JP3290395B2 - Direct contact type condensed water recovery system for fuel cell and direct contact type steam condenser - Google Patents

Direct contact type condensed water recovery system for fuel cell and direct contact type steam condenser

Info

Publication number
JP3290395B2
JP3290395B2 JP32287097A JP32287097A JP3290395B2 JP 3290395 B2 JP3290395 B2 JP 3290395B2 JP 32287097 A JP32287097 A JP 32287097A JP 32287097 A JP32287097 A JP 32287097A JP 3290395 B2 JP3290395 B2 JP 3290395B2
Authority
JP
Japan
Prior art keywords
condensed water
direct contact
fuel cell
water
exhaust gas
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
JP32287097A
Other languages
Japanese (ja)
Other versions
JPH11162495A (en
Inventor
昌樹 山本
真樹 石沢
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nippon Telegraph and Telephone Corp
Original Assignee
Nippon Telegraph and Telephone Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Family has litigation
First worldwide family litigation filed litigation Critical https://patents.darts-ip.com/?family=18148543&utm_source=google_patent&utm_medium=platform_link&utm_campaign=public_patent_search&patent=JP3290395(B2) "Global patent litigation dataset” by Darts-ip is licensed under a Creative Commons Attribution 4.0 International License.
Application filed by Nippon Telegraph and Telephone Corp filed Critical Nippon Telegraph and Telephone Corp
Priority to JP32287097A priority Critical patent/JP3290395B2/en
Publication of JPH11162495A publication Critical patent/JPH11162495A/en
Application granted granted Critical
Publication of JP3290395B2 publication Critical patent/JP3290395B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/30Hydrogen technology
    • Y02E60/50Fuel cells

Description

【発明の詳細な説明】DETAILED DESCRIPTION OF THE INVENTION

【0001】[0001]

【発明の属する技術分野】本発明は、燃料電池排ガスか
ら水の回収および回収した水の処理を行う燃料電池用直
接接触式凝縮水回収システム及び直接接触式水蒸気凝縮
器に関するものである。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a direct contact type condensed water recovery system for a fuel cell and a direct contact type steam condenser for recovering water from a fuel cell exhaust gas and treating the recovered water.

【0002】[0002]

【従来の技術】図2は従来の燃料電池からの水回収例を
示す構成説明図である。図において、101は燃料電池
システム、102は改質器、103は改質器内バーナ、
104は改質器燃焼排ガス供給配管、105は空気極排
ガス供給配管、106は排ガス水回収用ガス−水系隔壁
式水蒸気凝縮器、107は2次冷却水循環ポンプ、10
8は2次冷却水、109は冷却塔、110は排気管、1
11は凝縮水配管、112は水タンク、113は凝縮水
ポンプ、114は水処理装置、115はイオン交換樹
脂、116は空気極、117は燃料極、118は冷却
部、119は熱利用装置、120は水蒸気分離器、12
1は水蒸気、122は水蒸気、123は電池冷却水、1
24は都市ガス、125は空気である。
2. Description of the Related Art FIG. 2 is a structural explanatory view showing an example of water recovery from a conventional fuel cell. In the figure, 101 is a fuel cell system, 102 is a reformer, 103 is a burner in the reformer,
104 is a reformer combustion exhaust gas supply pipe, 105 is an air electrode exhaust gas supply pipe, 106 is a gas-water system partition type steam condenser for collecting exhaust gas water, 107 is a secondary cooling water circulation pump, 10
8 is secondary cooling water, 109 is a cooling tower, 110 is an exhaust pipe, 1
11 is a condensed water pipe, 112 is a water tank, 113 is a condensed water pump, 114 is a water treatment device, 115 is an ion exchange resin, 116 is an air electrode, 117 is a fuel electrode, 118 is a cooling unit, 119 is a heat utilization device, 120 is a steam separator, 12
1 is steam, 122 is steam, 123 is battery cooling water, 1
24 is city gas, and 125 is air.

【0003】まず、原燃料である都市ガス124と燃料
電池システム101内の水蒸気分離器120から供給さ
れる水蒸気122を混合した混合ガスが、改質器102
へと供給され、都市ガス124と水蒸気分離器120か
ら供給される水蒸気122とを反応させて主燃料である
水素が生成される。改質器102内では都市ガス(メタ
ンを主成分とする炭化水素)124と水蒸気122を触
媒上で反応させて水素を生成する水蒸気改質反応が行わ
れる。この反応は吸熱反応であるので、改質器102を
一定温度に維持するために、燃料極117から排出され
る余剰水素を改質器102内のバーナ103で燃焼させ
ている。この結果、改質器102からの燃焼排ガスは炭
酸ガス、水蒸気、窒素、酸素の混合ガスとして排出され
る。この改質器燃焼排ガスは、改質器燃焼排ガス供給配
管104を通って、排ガス水回収用ガス−水系隔壁式水
蒸気凝縮器106に導かれる。
[0003] First, a mixed gas obtained by mixing city gas 124 as a raw fuel and steam 122 supplied from a steam separator 120 in the fuel cell system 101 is supplied to a reformer 102.
And reacts the city gas 124 with the water vapor 122 supplied from the water vapor separator 120 to generate hydrogen as the main fuel. In the reformer 102, a steam reforming reaction is performed in which city gas (hydrocarbon mainly composed of methane) 124 and steam 122 are reacted on a catalyst to generate hydrogen. Since this reaction is an endothermic reaction, surplus hydrogen discharged from the fuel electrode 117 is burned by the burner 103 in the reformer 102 in order to maintain the reformer 102 at a constant temperature. As a result, the combustion exhaust gas from the reformer 102 is discharged as a mixed gas of carbon dioxide, steam, nitrogen, and oxygen. The reformer combustion exhaust gas passes through a reformer combustion exhaust gas supply pipe 104 and is guided to an exhaust gas water recovery gas-water system partition type steam condenser 106.

【0004】一方、空気極116と燃料極117におい
て発電反応により発生した熱は、冷却部118において
電池冷却水123により熱回収される。熱回収した電池
冷却水は水蒸気分離器120を介して、吸収式冷凍機等
の熱利用装置119に導かれる。また空気125中の酸
素が発電反応に使われた空気極116の排ガスおよび発
電反応により生成した水蒸気は、水蒸気、窒素、酸素の
混合ガスとして空気極116から空気極排ガス供給配管
105により導かれて、やはり排ガス水回収用ガス−水
系隔壁式水蒸気凝縮器106に導かれ、内部で改質器燃
焼排ガスと混合される。
On the other hand, heat generated by the power generation reaction at the air electrode 116 and the fuel electrode 117 is recovered by the battery cooling water 123 in the cooling section 118. The battery cooling water from which heat has been recovered is guided to a heat utilization device 119 such as an absorption refrigerator through a steam separator 120. Further, the exhaust gas of the air electrode 116 in which the oxygen in the air 125 is used for the power generation reaction and the water vapor generated by the power generation reaction are guided from the air electrode 116 by the air electrode exhaust gas supply pipe 105 as a mixed gas of water vapor, nitrogen, and oxygen. Also, the gas is guided to the exhaust gas water collecting gas-water system partition type steam condenser 106 and mixed therein with the reformer combustion exhaust gas.

【0005】従来から排ガスからの水回収には、金属面
を介した隔壁式熱交換器である排ガス水回収用ガス−水
系隔壁式水蒸気凝縮器106が用いられている。図2に
見られるように、2次冷却水循環ポンプ107により循
環力を与えられて循環して冷却塔109で放熱される2
次冷却水108は、排ガス水回収用ガス−水系隔壁式水
蒸気凝縮器106において改質器燃焼排ガスと空気極排
ガスの混合排ガスとの間で熱交換を行う。
[0005] Conventionally, a gas-water partition wall type steam condenser 106 for collecting exhaust gas water, which is a partition type heat exchanger via a metal surface, has been used for recovering water from exhaust gas. As shown in FIG. 2, the secondary cooling water circulating pump 107 is provided with a circulating force to circulate and radiate heat in the cooling tower 109.
The secondary cooling water 108 performs heat exchange between the reformer combustion exhaust gas and the mixed exhaust gas of the air electrode exhaust gas in the exhaust gas water recovery gas-water system partition type steam condenser 106.

【0006】上述の熱交換により、排ガス水回収用ガス
−水系隔壁式水蒸気凝縮器106において改質器燃焼排
ガスと空気極排ガスの混合排ガスは冷却される。その結
果、排ガス中に含まれる水蒸気は凝縮し、凝縮水が発生
する。この凝縮水は凝縮水配管111を通って水タンク
112に回収される。また、残りの排ガス成分は、排気
管110により外気へと放出される。水タンク112に
蓄積された凝縮水は、凝縮水ポンプ113を介して水処
理装置114に送られて、内部のイオン交換樹脂115
によりわずかに残存している炭酸ガスおよびリン酸等の
除去を行って純水とした後、燃料電池冷却水の補給水と
して再利用される。なお、補給水を純水とするのは、そ
の低電気伝導率により空気極および燃料極における電気
的絶縁を確保するためである。
By the above heat exchange, the mixed exhaust gas of the reformer combustion exhaust gas and the air electrode exhaust gas is cooled in the exhaust gas water recovery gas-water partition wall type steam condenser 106. As a result, the water vapor contained in the exhaust gas is condensed, and condensed water is generated. This condensed water is collected in a water tank 112 through a condensed water pipe 111. Further, the remaining exhaust gas components are discharged to the outside air through the exhaust pipe 110. The condensed water stored in the water tank 112 is sent to a water treatment device 114 via a condensed water pump 113 and the ion exchange resin
After removing carbon dioxide gas, phosphoric acid, etc., which are slightly remaining, to make pure water, it is reused as makeup water for fuel cell cooling water. The make-up water is pure water in order to ensure electrical insulation at the air electrode and the fuel electrode by its low electric conductivity.

【0007】[0007]

【発明が解決しようとする課題】従来の燃料電池からの
水回収においては、水蒸気凝縮器として金属面を介した
ガス−水系および水−水系の隔壁式水蒸気凝縮器を用い
ていた。この隔壁式水蒸気凝縮器は高価で、かつ体積お
よび質量も大きい。また、排ガス冷却により生成した凝
縮水を回収するための水タンクが必要となるため、燃料
電池システム本体のコストおよび容積を増加させてしま
う欠点を有していた。また、凝縮水中に含まれる炭酸ガ
スおよびリン酸の除去は水処理装置中のイオン交換樹脂
によって行われており、処理水の電気伝導率を一定値以
内に保つため前記イオン交換樹脂を2ないし3カ月毎に
交換する必要があった。さらに、凝縮水中に含まれるリ
ン酸が隔壁式水蒸気凝縮器内および凝縮水配管内に付着
するため、これを除去するための清掃が、燃料電池を停
止させて水蒸気凝縮器内部全般および凝縮水配管内に渡
って必要となるという欠点を有していた。
In the conventional water recovery from a fuel cell, a gas-water system and a water-water system partition type steam condenser through a metal surface are used as the steam condenser. This bulkhead type steam condenser is expensive and has a large volume and a large mass. Further, since a water tank for collecting the condensed water generated by cooling the exhaust gas is required, there is a disadvantage that the cost and volume of the fuel cell system body are increased. In addition, the removal of carbon dioxide and phosphoric acid contained in the condensed water is performed by an ion exchange resin in a water treatment apparatus. To maintain the electric conductivity of the treated water within a certain value, the ion exchange resin is removed by 2 to 3 times. They had to be replaced every month. Further, since the phosphoric acid contained in the condensed water adheres to the inside of the bulkhead type steam condenser and the condensed water pipe, cleaning to remove the phosphoric acid stops the fuel cell and stops the entire steam condenser and the condensed water pipe. Had the drawback that it would be necessary to go inside.

【0008】本発明は上記の事情に鑑みてなされたもの
で、極めて経済的でコンパクトであり、かつ保守の容易
な燃料電池用直接接触式凝縮水回収システム及び直接接
触式水蒸気凝縮器を提供することを目的とする。
The present invention has been made in view of the above circumstances, and provides a direct contact type condensed water recovery system and a direct contact type steam condenser for a fuel cell which are extremely economical, compact and easy to maintain. The purpose is to:

【0009】[0009]

【課題を解決するための手段】上記目的を達成するため
に本発明は、改質器排ガスと空気極排ガスの混合ガスで
ある燃料電池排ガスを直接接触式水蒸気凝縮器の下部に
導き、上部および排ガス入口近傍から散水されたガス冷
却水との直接接触により排ガス冷却を行うことにより、
低い圧力損失で高効率な凝縮水回収を可能とすることを
特徴とする。
According to the present invention, a fuel cell exhaust gas, which is a mixed gas of a reformer exhaust gas and an air electrode exhaust gas, is guided to a lower part of a direct contact type steam condenser, and By performing exhaust gas cooling by direct contact with gas cooling water sprinkled from near the exhaust gas inlet,
It is characterized by enabling highly efficient condensed water recovery with low pressure loss.

【0010】また本発明は、前記直接接触式水蒸気凝縮
器の内部を多孔付き半円状棚板を縦に複数段組み合わせ
た構造とし、前記多孔付き半円状棚板が開口比(前記直
接接触式水蒸気凝縮器の横断面積に対する棚板の非占有
面積の割合を示す)15ないし30%であり、棚板1m
2 当たりの孔数が3200ないし4000個でその孔径
が3ないし7mmであり、かつガス冷却部高さ1m当たり
の棚板の枚数が6ないし14枚であることを特徴とす
る。
Further, in the present invention, the direct contact steam condenser has a structure in which a plurality of semicircular shelves with perforations are vertically combined in a plurality of stages, and the semicircular shelves with perforations have an aperture ratio (the direct contact type). 15 to 30%, which indicates the ratio of the area not occupied by the shelf to the cross-sectional area of the steam condenser.
The number of holes per 2 is 3200 to 4000, the hole diameter is 3 to 7 mm, and the number of shelves per 1 m of the height of the gas cooling section is 6 to 14.

【0011】また本発明は、凝縮水貯水部から循環ポン
プを介して冷却塔に送られる凝縮水の一部を再び凝縮水
貯水部の脱炭酸手段に戻し、外壁から内部に向かって側
面に沿うように取り付けられかつ外気を取り入れる空気
取り入れ口を持ったジェットポンプ付きノズルから動力
不要のジェットポンプ効果により前記空気取り入れ口か
ら吸い込まれた空気と共に前記凝縮水貯水部内に噴出す
る。これにより、排ガス凝縮水中に含まれる炭酸ガス成
分をガス化して除去し、空気排出口より排出することが
可能となることを特徴とする。
Further, according to the present invention, a part of the condensed water sent from the condensed water reservoir to the cooling tower via the circulation pump is returned to the decarbonation means of the condensed water reservoir again, and the side wall extends inward from the outer wall. The nozzle with a jet pump, which is mounted as described above and has an air intake for taking in outside air, blows out into the condensed water reservoir together with the air sucked from the air intake by a jet pump effect without power. Thereby, the carbon dioxide component contained in the exhaust gas condensed water can be gasified and removed, and can be discharged from the air discharge port.

【0012】また本発明は、前記脱炭酸手段に隣接し
て、水面より低い高さを持つ第2の仕切板で前記脱炭酸
手段と仕切られた脱リン酸手段を設け、前記脱リン酸手
段を透明性に富むリテーナを挟んだ水面より高い高さの
2枚の金属金網でなる第3の仕切板で垂直に複数仕切っ
た構造とし、前記2枚の金属製金網間に直流電圧を印加
して電気分解を行うことによりリン酸の除去を可能と
し、また前記金網の交換により清掃が容易となることを
特徴とする。
The present invention also provides a dephosphorizing means which is adjacent to the decarburizing means and is separated from the decarboxylating means by a second partition plate having a height lower than the water surface. Is vertically divided by a third partition plate made of two metal wire meshes having a height higher than the water surface sandwiching a highly transparent retainer, and a DC voltage is applied between the two metal wire meshes. The method is characterized in that phosphoric acid can be removed by performing electrolysis, and cleaning is facilitated by replacing the wire mesh.

【0013】従来の燃料電池用凝縮水回収システムと
は、隔壁式水蒸気凝縮器に比べ安価、小型であり高効率
な直接接触式水蒸気凝縮器を適用し、特別な脱炭酸装置
が不要となる点、およびリン酸除去と清掃が容易に行
え、高価なイオン交換樹脂の交換頻度が減少する点が大
きく異なる。
The conventional condensed water recovery system for a fuel cell is different from a bulkhead type steam condenser in that a direct contact type steam condenser that is inexpensive, small, and highly efficient is applied, and a special decarbonation device is not required. The difference is that the removal and cleaning of phosphoric acid can be easily performed, and the frequency of replacement of expensive ion exchange resin is reduced.

【0014】[0014]

【発明の実施の形態】以下図面を参照して本発明の実施
の形態例を詳細に説明する。図1は本発明の一実施形態
例を示す構成説明図、図2は図1の直接接触式水蒸気凝
縮器の一例を示す拡大斜視図、図3は図1の多孔付き半
円状棚板の一例を示す拡大平面図である。図において、
1は燃料電池システム、2は改質器内バーナ、3は改質
器、4は改質器燃焼排ガス供給配管、5は空気極排ガス
供給配管、6は直接接触式水蒸気凝縮器、7は直接接触
式水蒸気凝縮器排ガス入口、8はガス冷却部、9は多孔
付き半円状棚板、901は半円状棚板9に設けられた多
数の孔、10はガス冷却水入口、11はガス冷却水噴霧
ノズル、12はガス冷却水、13は排気管、14は第1
の仕切板、15は空気バブリング用噴出水配管、16は
脱炭酸手段、17は空気取り入れ口、18はジェットポ
ンプ付きノズル、19は空気排出口、20は第2の仕切
板、21は脱リン酸手段、22はリテーナを挟む2枚の
金属製金網からなる第3の仕切板、23は直流電源装
置、24は凝縮水貯水部、25は水位検知装置、26は
凝縮水出口、27は循環ポンプ、28は分岐弁、29は
冷却塔、30は流量調整弁、31は電池冷却水ポンプ、
32は水処理装置、33はイオン交換樹脂、34は空気
極、35は燃料極、36は冷却部、37は熱利用装置、
38は水蒸気分離器、39は水蒸気、40は水蒸気、4
1は電池冷却水、42は都市ガス、43は空気である。
図2に示すように、直接接触式水蒸気凝縮器6の内部に
は多孔付き半円状棚板9が相対しながら縦方向に等間隔
に複数段組み合わせて設置され、前記多孔付き半円状棚
板9には、図3に示すように多数の孔901が設けられ
る。なお、図2においてガス冷却水噴霧ノズル11を省
略し、図2および図3において、孔901の一部を省略
する。
DESCRIPTION OF THE PREFERRED EMBODIMENTS Embodiments of the present invention will be described below in detail with reference to the drawings. FIG. 1 is a configuration explanatory view showing an embodiment of the present invention, FIG. 2 is an enlarged perspective view showing an example of a direct contact steam condenser of FIG. 1, and FIG. It is an enlarged plan view showing an example. In the figure,
1 is a fuel cell system, 2 is a burner in a reformer, 3 is a reformer, 4 is a reformer combustion exhaust gas supply pipe, 5 is an air electrode exhaust gas supply pipe, 6 is a direct contact steam condenser, and 7 is a direct condenser. Exhaust gas inlet of a contact type steam condenser, 8 is a gas cooling unit, 9 is a semicircular shelf with perforations, 901 is a number of holes provided in the semicircular shelf 9, 10 is a gas cooling water inlet, 11 is gas Cooling water spray nozzle, 12 is gas cooling water, 13 is exhaust pipe, 14 is first
15 is a jetting water pipe for air bubbling, 16 is a decarbonation means, 17 is an air intake, 18 is a nozzle with a jet pump, 19 is an air outlet, 20 is a second partition, and 21 is dephosphorization. Acid means, 22 a third partition plate made of two metal meshes sandwiching a retainer, 23 a DC power supply, 24 a condensed water reservoir, 25 a water level detecting device, 26 a condensed water outlet, and 27 a circulation Pump, 28 is a branch valve, 29 is a cooling tower, 30 is a flow control valve, 31 is a battery cooling water pump,
32 is a water treatment device, 33 is an ion exchange resin, 34 is an air electrode, 35 is a fuel electrode, 36 is a cooling unit, 37 is a heat utilization device,
38 is a steam separator, 39 is steam, 40 is steam, 4
1 is battery cooling water, 42 is city gas, and 43 is air.
As shown in FIG. 2, a plurality of semicircular shelves 9 with perforations are installed inside the direct contact steam condenser 6 at equal intervals in the vertical direction while facing each other. The plate 9 is provided with a number of holes 901 as shown in FIG. Note that the gas cooling water spray nozzle 11 is omitted in FIG. 2, and a part of the hole 901 is omitted in FIGS. 2 and 3.

【0015】すなわち、改質器内バーナ2の燃焼により
改質器3から排出される改質器燃焼排ガスは改質器燃焼
排ガス供給配管4により、また空気極34より排出され
る空気極排ガスは空気極排ガス供給配管5により導かれ
て改質器燃焼排ガス供給配管4と合流し、双方の排ガス
が混合された後、直接接触式水蒸気凝縮器6の下部排ガ
ス入口7に送られる。
That is, the reformer combustion exhaust gas discharged from the reformer 3 by the combustion of the burner 2 in the reformer is discharged from the reformer combustion exhaust gas supply pipe 4 and the air electrode exhaust gas discharged from the air electrode 34 is discharged. After being guided by the cathode exhaust gas supply pipe 5 and merging with the reformer combustion exhaust gas supply pipe 4, both exhaust gases are mixed and then sent to the lower exhaust gas inlet 7 of the direct contact steam condenser 6.

【0016】直接接触式水蒸気凝縮器6の内部のガス冷
却部8において、排ガスは複数の多孔付き半円状棚板9
で仕切られた内部を蛇行しながら上昇し、上部のガス冷
却水入口10および排ガス入口近傍の噴霧ノズル11よ
り散水されたガス冷却水12と対向流で直接接触するこ
とによりガス冷却を行い、排ガス中の水蒸気を凝縮す
る。このとき多孔付き半円状棚板9は、低圧力損失でか
つ高効率にガスの冷却を行うための最適な開口比、孔
数、孔径および棚板間隔により構成されている。
In the gas cooling section 8 inside the direct contact steam condenser 6, the exhaust gas is supplied to a plurality of semicircular shelves 9
The gas is cooled by meandering upward while meandering in the interior partitioned by the gas cooling water inlet 10 and the gas cooling water 12 sprinkled from the spray nozzle 11 near the exhaust gas inlet by counterflow. Condenses the water vapor inside. At this time, the semicircular shelf 9 with perforations is configured with an optimal opening ratio, the number of holes, the hole diameter, and the interval between the shelves for cooling the gas with low pressure loss and high efficiency.

【0017】ガス冷却水12により十分に冷却された排
ガスは、排気管13から排出される。排ガスを冷却した
ガス冷却水12と回収された凝縮水は、第1の仕切板1
4で仕切られた直接接触式水蒸気凝縮器の凝縮水貯水部
24に落下し、蓄えられる。
The exhaust gas sufficiently cooled by the gas cooling water 12 is discharged from an exhaust pipe 13. The gas cooling water 12 that has cooled the exhaust gas and the condensed water that has been collected are separated by the first partition plate 1.
The water drops fall into the condensed water storage section 24 of the direct contact steam condenser partitioned by 4 and is stored.

【0018】一方、循環ポンプ27および分岐弁28を
介して冷却塔29に送られる凝縮水の一部は空気バブリ
ング用噴出水配管15を通って凝縮水貯水部24の底部
側面の脱炭酸手段16に導かれ、外部に空気取り入れ口
17を持つジェットポンプ付きノズル18から、ジェッ
トポンプ効果により空気取り入れ口17から吸い込まれ
た空気と共に凝縮水貯水部24の内部に噴出し、内部に
回転水流を発生させる。噴出された空気は、排ガス凝縮
水中に含まれる炭酸ガスを脱気作用により除去して凝縮
水貯水部24の上部に設けられた空気排出口19より外
部に排出される。
On the other hand, a part of the condensed water sent to the cooling tower 29 via the circulation pump 27 and the branch valve 28 passes through the jetting water pipe 15 for air bubbling, and the decarbonation means 16 on the bottom side surface of the condensed water storage part 24. From the nozzle 18 with a jet pump having an air inlet 17 on the outside, and squirts into the condensed water reservoir 24 together with the air sucked from the air inlet 17 by the jet pump effect to generate a rotating water flow inside. Let it. The ejected air removes carbon dioxide contained in the exhaust gas condensed water by a degassing action and is discharged to the outside through an air discharge port 19 provided above the condensed water reservoir 24.

【0019】空気によりバブリングされた凝縮水は、第
2の仕切板20を通った後、次の脱リン酸手段21にお
いて、設置されている複数の、第3の仕切板22である
リテーナを挟む2枚の金属製金網を通過する。前記の2
枚の金網間には直流電源装置23により直流電圧が印加
されており、通過する際に排ガス凝縮水中に含まれるリ
ン酸はリン酸化合物として析出され除去される。析出し
たリン酸化合物は前記金網をリテーナごと交換すること
により容易に除去される。
After the condensed water bubbled by the air passes through the second partition plate 20, the condensed water is sandwiched by a plurality of third partition plates 22 as retainers in the next dephosphorizing means 21. It passes through two metal wire meshes. Said 2
A DC voltage is applied between the wire meshes by the DC power supply device 23, and the phosphoric acid contained in the exhaust gas condensed water is precipitated and removed as a phosphate compound when passing through. The precipitated phosphate compound is easily removed by replacing the wire mesh with the retainer.

【0020】脱リン酸された凝縮水は、凝縮水出口26
を経て循環ポンプ27により分岐弁28を介して冷却塔
29に送られ、冷却される。冷却塔29で冷却された
後、流量調整弁30を介して、一方は再び直接接触式水
蒸気凝縮器6の上部のガス冷却水入口10および下部排
ガス入口7近傍の噴霧ノズル11より散水され、他方は
電池冷却水ポンプ31を介して水処理装置32に送られ
る。この凝縮水は前記脱炭酸手段16および脱リン酸手
段21において脱炭酸および脱リン酸処理が施されてい
るものの、前記脱炭酸手段16および脱リン酸手段21
での除去対象外成分である鉄イオン等が溶存しているた
め、前記水処理装置32内部のイオン交換樹脂33によ
りこれらを除去して純水とした後、電池冷却水の補給水
として空気極34および燃料極35の冷却部36へ送ら
れる。なお、前記流量調整弁30は凝縮水貯水部24に
設置された水位検知装置25と電気的に接続され、凝縮
水貯水部24の水位により流量調整弁30の開度調整が
行われ、電池冷却水ポンプ31へ向かう流量が制御され
ている。
The dephosphorized condensed water is supplied to the condensed water outlet 26
Is sent to the cooling tower 29 via the branch valve 28 by the circulation pump 27 and cooled. After being cooled in the cooling tower 29, one of them is again sprayed through the flow control valve 30 from the gas cooling water inlet 10 at the upper part of the direct contact steam condenser 6 and the spray nozzle 11 near the lower exhaust gas inlet 7, and Is sent to a water treatment device 32 via a battery cooling water pump 31. Although this condensed water has been subjected to decarboxylation and dephosphorylation in the decarboxylation means 16 and dephosphorylation means 21, the decarbonation means 16 and dephosphorylation means 21
Since iron ions and the like, which are components not to be removed in the process, are dissolved, the pure water is removed therefrom by the ion exchange resin 33 in the water treatment device 32, and then the air electrode is used as replenishing water for battery cooling water. 34 and to the cooling part 36 of the fuel electrode 35. The flow control valve 30 is electrically connected to a water level detecting device 25 installed in the condensed water storage unit 24, and the opening of the flow control valve 30 is adjusted according to the water level of the condensed water storage unit 24, and battery cooling is performed. The flow toward the water pump 31 is controlled.

【0021】本発明の燃料電池用直接接触式凝縮水回収
システムでは、改質器3の排ガスと空気極34の排ガス
の混合ガスである燃料電池排ガスを直接接触式水蒸気凝
縮器6の下部に導き、上部のガス冷却水入口10および
排ガス入口7近傍の噴霧ノズル11から散水されたガス
冷却水12と直接接触させてガス冷却を行う。この際、
排ガス中に含まれる水蒸気が冷却され、潜熱を放出して
凝縮する。この凝縮水は、上部および排ガス入口近傍か
ら散水させたガス冷却水と共に直接接触式水蒸気凝縮器
6の最下部に設けられた凝縮水貯水部24に蓄えられ
る。
In the direct contact condensed water recovery system for a fuel cell according to the present invention, the fuel cell exhaust gas, which is a mixed gas of the exhaust gas from the reformer 3 and the exhaust gas from the air electrode 34, is guided to the lower part of the direct contact steam condenser 6. The gas cooling is performed by directly contacting the gas cooling water 12 sprayed from the spray nozzle 11 near the upper gas cooling water inlet 10 and the exhaust gas inlet 7. On this occasion,
The water vapor contained in the exhaust gas is cooled, releases latent heat and condenses. The condensed water is stored in the condensed water storage section 24 provided at the lowermost part of the direct contact steam condenser 6 together with the gas cooling water sprinkled from the upper part and the vicinity of the exhaust gas inlet.

【0022】このとき、ガス冷却を行う多孔付き半円状
棚板9の開口比が15%未満の場合、排ガスの圧力損失
が増大し、30%を超える場合はガス冷却効率が低下す
るため不適当となる。また棚板9の1m2 当たりの孔数
が3200個未満の場合、ガス冷却効率の低下を招き、
4000個を超える場合はガス冷却効率の上昇が認めら
れるものの極めてわずかな上昇であるため、加工コスト
を考慮すると不適当となる。棚板9の孔径については3
mm未満の場合ガス冷却水の落下量が減少して冷却効率が
低下し、7mmを超える場合は冷却水が柱状に落下して排
ガスとの接触面積が著しく減少するため、やはり冷却効
率が低下して不適当となる。さらにガス冷却部8の高さ
1m当たりの棚板9の枚数が6枚未満の場合はガス冷却
水の散水口から凝縮水貯水部24までの所要落下時間、
即ち排ガスとガス冷却水の接触時間が短くなるためガス
の冷却効率が低下し、14枚を超える場合はガス冷却効
率が上昇するものの排ガスの蛇行が急になることから圧
力損失が増大し不適当となる。
At this time, when the opening ratio of the perforated semicircular shelf 9 for gas cooling is less than 15%, the pressure loss of the exhaust gas increases, and when it exceeds 30%, the gas cooling efficiency decreases, so Appropriate. In the case the number of holes 1 m 2 per shelves 9 is less than 3200, cause a decrease in gas cooling efficiency,
When the number exceeds 4,000, although the gas cooling efficiency is increased, it is extremely small, and therefore, it becomes inappropriate in consideration of the processing cost. The hole diameter of the shelf 9 is 3
If it is less than 7 mm, the cooling water drops and the cooling efficiency decreases, and if it exceeds 7 mm, the cooling water drops in a columnar shape and the contact area with the exhaust gas decreases significantly, so the cooling efficiency also decreases. It becomes inappropriate. Further, when the number of the shelf plates 9 per 1 m height of the gas cooling unit 8 is less than 6, the required drop time from the water outlet of the gas cooling water to the condensed water storage unit 24,
That is, the contact time between the exhaust gas and the gas cooling water is shortened, so that the gas cooling efficiency is reduced. If the number exceeds 14, the gas cooling efficiency is increased, but the meandering of the exhaust gas is sharpened, and the pressure loss is increased, which is inappropriate. Becomes

【0023】従って多孔付き半円状棚板9は、開口比1
5ないし30%であり、棚板9の1m2 当たりの孔数が
3200ないし4000個でその孔径が3ないし7mmで
あり、かつガス冷却部8の高さ1m当たりの棚板9の枚
数が6ないし14枚としている。
Accordingly, the semicircular shelf 9 with a hole has an aperture ratio of 1
5 to 30%, the number of holes per 1 m 2 of the shelf 9 is 3200 to 4000, the hole diameter is 3 to 7 mm, and the number of the shelves 9 per 1 m of the height of the gas cooling section 8 is 6 Or 14 pages.

【0024】一方、凝縮水貯水部24から循環ポンプ2
7を介して冷却塔29へ送られる水の一部を再度凝縮水
貯水部24の脱炭酸手段16に戻し、ジェットポンプ付
きノズル18から前記凝縮水貯水部24内に噴出させ
る。このジェットポンプ付きノズル18は直接接触式水
蒸気凝縮器6外に空気取り入れ口17を持っており、水
を噴出させる際、ジェットポンプ効果により空気取り入
れ口17から吸い込まれた空気を共に噴出させる。
On the other hand, the condensed water reservoir 24
A part of the water sent to the cooling tower 29 via 7 is returned to the decarbonation means 16 of the condensed water storage part 24 again, and is jetted from the nozzle 18 with the jet pump into the condensed water storage part 24. The nozzle 18 with a jet pump has an air intake 17 outside the direct contact type steam condenser 6 and, when jetting water, causes the air sucked from the air intake 17 to be jetted together by the jet pump effect.

【0025】また、このジェットポンプ付きノズル18
は、縦円筒形をした凝縮水貯水部24の底部側面に沿っ
て取り付けられているため、凝縮水貯水部24内に回転
水流が発生し、上部のガス冷却水入口10から散水させ
たガス冷却水、排ガスからの凝縮水および噴出された空
気が十分に接触しながら撹拌される。これにより、排ガ
ス凝縮水中に含まれる炭酸ガスが、炭酸ガス濃度の極め
て低い空気と接触することにより、脱気作用により除去
される。
The nozzle 18 with the jet pump
Is installed along the bottom side surface of the condensed water storage section 24 having a vertical cylindrical shape, so that a rotating water flow is generated in the condensed water storage section 24 and the gas cooling water sprinkled from the upper gas cooling water inlet 10. The water, condensed water from the exhaust gas, and the jetted air are stirred while being in sufficient contact. Thereby, the carbon dioxide gas contained in the exhaust gas condensed water comes into contact with air having an extremely low carbon dioxide gas concentration, and is thereby removed by the degassing action.

【0026】炭酸ガスを脱気した空気は、別に設けられ
た空気排出口19より外部に排出される。このとき、直
接接触式水蒸気凝縮器6の上部にあるガス冷却部8と
は、第1の仕切板14により仕切られているため、炭酸
ガスが再度排ガスに取り込まれることがない。また排ガ
スと混合しないため、排ガス中の水蒸気分圧低下を招く
恐れがない。従って排ガス中の水蒸気の凝縮温度を低下
させて凝縮水回収量を減少させる恐れがない。
The air from which the carbon dioxide gas has been degassed is discharged outside through an air discharge port 19 provided separately. At this time, since the gas cooling unit 8 above the direct contact steam condenser 6 is partitioned by the first partition plate 14, the carbon dioxide gas is not taken into the exhaust gas again. Further, since it does not mix with the exhaust gas, there is no possibility that the partial pressure of water vapor in the exhaust gas is reduced. Therefore, there is no danger of lowering the condensation temperature of the water vapor in the exhaust gas and reducing the amount of condensed water recovered.

【0027】このようにして脱炭酸されて蓄えられた凝
縮水は、次に第2の仕切板20を通って、第3の仕切板
22である金属製金網で仕切られた脱リン酸手段21に
導かれる。この脱リン酸手段21には、透水性に富むリ
テーナを挟みかつ相互を電気的に接続して直流電圧が印
加されている、底部から水面上までの高さを持つ2枚の
金属製金網でなる第3の仕切板22が複数設置されてい
る。凝縮水がこの金網間を通過する際、凝縮水中に含ま
れるリン酸は金属と反応しリン酸化合物として析出す
る。このリン酸化合物は水に不溶であるためリテーナに
吸着させることが可能であり、これによってリン酸の除
去を行う。ここで金網の材質としては、安価なアルミニ
ウムが最も好ましく、容易にリン酸と反応しゲル状のリ
ン酸アルミニウムを析出するためリテーナに吸着させや
すい特長があるが、その他に鉄、銅等であってもよい。
The condensed water thus decarbonated and stored passes through the second partition plate 20, and passes through the third partition plate 22, a dephosphorizing means 21 separated by a metal wire mesh. It is led to. The dephosphorizing means 21 is composed of two metal wire meshes having a height from the bottom to the surface of the water to which a retainer having a high water permeability is sandwiched and electrically connected to each other to apply a DC voltage. A plurality of third partition plates 22 are provided. When condensed water passes between the wire meshes, the phosphoric acid contained in the condensed water reacts with the metal and precipitates as a phosphate compound. Since this phosphate compound is insoluble in water, it can be adsorbed on a retainer, thereby removing phosphoric acid. Here, the material of the wire netting is most preferably inexpensive aluminum, which has a feature that it easily reacts with phosphoric acid and precipitates a gel-like aluminum phosphate, so that it can be easily adsorbed to a retainer. You may.

【0028】また、清掃はこの金網をリテーナごと交換
することにより、容易に可能となる。このようにしてリ
ン酸の除去を行った凝縮水は、循環ポンプ27を介して
冷却塔29へ送られる。これにより、排ガスからの水回
収と回収した凝縮水の脱炭酸および脱リン酸が1台で一
括して行うことが可能となる。凝縮水は冷却塔29で冷
却された後、流量調整弁30を介して直接接触式水蒸気
凝縮器6の上部に導かれ、ガス冷却水12として再び散
水される。なお、凝縮水貯水部24には前記流量調整弁
30と電気的に接続された水位検知装置25が設置され
ており、排ガスからの凝縮水が徐々に増加して規定の水
位を超えた場合には電気信号により流量調整弁30が開
き、余剰の凝縮水は電池冷却水としてポンプ31および
水処理装置32を介して再び空気極および燃料極冷却部
36に導かれ、再利用される。
Cleaning can be easily performed by replacing the wire mesh with the retainer. The condensed water from which phosphoric acid has been removed in this way is sent to the cooling tower 29 via the circulation pump 27. This makes it possible to collectively perform water recovery from the exhaust gas and decarboxylation and dephosphorization of the collected condensed water by one unit. After the condensed water is cooled by the cooling tower 29, the condensed water is guided to the upper part of the direct contact type steam condenser 6 via the flow control valve 30, and is sprayed again as the gas cooling water 12. The condensed water storage unit 24 is provided with a water level detection device 25 electrically connected to the flow control valve 30. When the condensed water from the exhaust gas gradually increases and exceeds a specified water level. The flow control valve 30 is opened by an electric signal, and excess condensed water is guided again to the air electrode and fuel electrode cooling unit 36 via the pump 31 and the water treatment device 32 as battery cooling water, and is reused.

【0029】[0029]

【実施例】上記実施形態例について実験によりその効果
の確認を行った。即ち1kg当たり0.17kgの水蒸
気と0.09kgの炭酸ガス、および微量のリン酸を含
む170℃の排ガス1150kgを下部排ガス入口7か
ら送り込み、また水温30℃で流量18000kg/h
のガス冷却水12を直接接触式水蒸気凝縮器6に送って
排ガスの冷却を行った。このとき多孔付き半円状棚板9
は、開口比25%、1m2 当たりの孔数3650個、孔
径5mmおよびガス冷却部高さ1m当たりの棚板の枚数を
8枚とした。
EXAMPLES The effects of the above embodiment were confirmed by experiments. That is, 1150 kg of 170 ° C. exhaust gas containing 0.17 kg of water vapor, 0.09 kg of carbon dioxide gas, and a trace amount of phosphoric acid per kg is fed from the lower exhaust gas inlet 7, and a flow rate of 18,000 kg / h at a water temperature of 30 ° C.
Was sent to the direct contact type steam condenser 6 to cool the exhaust gas. At this time, a semicircular shelf 9 with a hole
Has an aperture ratio of 25%, 3650 holes per 1 m 2, a hole diameter of 5 mm, and eight shelves per 1 m of gas cooling unit height.

【0030】この結果、排ガスは排気管13において4
8℃まで冷却され、135kgの凝縮水が得られた。ま
た凝縮水中1L中の炭酸ガス濃度は0.002g、リン
酸濃度は1ppm未満に抑えられた。この結果から明ら
かなように、本発明により高効率な凝縮水回収と、脱炭
酸及び脱リン酸が容易に、かつ一括して行えることが確
認された。
As a result, the exhaust gas passes through the exhaust pipe 13
It was cooled to 8 ° C., and 135 kg of condensed water was obtained. Further, the concentration of carbon dioxide in 1 L of condensed water was suppressed to 0.002 g, and the concentration of phosphoric acid was suppressed to less than 1 ppm. As is apparent from the results, it was confirmed that the present invention can easily and collectively perform highly efficient condensed water recovery, decarboxylation and dephosphorization.

【0031】またこれら脱炭酸及び脱リン酸処理により
水処理装置中のイオン交換樹脂の交換頻度を従来の2な
いし3カ月から、5ないし6カ月毎に延伸できることが
確認された。
It has also been confirmed that the decarboxylation and dephosphorylation treatments can increase the exchange frequency of the ion exchange resin in the water treatment device from the conventional 2 to 3 months every 5 to 6 months.

【0032】さらに、直接接触式水蒸気凝縮器および凝
縮水貯水部の体積は0.65m3 であり、従来の隔壁式
水蒸気凝縮器および凝縮水回収用水タンクを用いた場合
と比較して、体積比で約60%の小型化が図られた。
Further, the volume of the direct contact type steam condenser and the condensed water storage section is 0.65 m 3, which is a volume ratio as compared with the case where the conventional partition type steam condenser and the condensed water recovery water tank are used. Approximately 60% downsizing was achieved.

【0033】[0033]

【発明の効果】以上述べたように本発明によれば、直接
接触式水蒸気凝縮器のガス冷却部と第1の仕切板で仕切
られ、下部にジェットポンプ付きノズルを有する脱炭酸
手段と、前記脱炭酸手段とを仕切る第2の仕切板および
リテーナを挟む2枚の金属製金網が複数設置されてなる
第3の仕切板を有する脱リン酸手段から構成される凝縮
水貯水部、排ガス入口、ガス冷却部、凝縮水出口からな
る極めて単純な構造の直接接触式水蒸気凝縮器により、
改質器燃焼排ガスと空気極排ガスからの水の回収と、炭
酸ガスとリン酸の除去が可能となる。
As described above, according to the present invention, the decarbonation means which is divided by the gas cooling part of the direct contact steam condenser and the first partition plate and has a nozzle with a jet pump at the lower part, A condensed water reservoir, an exhaust gas inlet, and a dephosphorization means having a second partition plate separating the decarbonation unit and a third partition plate provided with a plurality of two metal wire meshes sandwiching a retainer; By a direct contact steam condenser with a very simple structure consisting of a gas cooling unit and a condensate outlet,
It is possible to recover water from the reformer combustion exhaust gas and the air electrode exhaust gas, and remove carbon dioxide and phosphoric acid.

【0034】また、リン酸除去のための清掃は、第3の
仕切板の交換という形で極めて容易に行うことが可能と
なる。この結果、従来の高価でかつ大容積、重量物であ
る隔壁式水蒸気凝縮器や水タンクが不要となり、かつ高
価なイオン交換樹脂の交換頻度が減少するため、本発明
は極めて経済的でコンパクトであり、かつ保守の容易な
燃料電池用直接接触式凝縮水回収システムおよび直接接
触式水蒸気凝縮器を提供することができる。
Further, the cleaning for removing the phosphoric acid can be performed very easily by replacing the third partition plate. As a result, the conventional expensive and large-volume, heavy-weight bulkhead-type steam condenser or water tank is not required, and the frequency of replacing expensive ion-exchange resin is reduced. Therefore, the present invention is extremely economical and compact. It is possible to provide a direct contact condensed water recovery system and a direct contact steam condenser for a fuel cell which are easy to maintain.

【図面の簡単な説明】[Brief description of the drawings]

【図1】本発明の一実施形態例を示す構成説明図であ
る。
FIG. 1 is a configuration explanatory diagram showing an embodiment of the present invention.

【図2】図1の直接接触式水蒸気凝縮器の一例を示す拡
大斜視図である。
FIG. 2 is an enlarged perspective view showing an example of the direct contact steam condenser of FIG.

【図3】図1の多孔付き半円状棚板の一例を示す拡大平
面図である。
FIG. 3 is an enlarged plan view showing an example of a semicircular shelf board with perforations shown in FIG. 1;

【図4】従来の燃料電池凝縮水回収システムの一例を示
す構成説明図である。
FIG. 4 is a configuration explanatory view showing an example of a conventional fuel cell condensed water recovery system.

【符号の説明】[Explanation of symbols]

1…燃料電池システム 2…改質器内バーナ 3…改質器 4…改質器燃焼排ガス供給配管 5…空気極排ガス供給配管 6…直接接触式水蒸気凝縮器 7…直接接触式水蒸気凝縮器排ガス入口 8…ガス冷却部 9…多孔付き半円状棚板 10…ガス冷却水入口 11…ガス冷却水噴霧ノズル 12…ガス冷却水 13…排気管 14…第1の仕切板 15…空気バブリング用噴出水配管 16…脱炭酸手段 17…空気取り入れ口 18…ジェットポンプ付きノズル 19…空気排出口 20…第2の仕切板 21…脱リン酸手段 22…リテーナを挟む2枚の金属製金網からなる第3の
仕切板 23…直流電源装置 24…凝縮水貯水部 25…水位検知装置 26…凝縮水出口 27…循環ポンプ 28…分岐弁 29…冷却塔 30…流量調整弁 31…電池冷却水ポンプ 32…水処理装置 33…イオン交換樹脂 101…燃料電池システム 102…改質器 103…改質器内バーナ 104…改質器燃焼排ガス供給配管 105…空気極排ガス供給配管 106…排ガス水回収用ガス−水系隔壁式水蒸気凝縮器 107…2次冷却水循環ポンプ 108…2次冷却水 109…冷却塔 110…排気管 111…凝縮水配管 112…水タンク 113…凝縮水ポンプ 114…水処理装置 115…イオン交換樹脂
DESCRIPTION OF SYMBOLS 1 ... Fuel cell system 2 ... Burner in a reformer 3 ... Reformer 4 ... Reformer combustion exhaust gas supply pipe 5 ... Air electrode exhaust gas supply pipe 6 ... Direct contact steam condenser 7 ... Direct contact steam condenser exhaust gas Inlet 8 ... Gas cooling unit 9 ... Semicircular shelf board with perforations 10 ... Gas cooling water inlet 11 ... Gas cooling water spray nozzle 12 ... Gas cooling water 13 ... Exhaust pipe 14 ... First partition plate 15 ... Ejection for air bubbling Water pipe 16 ... Decarbonation means 17 ... Air intake 18 ... Nozzle with jet pump 19 ... Air outlet 20 ... Second partition plate 21 ... Dephosphorization means 22 ... Second metal wire mesh sandwiching a retainer 3 partition plate 23 DC power supply 24 condensed water reservoir 25 water level detecting device 26 condensed water outlet 27 circulation pump 28 branch valve 29 cooling tower 30 flow control valve 31 battery cooling water pump 3 2 ... Water treatment apparatus 33 ... Ion exchange resin 101 ... Fuel cell system 102 ... Reformer 103 ... Burner in the reformer 104 ... Reformer combustion exhaust gas supply pipe 105 ... Air electrode exhaust gas supply pipe 106 ... Exhaust gas water recovery gas -Water system partition type steam condenser 107 ... Secondary cooling water circulation pump 108 ... Secondary cooling water 109 ... Cooling tower 110 ... Exhaust pipe 111 ... Condensed water pipe 112 ... Water tank 113 ... Condensed water pump 114 ... Water treatment device 115 ... Ion Exchange resin

───────────────────────────────────────────────────── フロントページの続き (56)参考文献 特開 昭50−28483(JP,A) 特開 昭61−39371(JP,A) 特開 平3−179674(JP,A) 特開 平4−126369(JP,A) 特開 平4−332478(JP,A) 特開 平5−82147(JP,A) 特開 平6−84538(JP,A) 特開 平6−140069(JP,A) 特開 平8−124590(JP,A) (58)調査した分野(Int.Cl.7,DB名) H01M 8/06 H01M 8/04 ──────────────────────────────────────────────────続 き Continuation of the front page (56) References JP-A-50-28483 (JP, A) JP-A-61-39371 (JP, A) JP-A-3-179674 (JP, A) JP-A-4- 126369 (JP, A) JP-A-4-332478 (JP, A) JP-A-5-82147 (JP, A) JP-A-6-84538 (JP, A) JP-A-6-140069 (JP, A) JP-A-8-124590 (JP, A) (58) Fields investigated (Int. Cl. 7 , DB name) H01M 8/06 H01M 8/04

Claims (10)

(57)【特許請求の範囲】(57) [Claims] 【請求項1】 原燃料ガスを改質器によりより改質して
得られる水素と空気中の酸素を反応させることにより電
気エネルギーと熱エネルギーを発生する燃料電池と、 前記燃料電池の改質器より排出される改質器燃焼排ガス
と燃料電池の空気極より排出される空気極排ガスから凝
縮水を回収する凝縮水回収部からなる燃料電池システム
において、 前記凝縮水回収部が前記改質器燃焼排ガスと前記空気極
排ガスからなる排ガスの供給を受け、前記排ガスの水分
の回収を行う直接接触式水蒸気凝縮器を備え、 前記直接接触式水蒸気凝縮器の下部に凝縮水貯水部を備
え、 前記凝縮水貯水部に炭酸ガス除去を行う脱炭酸手段とリ
ン酸の除去を行う脱リン酸手段、および水位検知装置を
備え、 前記凝縮水貯水部と冷却塔を接続する配管中に循環ポン
プを備え、 前記循環ポンプに対して凝縮水貯水部でない側に、凝縮
水の一方を前記脱炭酸手段に、他方を前記冷却塔の2方
路に分岐させる分岐弁を備え、 前記冷却塔に対して凝縮水貯水部でない側に、凝縮水の
一方を前記直接接触式水蒸気凝縮器に、他方を燃料電池
を冷却する電池冷却水補充のための水処理装置の2方路
に分岐させる流量調整弁を備え、 前記凝縮水貯水部に蓄えられた水を、前記冷却塔を介し
て前記直接接触式水蒸気凝縮器との間で循環させること
により前記排ガスから水回収することを特徴とする燃料
電池用直接接触式凝縮水回収システム。
1. A fuel cell that generates electric energy and heat energy by reacting hydrogen obtained by reforming raw fuel gas with a reformer and oxygen in the air, and a reformer of the fuel cell. A condensed water recovery unit that recovers condensed water from the reformer combustion exhaust gas discharged from the fuel cell and the cathode exhaust gas discharged from the air electrode of the fuel cell. A direct contact steam condenser for receiving the supply of the exhaust gas composed of the exhaust gas and the air electrode exhaust gas and recovering the moisture of the exhaust gas; including a condensed water storage section below the direct contact steam condenser; The water storage unit includes a decarbonation unit that removes carbon dioxide, a dephosphorization unit that removes phosphoric acid, and a water level detection device.A circulation pump is provided in a pipe connecting the condensed water storage unit and the cooling tower. A branch valve that branches one side of the condensed water to the decarbonation means and the other side to the two-way path of the cooling tower on the side other than the condensed water reservoir with respect to the circulation pump; On the side other than the condensed water storage section, a flow control valve for branching one of the condensed water to the direct contact type steam condenser and the other to two paths of a water treatment apparatus for replenishing battery cooling water for cooling the fuel cell. Wherein the water stored in the condensed water storage section is circulated through the cooling tower with the direct contact steam condenser to recover water from the exhaust gas. Contact type condensed water recovery system.
【請求項2】 請求項1記載の燃料電池用直接接触式凝
縮水回収システムにおいて、 前記直接接触式水蒸気凝縮器の最上部に排ガス出口、上
部に散水口、下部に排ガス入口と前記排ガス入口近傍に
噴霧ノズルを備えてなるガス冷却部と、 前記ガス冷却部と第1の仕切板で仕切られた脱炭酸手段
と、前記脱炭酸手段と第2の仕切板で仕切られた脱リン
酸手段からなる凝縮水貯水部とを備えていることを特徴
とする燃料電池用直接接触式凝縮水回収システム。
2. The direct contact condensed water recovery system for a fuel cell according to claim 1, wherein an exhaust gas outlet is provided at an uppermost portion of the direct contact steam condenser, a water spouting port is provided at an upper portion, an exhaust gas inlet is provided at a lower portion, and the vicinity of the exhaust gas inlet. A gas cooling unit comprising a spray nozzle, a decarboxylation unit partitioned by the gas cooling unit and the first partition plate, and a dephosphorization unit partitioned by the decarbonation unit and the second partition plate. A direct contact type condensed water recovery system for a fuel cell, comprising:
【請求項3】 請求項2記載の燃料電池用直接接触式凝
縮水回収システムにおいて、 前記散水口および前記噴霧ノズルが前記循環水配管によ
り流量調整弁と接続されていることを特徴とする燃料電
池用直接接触式凝縮水回収システム。
3. The fuel cell direct contact condensed water recovery system according to claim 2, wherein the water spout and the spray nozzle are connected to a flow control valve by the circulating water pipe. Contact type condensed water recovery system.
【請求項4】 請求項1、2又は3記載の燃料電池用直
接接触式凝縮水回収システムにおいて、 前記直接接触式水蒸気凝縮器の内部に多孔付き半円状棚
板を備え、 前記多孔付き半円状棚板が相対しながら縦方向に等間隔
に設置されていることを特徴とする燃料電池用直接接触
式凝縮水回収システム。
4. The direct contact condensed water recovery system for a fuel cell according to claim 1, 2 or 3, further comprising a semicircular shelf with perforations inside the direct contact steam condenser; A direct contact condensed water recovery system for a fuel cell, wherein the circular shelves are installed at equal intervals in the vertical direction while facing each other.
【請求項5】 請求項4記載の燃料電池用直接接触式凝
縮水回収システムにおいて、 前記多孔付き半円状棚板が開口比15ないし30%であ
り、棚板1m2 当たりの孔数が3200ないし4000
個でその孔径が3ないし7mmであり、かつガス冷却部高
さ1m当たりの棚板の枚数が6ないし14枚であること
を特徴とする燃料電池用直接接触式凝縮水回収システ
ム。
5. The direct contact condensed water recovery system for a fuel cell according to claim 4, wherein the semicircular shelf with holes has an opening ratio of 15 to 30%, and the number of holes per 1 m 2 of the shelf is 3,200. Or 4000
A direct contact type condensed water recovery system for a fuel cell, characterized in that the number of holes is 3 to 7 mm, and the number of shelf plates per 1 m of the height of the gas cooling unit is 6 to 14.
【請求項6】 請求項1、2、3、4又は5記載の燃料
電池用直接接触式凝縮水回収システムにおいて、 前記脱炭酸手段が外部の空気を取り入れる空気取り入れ
口を有するジェットポンプ付きノズルにより構成され、 前記ノズルが凝縮水貯水部の下部側面に、側面に沿う方
向に向けて備えていることを特徴とする燃料電池用直接
接触式凝縮水回収システム。
6. The direct-contact condensed water recovery system for a fuel cell according to claim 1, 2, 3, 4, or 5, wherein the decarboxylation means is provided with a nozzle with a jet pump having an air intake for taking in external air. A direct contact type condensed water recovery system for a fuel cell, wherein the nozzle is provided on a lower side surface of the condensed water storage part in a direction along the side surface.
【請求項7】 請求項1、2、3、4、5又は6記載の
燃料電池用直接接触式凝縮水回収システムにおいて、 前記脱リン酸手段が透水性に富むリテーナと前記リテー
ナを挟む貯水部の底部から水面上までの高さを持つ2枚
の金属製金網を一対として、複数対の前記リテーナを挟
んだ金属製金網でなる第3の仕切板で仕切られ、 前記金属製金網が直流電源を介して相互に電気的に接続
され、 かつ凝縮水貯水部と電気的に絶縁された状態で備えてい
ることを特徴とする燃料電池用直接接触式凝縮水回収シ
ステム。
7. The direct contact condensed water recovery system for a fuel cell according to claim 1, 2, 3, 4, 5, or 6, wherein the dephosphorizing means has a highly water-permeable retainer and a water reservoir sandwiching the retainer. A pair of two metal meshes having a height from the bottom to the surface of the water are divided by a third partition plate made of a metal mesh sandwiching a plurality of pairs of the retainers, and the metal mesh is a DC power supply. A direct contact condensed water recovery system for a fuel cell, wherein the condensed water recovery system is electrically connected to each other via a fluid reservoir and electrically insulated from the condensed water reservoir.
【請求項8】 請求項1、2、3、4、5、6又は7記
載の燃料電池用直接接触式凝縮水回収システムにおい
て、 前記流量調整弁が前記水位検知装置と電気的に接続さ
れ、前記凝縮水貯水部の水位が上昇すると流量調整弁が
開き前記燃料電池水処理装置へ送水されて燃料電池を冷
却する電池冷却水の補給水として再利用することを特徴
とする燃料電池用直接接触式凝縮水回収システム。
8. The direct-contact condensed water recovery system for a fuel cell according to claim 1, 2, 3, 4, 5, 6, or 7, wherein the flow control valve is electrically connected to the water level detection device, When the water level of the condensed water storage unit rises, a flow control valve is opened and the water is sent to the fuel cell water treatment device and reused as replenishing water for battery cooling water for cooling the fuel cell. Type condensed water recovery system.
【請求項9】 燃料電池排ガスが下部に導かれ、上部お
よび燃料電池排ガス入口近傍から散水されたガス冷却水
との直接接触により排ガス冷却を行うことにより、凝縮
水回収を可能とすることを特徴とする直接接触式水蒸気
凝縮器。
9. The fuel cell exhaust gas is guided to a lower portion, and the exhaust gas is cooled by direct contact with gas cooling water sprinkled from the upper portion and the vicinity of the fuel cell exhaust gas inlet, so that condensed water can be recovered. And direct contact steam condenser.
【請求項10】 内部を多孔付き半円状棚板を縦に複数
段組み合わせた構造とし、前記多孔付き半円状棚板が開
口比15ないし30%であり、棚板1m2 当たりの孔数
が3200ないし4000個でその孔径が3ないし7mm
であり、かつガス冷却部高さ1m当たりの棚板の枚数が
6ないし14枚であることを特徴とする請求項9記載の
直接接触式水蒸気凝縮器。
10. A internally with a combination of a plurality of stages of perforated with semicircular shelves vertical structure, said to porous with semicircular shelves is not an aperture ratio 15 was 30%, the number of holes per shelf board 1 m 2 Is 3200 to 4000 and the hole diameter is 3 to 7 mm
10. The direct contact steam condenser according to claim 9, wherein the number of shelves per meter of gas cooling unit height is 6 to 14.
JP32287097A 1997-11-25 1997-11-25 Direct contact type condensed water recovery system for fuel cell and direct contact type steam condenser Expired - Lifetime JP3290395B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP32287097A JP3290395B2 (en) 1997-11-25 1997-11-25 Direct contact type condensed water recovery system for fuel cell and direct contact type steam condenser

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP32287097A JP3290395B2 (en) 1997-11-25 1997-11-25 Direct contact type condensed water recovery system for fuel cell and direct contact type steam condenser

Publications (2)

Publication Number Publication Date
JPH11162495A JPH11162495A (en) 1999-06-18
JP3290395B2 true JP3290395B2 (en) 2002-06-10

Family

ID=18148543

Family Applications (1)

Application Number Title Priority Date Filing Date
JP32287097A Expired - Lifetime JP3290395B2 (en) 1997-11-25 1997-11-25 Direct contact type condensed water recovery system for fuel cell and direct contact type steam condenser

Country Status (1)

Country Link
JP (1) JP3290395B2 (en)

Families Citing this family (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CA2352626A1 (en) 2001-07-12 2003-01-12 Co2 Solution Inc. Coupling for linking a hydrogen fuel cell to an enzyme bioreactor for processing and sequestering co2
US7381487B2 (en) * 2004-12-27 2008-06-03 Fuelcell Energy, Inc. In-situ removal of electrolyte from gas oxidizer
US7504170B2 (en) * 2004-12-29 2009-03-17 Utc Power Corporation Fuel cells evaporatively cooled with water carried in passageways
JP2008253650A (en) * 2007-04-09 2008-10-23 Sanyo Electric Co Ltd Rice cooker
JP2010287519A (en) * 2009-06-15 2010-12-24 Panasonic Corp Fuel cell system
JP2012174395A (en) * 2011-02-18 2012-09-10 Mitsubishi Heavy Ind Ltd Solid polymer fuel cell power generating system
CN116742080A (en) * 2023-07-19 2023-09-12 江苏申氢宸科技有限公司 Hydrogen fuel cell water separation method and system

Also Published As

Publication number Publication date
JPH11162495A (en) 1999-06-18

Similar Documents

Publication Publication Date Title
US3344050A (en) Removal of carbon dioxide from gaseous atmospheres
JPH09161833A (en) Water treating device for fuel cell
CN108206289A (en) One kind prepares fuel cell based on first alcohol and water reformation
JP3290395B2 (en) Direct contact type condensed water recovery system for fuel cell and direct contact type steam condenser
CN113578025B (en) Method and system for capturing carbon dioxide in flue gas
JP4592265B2 (en) Fuel cell system
US20070281192A1 (en) Fuel cell power generation system
CN101511973A (en) Pollutant separator and isolation loop for fuel reaction physical distribution of fuel battery
CN114735877B (en) Device for treating metal product hydrochloric acid waste liquid by sulfonation method
US3485743A (en) Apparatus for removal of acidic gases from gaseous atmospheres
JP4655451B2 (en) Polymer electrolyte fuel cell system
JP3319315B2 (en) Direct contact heat exchanger system for fuel cells
AU2013257833B2 (en) Fuel cell system
JPH1064573A (en) Recovery system of fuel cell exhaust gas system heat and water
JP2009245702A (en) Water processing unit for fuel cell power generation system
JP5292865B2 (en) Water recovery method for fuel cell power generator and fuel cell power generator
JP5286851B2 (en) Fuel cell power generator
JP5228575B2 (en) Fuel cell power generator
JPS63141268A (en) Generating unit for natural-gas reformed molten carbonate type fuel cell
JPH0695460B2 (en) Fuel cell
JPH1197046A (en) Fuel cell power generator
JPH0622158B2 (en) Fuel cell power plant
JP2009123445A (en) Circulation water treatment device of fuel cell power generating device
JP2004097901A (en) Purifying method for ammonia-containing wastewater and apparatus therefor
JP2009140726A (en) Fuel cell power generation device

Legal Events

Date Code Title Description
FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20080322

Year of fee payment: 6

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090322

Year of fee payment: 7

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090322

Year of fee payment: 7

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100322

Year of fee payment: 8

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110322

Year of fee payment: 9

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110322

Year of fee payment: 9

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120322

Year of fee payment: 10

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130322

Year of fee payment: 11

S531 Written request for registration of change of domicile

Free format text: JAPANESE INTERMEDIATE CODE: R313531

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

EXPY Cancellation because of completion of term