまでも無い。
Moreover, in this embodiment, since it is not the structure of a battery module in which a plurality of cells 101 constituting the cell group 105 are stacked, a short-circuit current interrupting mechanism is provided between the cells in order to reliably prevent a short circuit. Since there is no need to provide it, the number of parts can be reduced. Further, as a secondary effect of the present embodiment, since a plurality of cells 101 constituting the cell group 105 are not stacked, the heat dissipation of each cell is improved. In addition, although the present Example was set as the structure by which 4 cells are included in one cell group, it cannot be overemphasized that it is applicable to all the cases which arranged 2 cells or more.
 続いて、図3を用いて、より具体的に電池モジュール200aの構造をを示す。図3(a)は、当該電池モジュール200aの全体斜視図を示したものであり、図3(b)は図3(a)の電池モジュール200aのモジュールカバーを外した図である。この例では、モジュールカバーは110、111の2種類から構成されており、カバー110はモジュールの外枠に該当し樹脂で作成したものであり放熱板111放熱板111はセル主面を覆うために設けたものである。放熱板111は放熱性の良い部材で構成される。例えば、銅やアルミなどの金属や、カバー110を構成する樹脂よりも放熱性の良い樹脂材などで構成されていればよい。このような部材で構成することによって、仮に短絡が発生し、瞬間的に大きな熱が発生したとしても十分放熱することが可能となり、温度上昇による二次的な異常の発生を防ぐことが可能となる。 Subsequently, the structure of the battery module 200a will be described more specifically with reference to FIG. 3A shows an overall perspective view of the battery module 200a, and FIG. 3B is a diagram with the module cover of the battery module 200a shown in FIG. 3A removed. In this example, the module cover is composed of two types, 110 and 111. The cover 110 corresponds to the outer frame of the module and is made of resin. The heat sink 111 covers the main surface of the cell. It is provided. The heat radiating plate 111 is formed of a member having good heat dissipation. For example, it may be made of a metal such as copper or aluminum, or a resin material having better heat dissipation than the resin constituting the cover 110. By configuring with such a member, even if a short circuit occurs, even if a large amount of heat is generated instantaneously, it is possible to sufficiently dissipate heat, and it is possible to prevent secondary abnormalities due to temperature rise. Become.
 なお、図示していないが、第二のセル群201bを構成するセル101bの主面にも放熱板111が設けられている。 Although not shown, a heat sink 111 is also provided on the main surface of the cell 101b constituting the second cell group 201b.
 仕切り板103は材質が金属、樹脂のいずれを用いてもよいが、金属の方が充放電時に電池モジュール200a内部から発生する熱が外部に放出しやすくなる。このような構成にすることによって、仮に短絡が発生し、瞬間的に大きな熱が発生したとしても十分放熱することが可能となり、温度上昇による二次的な異常の発生を防ぐことが可能となる。 Although the partition plate 103 may be made of either metal or resin, the metal is more likely to release heat generated from the inside of the battery module 200a during charging and discharging. With such a configuration, even if a short circuit occurs and a large amount of heat is generated instantaneously, it is possible to sufficiently dissipate heat and prevent secondary abnormalities due to temperature rise. .
 バスバー104の材質として、アルミニウム等他の金属板でも、銅板上にメッキを施したものでも構わない。モジュールケース106の材質は樹脂でも金属でもよいが、金属の方が充放電時にモジュール内部から発生する熱が外部に放出されやすくなる。そのため、当該構成にすることによって、セル101の主面方向だけでなく、バスバー104が接続されているセル間方向でも熱伝導性が良くなるので、仮に短絡が発生し、瞬間的に大きな熱が発生したとしても十分放熱することが可能となり、温度上昇による二次的な異常の発生を防ぐことが可能となる。 The material of the bus bar 104 may be another metal plate such as aluminum or a copper plate plated. The material of the module case 106 may be resin or metal, but the metal is more likely to release heat generated from the inside of the module during charging and discharging. Therefore, with this configuration, the thermal conductivity is improved not only in the main surface direction of the cell 101 but also in the inter-cell direction to which the bus bar 104 is connected. Therefore, a short circuit occurs temporarily, and a large amount of heat is instantaneously generated. Even if it occurs, it is possible to sufficiently dissipate heat, and it is possible to prevent the occurrence of secondary abnormality due to temperature rise.
 なお、本実施形態では、電池モジュール200aの小型化、放熱性向上という観点から、セル101をラミネート型リチウムイオン電池セルとしたが、ラミネート型リチウムイオン電池セルに拘らず、平面形状であれば角型セルでも構わない。 In this embodiment, from the viewpoint of downsizing the battery module 200a and improving heat dissipation, the cell 101 is a laminated lithium ion battery cell. However, regardless of the laminated lithium ion battery cell, the cell 101 has a rectangular shape. A type cell may be used.
 具体的には、図4は角型セル115を用いた構成となっており、角型セル115を用いた場合には、ラミネート型リチウムイオン電池セルの構造と比較して放熱性は低下するが、電池容量が増加するため、より大型のシステムに適用可能な電池モジュールとなる。 Specifically, FIG. 4 shows a configuration using a square cell 115. When the square cell 115 is used, the heat dissipation is reduced as compared with the structure of the laminated lithium ion battery cell. Since the battery capacity increases, the battery module can be applied to a larger system.
 角型セルの場合でも、ラミネート型リチウムイオン電池セルの例で述べた方法と同様の方法で形成することが可能である。なお、リチウムイオン二次電池に限ることなくニッケル水素電池や鉛蓄電池でも構わないのは言うまでも無い。 Even in the case of a square cell, it can be formed by a method similar to the method described in the example of the laminated lithium ion battery cell. Needless to say, the battery is not limited to the lithium ion secondary battery, and may be a nickel hydride battery or a lead storage battery.
 以上、上述したように本発明の構成を用いることによって、部品点数を削減しつつも確実に短絡電流を遮断可能な電池モジュールを提供することが可能となる。 As described above, by using the configuration of the present invention as described above, it is possible to provide a battery module that can reliably cut off a short-circuit current while reducing the number of components.
 以下、第二の実施形態について説明する。なお、第一の実施形態と同様の構成については、第一の実施形態で用いた図面番号と同様の番号を用いている。具体的に第一の実施形態と異なる点は、第一の実施形態では電流遮断機構としてヒューズ102を用いていたが、本実施形態では電流センサ112とスイッチ114及び制御回路113の組み合わせに代えたものである。 Hereinafter, the second embodiment will be described. In addition, about the structure similar to 1st embodiment, the number similar to the drawing number used in 1st embodiment is used. Specifically, the difference from the first embodiment is that the fuse 102 is used as the current interruption mechanism in the first embodiment, but in this embodiment, the combination of the current sensor 112, the switch 114, and the control circuit 113 is used. Is.
 図5は、第二の実施形態の電池モジュール210の断面図を示すものである。本実施形態では、第一のセル群101a及び第二のセル群101bの間に電流センサ112、スイッチ114が設けられている。電流センサ112で取得された電流情報は制御回路113に出力され、制御回路113は電流センサ110から電流値に換算し一定以上の電流が流れた場合にスイッチ114をオフする信号を出力する。 FIG. 5 shows a cross-sectional view of the battery module 210 of the second embodiment. In the present embodiment, a current sensor 112 and a switch 114 are provided between the first cell group 101a and the second cell group 101b. The current information acquired by the current sensor 112 is output to the control circuit 113. The control circuit 113 converts the current sensor 110 into a current value and outputs a signal for turning off the switch 114 when a current of a certain level or more flows.
 ここで、電流センサ112はシャント抵抗でもホールセンサでもよい。また、スイッチ114は半導体スイッチでも機械的スイッチでも構わない。 Here, the current sensor 112 may be a shunt resistor or a Hall sensor. The switch 114 may be a semiconductor switch or a mechanical switch.
 このようにして構成した電池モジュール210では、いずれかのセル間で短絡電流が流れた場合に、制御回路に予めインプットした電流値で第一のセル群101aと、第二のセル群101bの接続を遮断することが出来る。そのため、短絡初期の微小な電流を検知した場合に回路をスイッチ113をオフする構成とすることによって、完全な短絡が起こる前に短絡電流を消失させて発火等の危険現象を未然に防止でき、電池モジュール210の安全性が向上する。 In the battery module 210 configured as described above, when a short-circuit current flows between any of the cells, the connection between the first cell group 101a and the second cell group 101b with a current value input in advance to the control circuit. Can be cut off. Therefore, by configuring the circuit to turn off the switch 113 when a minute current at the initial stage of a short circuit is detected, the short circuit current can be eliminated before a complete short circuit occurs, thereby preventing a dangerous phenomenon such as ignition. The safety of the battery module 210 is improved.
 以下、第三の実施形態について説明する。なお、第一の実施形態と同様の構成については、第一の実施形態で用いた図面番号と同様の番号を用いている。本実施形態で第一の実施形態と異なる点は、第一の実施形態では電池モジュール200aはセル列2層から構成されていたが、本実施形態では3層の電池モジュールに対しても適用できる。図6に、3層積層した時の電池モジュール220の構造を示す。本実施形態では、セル101aから構成される第一のセル群221a、セル101bから構成される第二のセル群221b、セル101cから構成される第三のセル群221cを有している。当該実施形態の場合には、各セル群221間にヒューズ102を設ける必要があるので、電池モジュール220単体に合計2個のヒューズが用いる必要があり、部品点数は増える。また、放熱性の面でも第一の実施形態よりも劣るが、第一の実施形態と比較して電池モジュール220の厚さが厚くなるため、長尺モジュールとした場合でも十分な強度を確保することが出来る。したがって、電池モジュールを長尺にした場合であっても、強度を確保しつつ、電池モジュールの安全性を確保できる。 Hereinafter, the third embodiment will be described. In addition, about the structure similar to 1st embodiment, the number similar to the drawing number used in 1st embodiment is used. In this embodiment, the difference from the first embodiment is that, in the first embodiment, the battery module 200a is composed of two cell rows, but in this embodiment, it can also be applied to a three-layer battery module. . FIG. 6 shows the structure of the battery module 220 when three layers are stacked. In this embodiment, it has the 1st cell group 221a comprised from the cell 101a, the 2nd cell group 221b comprised from the cell 101b, and the 3rd cell group 221c comprised from the cell 101c. In the case of this embodiment, since it is necessary to provide the fuse 102 between each cell group 221, it is necessary to use a total of two fuses for the battery module 220 alone, and the number of parts increases. Moreover, although it is inferior to 1st embodiment also in the surface of heat dissipation, since the thickness of the battery module 220 becomes thick compared with 1st embodiment, sufficient intensity | strength is ensured even when it is set as a long module. I can do it. Therefore, even when the battery module is elongated, the safety of the battery module can be ensured while ensuring the strength.
 以下、第四の実施形態について説明する。なお、第一の実施形態と同様の構成については、第一の実施形態で用いた図面番号と同様の番号を用いている。本実施形態で第一の実施形態と異なる点は、セル101を奥行き方向にも並べた点である。 Hereinafter, the fourth embodiment will be described. In addition, about the structure similar to 1st embodiment, the number similar to the drawing number used in 1st embodiment is used. This embodiment is different from the first embodiment in that the cells 101 are arranged in the depth direction.
 図7に、セル101を奥行き方向にも配置した場合の電池モジュール230の構成例を示す。これまでの実施形態では、正極端子105aと負極端子105bがセル101の一方側のみから出ているセルを使用したが、本実施形態では正極端子105aと負極端子105bがそれぞれセルの反対側から出るラミネート型電池セルを用いている。また、バスバー104と端子105の接続は、実施例1と同様、圧着金具を用いる方法、溶接方法、ネジ止めのいずれの手法を採用しても構わない。 FIG. 7 shows a configuration example of the battery module 230 when the cells 101 are also arranged in the depth direction. In the embodiments so far, a cell in which the positive electrode terminal 105a and the negative electrode terminal 105b are protruded from only one side of the cell 101 is used. A laminated battery cell is used. In addition, as in the first embodiment, the bus bar 104 and the terminal 105 may be connected by any method of using a crimp fitting, a welding method, and screwing.
 なお、第一の実施形態と同様に、第一のセル群231aを構成するセル101は、第二のセル群231bを構成するセル101bの少なくとも1つと対向するように配置されている。このような構成にすることによって、第一の実施形態のように一方方向のみに長いモジュールではなく、奥行き方向にも広い電池モジュールを作成することが出来るので、より高容量でかつ放熱性に優れ、安全性も確保した電池モジュールを提供することが可能となる。 Note that, similarly to the first embodiment, the cells 101 constituting the first cell group 231a are arranged to face at least one of the cells 101b constituting the second cell group 231b. By adopting such a configuration, it is possible to create a battery module that is not long in only one direction as in the first embodiment but also wide in the depth direction, so it has higher capacity and excellent heat dissipation. Thus, it is possible to provide a battery module that ensures safety.
 以下、第五の実施形態について説明する。なお、第一の実施形態と同様の構成については、第一の実施形態で用いた図面番号と同様の番号を用いている。本実施例では、第一の実施形態に記載した電池モジュールを組み立てて電池システム300を構成した例について示す。 Hereinafter, the fifth embodiment will be described. In addition, about the structure similar to 1st embodiment, the number similar to the drawing number used in 1st embodiment is used. In this example, an example in which the battery system 300 is configured by assembling the battery module described in the first embodiment will be described.
 図8には、組立性向上のため、電池モジュール200aの四隅に貫通穴150を設けた電池モジュール200bが示されている。当該貫通穴150に固定棒121を固定通して固定することによって、図9に示す電池システム300が作成される。なお、電池システム300を構成する際には各電池モジュール200b間に所定間隔のあけた隙間122を設ける。この隙間123を設けることにより、充放電時に電池が発熱すると隙間にある空気が加熱されて上昇気流が生じ、電池システム外に熱が放出される。具体的には、この間隔は上昇気流を発生させる観点から1mm以上が好ましく、小型化の観点から5cm以下が好ましい。また、より好ましくは、6mm以上10mm以下であるとよい。このような構成にすることによって、自然対流を流体抵抗を低減し、かつ上昇気流を効率よく電池モジュール200b表面に接触させることが可能であるため、冷却効率を向上させることが可能となる。 FIG. 8 shows a battery module 200b in which through holes 150 are provided at the four corners of the battery module 200a in order to improve assembly. The battery system 300 shown in FIG. 9 is created by fixing and fixing the fixing rod 121 to the through hole 150. When the battery system 300 is configured, a gap 122 having a predetermined interval is provided between the battery modules 200b. By providing the gap 123, when the battery generates heat during charging / discharging, the air in the gap is heated to generate an upward air flow, and heat is released outside the battery system. Specifically, this interval is preferably 1 mm or more from the viewpoint of generating ascending air current, and preferably 5 cm or less from the viewpoint of miniaturization. More preferably, it is 6 mm or more and 10 mm or less. By adopting such a configuration, it is possible to reduce the fluid resistance of natural convection and to bring the rising airflow into contact with the surface of the battery module 200b efficiently, so that the cooling efficiency can be improved.
 このような構成にすることによって、仮に短絡が発生し、瞬間的に大きな熱が発生したとしても十分放熱することが可能となり、電池システムの構成の観点からも温度上昇による二次的な異常の発生を防ぐことが可能となる。 With such a configuration, even if a short circuit occurs and a large amount of heat is generated instantaneously, it becomes possible to dissipate heat sufficiently, and from the viewpoint of the configuration of the battery system, secondary abnormalities due to temperature rise Occurrence can be prevented.
 以上、本発明の実施形態について詳述したが、本発明は、前記実施形態に限定されるものではなく、特許請求の範囲に記載された本発明の精神を逸脱しない範囲で、種々の設計変更を行なうことができるものである。例えば、前記した実施形態は本発明をわかりやすく説明するために詳細に記載したものであり、必ずしも説明した全ての構成を備えるものに限定されるものではない。また、ある実施形態の構成の一部を他の実施形態の構成に置き換えることが可能であり、また、ある実施形態の構成に他の実施形態の構成を加えることも可能である。さらに、各実施形態の構成の一部について、他の構成の追加・削除・置換をすることが可能である。 Although the embodiments of the present invention have been described in detail above, the present invention is not limited to the above-described embodiments, and various design changes can be made without departing from the spirit of the present invention described in the claims. Can be performed. For example, the above-described embodiments are described in detail for easy understanding of the present invention, and are not necessarily limited to those having all the configurations described. Further, a part of the configuration of an embodiment can be replaced with the configuration of another embodiment, and the configuration of another embodiment can be added to the configuration of an embodiment. Furthermore, it is possible to add, delete, and replace other configurations for a part of the configuration of each embodiment.
100 電池モジュール
101 ラミネート型リチウムイオン電池セル
102 ヒューズ
103 仕切り板
104 バスバー
105a 正極端子
105b 負極端子
DESCRIPTION OF SYMBOLS 100 Battery module 101 Laminated lithium ion battery cell 102 Fuse 103 Partition plate 104 Bus bar 105a Positive electrode terminal 105b Negative electrode terminal

Claims (8)

  1.  少なくとも2以上のセルが平面に1列に並べられ、かつそれぞれ電気的に直列に接続された第一のセル群と、
     少なくとも2以上のセルが平面に1列に並べられ、かつそれぞれ電気的に直列に接続された第二のセル群とを有し、
     前記第一のセル群と第二のセル群は互いに電流遮断機構を介して電気的に直列に接続され、かつ互いに対向して配置され、
     さらに前記第一のセル群を構成する各セルが、第二のセル群を構成する各セルの少なくとも1つと対向して配置されることを特徴とする電池モジュール。
    A first cell group in which at least two or more cells are arranged in a line on a plane and are electrically connected in series;
    A second cell group in which at least two or more cells are arranged in a line on a plane and are electrically connected to each other in series,
    The first cell group and the second cell group are electrically connected in series with each other through a current interrupting mechanism, and arranged to face each other,
    Furthermore, each cell which comprises said 1st cell group is arrange | positioned facing at least 1 of each cell which comprises a 2nd cell group, The battery module characterized by the above-mentioned.
  2.  請求項1に記載の電池モジュールにおいて、前記電流遮断機構はヒューズであることを特徴とする電池モジュール。 2. The battery module according to claim 1, wherein the current interruption mechanism is a fuse.
  3.  請求項1に記載の電池モジュールにおいて、前記電流遮断機構は電流センサとスイッチであることを特徴とする電池モジュール並びにそれを用いた電池システム。 2. The battery module according to claim 1, wherein the current interrupt mechanism is a current sensor and a switch, and a battery system using the battery module.
  4.  請求項1乃至3のいずれかに記載の電池モジュールにおいて、
     前記第一のセル群と前記第二のセル群とは互いに金属で構成された仕切り板を介して配置されていることを特徴とする電池モジュール。
    The battery module according to any one of claims 1 to 3,
    The battery module, wherein the first cell group and the second cell group are arranged via a partition plate made of metal.
  5.  請求項1乃至4のいずれかに記載の電池モジュールにおいて、
     前記第一のセル群を構成する各セルにおける、前記第二のセル群と対向する面と反対側の面にはそれぞれ放熱板が設けられていることを特徴とする電池モジュール。
    The battery module according to any one of claims 1 to 4,
    A battery module, wherein a heat radiating plate is provided on a surface opposite to a surface facing the second cell group in each cell constituting the first cell group.
  6.  請求項1乃至5のいずれかに記載の電池モジュールにおいて、
     前記セルは、ラミネート型リチウムイオン電池セルであることを特徴とする電池モジュール。
    The battery module according to any one of claims 1 to 5,
    The battery module is a laminated lithium ion battery cell.
  7.  請求項1乃至請求項6のいずれかに記載の電池モジュールを複数有する電池システムにおいて、
     それぞれの前記電池モジュール間は所定間隔離れて配置されることを特徴とする電池システム。
    In the battery system having a plurality of battery modules according to any one of claims 1 to 6,
    A battery system, wherein the battery modules are spaced apart from each other by a predetermined distance.
  8.  請求項7に記載の電池システムにおいて、
     前記所定間隔は、6mm~10mmであることを特徴とする電池システム。
    The battery system according to claim 7,
    The battery system according to claim 1, wherein the predetermined interval is 6 mm to 10 mm.
PCT/JP2013/050351 2013-01-11 2013-01-11 Cell module and cell system using same WO2014109041A1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
PCT/JP2013/050351 WO2014109041A1 (en) 2013-01-11 2013-01-11 Cell module and cell system using same

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/JP2013/050351 WO2014109041A1 (en) 2013-01-11 2013-01-11 Cell module and cell system using same

Publications (1)

Publication Number Publication Date
WO2014109041A1 true WO2014109041A1 (en) 2014-07-17

Family

ID=51166710

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2013/050351 WO2014109041A1 (en) 2013-01-11 2013-01-11 Cell module and cell system using same

Country Status (1)

Country Link
WO (1) WO2014109041A1 (en)

Cited By (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2021123714A1 (en) * 2019-12-19 2021-06-24 Dyson Technology Limited Battery pack
WO2021123713A1 (en) * 2019-12-19 2021-06-24 Dyson Technology Limited Battery pack
WO2021123715A1 (en) * 2019-12-19 2021-06-24 Dyson Technology Limited Battery pack
WO2021123716A1 (en) * 2019-12-19 2021-06-24 Dyson Technology Limited Battery pack
CN113067068A (en) * 2020-01-02 2021-07-02 大众汽车股份公司 Vehicle battery
JP2022537748A (en) * 2019-07-10 2022-08-29 エルジー エナジー ソリューション リミテッド Battery modules, battery racks containing same and power storage devices
WO2023207270A1 (en) * 2022-04-29 2023-11-02 比亚迪股份有限公司 Battery module, nail penetration protection method for battery module, and vehicle

Citations (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH02138858U (en) * 1989-04-26 1990-11-20
JPH0620716A (en) * 1992-06-30 1994-01-28 Yuasa Corp Nickel-zinc storage battery
JPH06223815A (en) * 1993-01-22 1994-08-12 Ngk Insulators Ltd Battery
JP2003346748A (en) * 2002-05-29 2003-12-05 Fuji Heavy Ind Ltd Battery assembly unit
JP2007506242A (en) * 2003-10-14 2007-03-15 エルジー・ケム・リミテッド Cartridge type lithium ion polymer battery pack
JP2007520180A (en) * 2003-10-14 2007-07-19 ブラック アンド デッカー インク Secondary battery, power tool, charger, and protection method, protection circuit, and protection device for battery pack adapted to provide protection from battery pack failure conditions
JP2009252567A (en) * 2008-04-08 2009-10-29 Nissei Kogyo Yugenkoshi Battery pack
JP2009289431A (en) * 2008-05-27 2009-12-10 Keihin Corp Power supply control device for battery pack
WO2009153911A1 (en) * 2008-06-20 2009-12-23 パナソニック株式会社 Battery pack

Patent Citations (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH02138858U (en) * 1989-04-26 1990-11-20
JPH0620716A (en) * 1992-06-30 1994-01-28 Yuasa Corp Nickel-zinc storage battery
JPH06223815A (en) * 1993-01-22 1994-08-12 Ngk Insulators Ltd Battery
JP2003346748A (en) * 2002-05-29 2003-12-05 Fuji Heavy Ind Ltd Battery assembly unit
JP2007506242A (en) * 2003-10-14 2007-03-15 エルジー・ケム・リミテッド Cartridge type lithium ion polymer battery pack
JP2007520180A (en) * 2003-10-14 2007-07-19 ブラック アンド デッカー インク Secondary battery, power tool, charger, and protection method, protection circuit, and protection device for battery pack adapted to provide protection from battery pack failure conditions
JP2009252567A (en) * 2008-04-08 2009-10-29 Nissei Kogyo Yugenkoshi Battery pack
JP2009289431A (en) * 2008-05-27 2009-12-10 Keihin Corp Power supply control device for battery pack
WO2009153911A1 (en) * 2008-06-20 2009-12-23 パナソニック株式会社 Battery pack

Cited By (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2022537748A (en) * 2019-07-10 2022-08-29 エルジー エナジー ソリューション リミテッド Battery modules, battery racks containing same and power storage devices
JP7321298B2 (en) 2019-07-10 2023-08-04 エルジー エナジー ソリューション リミテッド Battery modules, battery racks containing same and power storage devices
WO2021123714A1 (en) * 2019-12-19 2021-06-24 Dyson Technology Limited Battery pack
WO2021123713A1 (en) * 2019-12-19 2021-06-24 Dyson Technology Limited Battery pack
WO2021123715A1 (en) * 2019-12-19 2021-06-24 Dyson Technology Limited Battery pack
WO2021123716A1 (en) * 2019-12-19 2021-06-24 Dyson Technology Limited Battery pack
CN114830421A (en) * 2019-12-19 2022-07-29 戴森技术有限公司 Battery pack
CN114846684A (en) * 2019-12-19 2022-08-02 戴森技术有限公司 Battery pack
CN114846683A (en) * 2019-12-19 2022-08-02 戴森技术有限公司 Battery pack
CN113067068A (en) * 2020-01-02 2021-07-02 大众汽车股份公司 Vehicle battery
WO2023207270A1 (en) * 2022-04-29 2023-11-02 比亚迪股份有限公司 Battery module, nail penetration protection method for battery module, and vehicle

Similar Documents

Publication Publication Date Title
WO2014109041A1 (en) Cell module and cell system using same
JP4877373B2 (en) Assembled battery and manufacturing method of assembled battery
EP3664187B1 (en) Cylindrical battery cell assembly with improved space utilization and safety, and battery module comprising same
KR100920207B1 (en) Power Switching Module for Battery Module Assembly
KR101853397B1 (en) Battery Module
US20060076923A1 (en) Methods and systems for assembling batteries
WO2014093607A1 (en) Battery module with high thermal conductivity and assembling method thereof
JP5364204B2 (en) Battery module
JP2019091522A (en) Battery pack
BR112014002635B1 (en) SECONDARY BATTERY ASSEMBLY AND METHOD OF MAKING A SECONDARY BATTERY ASSEMBLY
JP2011243426A (en) Battery pack and battery pack connector
WO2014010419A1 (en) Battery assembly
US20120308875A1 (en) Battery module
US11843101B2 (en) Battery pack
JP2014170633A (en) Battery module
JP7306617B2 (en) Battery modules, battery packs containing same and automobiles
CN108370007B (en) Battery module case, battery module, battery pack, battery and method for manufacturing the same
JP2012212558A (en) Battery module
JP2014127403A (en) Battery module
JP2013168214A (en) Battery module
US20200194765A1 (en) Secondary battery
JP2010238653A (en) Rectangular sealed battery
CN114556681B (en) Battery module and battery pack including the same
JP4761742B2 (en) Pack battery
KR20190042990A (en) Battery Pack Comprising safety member and elastic member

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 13871030

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 13871030

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: JP