JP3289597B2 - Method for measuring trace moisture in materials - Google Patents

Method for measuring trace moisture in materials

Info

Publication number
JP3289597B2
JP3289597B2 JP11087996A JP11087996A JP3289597B2 JP 3289597 B2 JP3289597 B2 JP 3289597B2 JP 11087996 A JP11087996 A JP 11087996A JP 11087996 A JP11087996 A JP 11087996A JP 3289597 B2 JP3289597 B2 JP 3289597B2
Authority
JP
Japan
Prior art keywords
water
amount
desorbed
measuring
lens
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP11087996A
Other languages
Japanese (ja)
Other versions
JPH09297095A (en
Inventor
信明 ▲高▼澤
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Toyota Motor Corp
Original Assignee
Toyota Motor Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Toyota Motor Corp filed Critical Toyota Motor Corp
Priority to JP11087996A priority Critical patent/JP3289597B2/en
Publication of JPH09297095A publication Critical patent/JPH09297095A/en
Application granted granted Critical
Publication of JP3289597B2 publication Critical patent/JP3289597B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Description

【発明の詳細な説明】DETAILED DESCRIPTION OF THE INVENTION

【0001】[0001]

【発明の属する技術分野】本発明は、材料の微量水分量
測定方法に関し、特に被測定物中の水分のみを電磁波加
熱によって精度よく脱離させ、吸水レンズの水分量と干
渉縞の広がりから水分量を求める短時間測定方法に関す
る。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a method for measuring a trace amount of water in a material, and more particularly to a method for accurately desorbing only water in an object to be measured by electromagnetic wave heating. It relates to a short-time measurement method for determining an amount.

【0002】[0002]

【従来の技術】一般に材料中の水分保有量は、材料自体
の特性に各種影響を及ぼす場合が多い。特にポリマ−、
塗膜等の各種材料中に水分は付着水および化合水として
存在するが、これらは材料劣化がもたらすことが多い。
例えば、塗膜にあっては、下地塗りと内塗り等の界面に
物理的に入っている水分であり、ポリマー部材では降雨
等による降下物を含有した水が表面から侵入し材料劣化
を生ずる。このため、材料の解析においては水分量の把
握が重要となる。しかし、この水分量は、通常では1%
以下程度の微量であるため検出が困難であった。
2. Description of the Related Art In general, the amount of water retained in a material often has various effects on the characteristics of the material itself. Especially polymers,
Moisture exists in various materials such as coating films as attached water and compounded water, and these often result in material deterioration.
For example, in the case of a coating film, it is water that physically enters the interface between the base coat and the inner coat. In the case of a polymer member, water containing falling matter due to rainfall or the like invades from the surface and causes material deterioration. For this reason, it is important to grasp the water content in the analysis of the material. However, this water content is usually 1%
The detection was difficult because the amount was as small as below.

【0003】従来の水分量測定方法としては下記のもの
が知られている。(例えば、新版計量ハンドブック、S6
2.6.25、コロナ社発行参照) (1)重量測定法(TG法) 電気炉により徐々に加熱し、水の脱離後の重量変化を計
り、水分量を求める方法である。図3のように、水分蒸
発の温度域は幅をもち、さらに非水残留溶媒や加熱分解
物がサンプル中に存在し得る(昇温速度1℃/分の時、
200℃まで約3Hr加熱) 。さらに、通常の水は常圧下
で沸点は100℃であるが、結晶水や配位水等の脱離温
度が不明確となる。この為、水分量が数%以下では水由
来の重量減少分を確認できず、通常では水分量が数+%
オーダでないと精度よく検出することは難しい。
The following are known as conventional methods for measuring the amount of water. (For example, New Edition Weighing Handbook, S6
(Refer to 2.6.25, published by Corona Co.) (1) Gravimetric method (TG method) A method of gradually heating with an electric furnace and measuring the change in weight after desorption of water to determine the water content. As shown in FIG. 3, the temperature range of water evaporation has a width, and a non-aqueous residual solvent and a thermally decomposed product may be present in the sample (when the temperature rise rate is 1 ° C./min,
About 3 hours heating to 200 ° C). Further, ordinary water has a boiling point of 100 ° C. under normal pressure, but the desorption temperature of water of crystallization, coordination water and the like becomes unclear. For this reason, when the water content is less than several%, the weight loss due to water cannot be confirmed, and the water content is usually several +%
It is difficult to detect accurately unless it is an order.

【0004】(2)DSC(示差走査熱量分析)測定法 サンプルを電気炉により、徐々に加熱し、図5のよう
に、水分脱離時の吸熱量Q(気化熱)を測定する。単位
重量当りの気化熱が既知であるので、含有水分量が計算
される。すなわち、水分量W=Q/q0 (q0 :単位重
量当たりの水の蒸発熱)で評価される。この方法では、
前記TG法より、感度は優れるが、やはり水分蒸発の温
度域に幅がある為、水分量数%以下では水由来の吸熱ピ
ークが確認できない。
(2) DSC (Differential Scanning Calorimetry) Measurement Method A sample is gradually heated by an electric furnace, and as shown in FIG. 5, an endothermic amount Q (heat of vaporization) at the time of moisture desorption is measured. Since the heat of vaporization per unit weight is known, the water content is calculated. That is, the water content is evaluated by W = Q / q 0 (q 0 : heat of evaporation of water per unit weight). in this way,
Although the sensitivity is superior to that of the TG method, an endothermic peak derived from water cannot be confirmed when the water content is less than a few% because the temperature range of water evaporation is still wide.

【0005】(3)カールフィッシャー測定法 図4に示すように、一種の電量滴定法である。電解質中
のI2 がH2 Oの滴下により含I- イオン化合物が生ず
る。センサーによりI2 の減少が検知されると、I2
が元に戻るように電流が流される。この時の通電量より
2 減少量ひいてはH2 O滴下量を割り出す。本法の問
題点は、固体サンプルでは、水分を溶媒、又はガス中に
抽出する必要がある。水分量が微量な場合、大気中水分
の混入を防ぐ為、抽出作業はグローブボックス内で行わ
ねばならず、非常に煩雑である。
(3) Karl Fischer measurement method As shown in FIG. 4, this is a kind of coulometric titration method. Ionic compounds occurs - including I I 2 in the electrolyte by the dropwise addition of H 2 O. When a decrease in I 2 is detected by the sensor, a current is supplied so that the I 2 amount returns to the original value. The amount of decrease in I 2 and thus the amount of H 2 O dropped are calculated from the amount of current applied at this time. The problem with this method is that for solid samples, it is necessary to extract the water into the solvent or gas. When the amount of water is very small, the extraction operation must be performed in a glove box in order to prevent mixing of atmospheric water, which is very complicated.

【0006】(4)真空乾燥法 サンプルを真空乾燥器に入れ減圧して、水分が脱離した
後のサンプル重量を測定する方法である。本方法では水
分と非水残留溶媒との区別ができない。上記(1)と
(2)は、水分蒸発の温度域に幅があるため、水分量が
数%以下では重量減少分や吸熱ピークが確認できない。
また、昇温速度を数℃/分以上に上げることが出来ない
ため、1回の測定に1〜2時間を要する。上記(3)で
は測定が煩雑で手間が掛かり過ぎ、上記(4)では水分
と非水残留溶媒との区別ができないという問題がある。
いずれも一長一短があり、固体材料中の微量水分量を短
時間にかつ正確に測定する工夫が望まれている。
(4) Vacuum drying method This is a method in which a sample is placed in a vacuum dryer and the pressure is reduced, and the weight of the sample after moisture is eliminated is measured. This method cannot distinguish between water and non-aqueous residual solvents. In the above (1) and (2), since there is a wide range in the temperature range of water evaporation, when the water content is less than a few%, no weight loss or endothermic peak can be confirmed.
In addition, since the rate of temperature rise cannot be increased to several degrees Celsius / min or more, one measurement requires 1-2 hours. In the above (3), there is a problem that the measurement is complicated and time-consuming, and in the above (4), it is impossible to distinguish between water and the non-aqueous residual solvent.
Each of them has advantages and disadvantages, and a device for measuring the amount of trace water in a solid material in a short time and accurately is desired.

【0007】[0007]

【発明が解決しようとする課題】本発明の目的は、被測
定物中の水分のみを脱離させる方法を検討し、脱離した
水分を精度良く測定する方法によって、前処理なく微量
測定可能なる微量水分量測定方法を提供することであ
る。また、本発明の他の目的は、前記脱離した水分を精
度良く測定する方法として、検知物質に吸収させ、その
光学的変化より水分量を把握する微量水分量測定方法を
提供することである。
SUMMARY OF THE INVENTION It is an object of the present invention to examine a method for desorbing only water in an object to be measured, and to measure the desorbed water with a high precision so that a trace amount can be measured without pretreatment. An object of the present invention is to provide a method for measuring a trace amount of water. Another object of the present invention is to provide a method for measuring the amount of desorbed water with high accuracy by measuring the amount of water desorbed from a detection substance and grasping the amount of water from an optical change as a method for accurately measuring the desorbed water. .

【0008】[0008]

【課題を解決するための手段】上記の目的は、被測定物
の微量水分量を測定する方法であって、電磁波加熱によ
り被測定物中の水分を脱離させ、脱離した水分を吸水レ
ンズに吸収させ、吸収した水分によって膨張したレンズ
の干渉縞の広がり量を、予め求めておいた水分量と干渉
縞の広がり量の相関関係と比較することにより水分量を
求めることを特徴とする材料中の微量水分測定方法によ
って達成される。
SUMMARY OF THE INVENTION The object of the present invention is to provide a method for measuring a trace amount of water in an object to be measured, wherein the water in the object is desorbed by electromagnetic wave heating, and the desorbed water is absorbed by a water-absorbing lens. A material obtained by comparing the amount of spread of the interference fringes of the lens expanded by the absorbed water with the correlation between the previously determined amount of water and the amount of spread of the interference fringes. Achieved by a method for measuring trace moisture in water.

【0009】[0009]

【発明の実施の形態】本発明が対象とする材料中の水分
には、第1には材料内部への水の浸入が発生すると、そ
の水によって材料個有の構造骨格との間で境界が形成さ
れ、ここに水による毛管力が作用することになる。この
時の引っ張り力は表面に対して垂直方向に作用する傾向
が大きく、この引っ張り力が材料骨格の強さより大きく
なると、材料瑕疵として材料劣化もしくは表面凹部等を
発生することが考えられる。第2には降雨による降下
物、特に酸性雨等を含有する水の浸入による材料の物理
化学的劣化が上げられる。これに対して、材料自体の官
能基と結合している化合水ではこの材料瑕疵への影響は
比較的少ない。
BEST MODE FOR CARRYING OUT THE INVENTION First of all, when water infiltrates into a material, the boundary between the material and the structural skeleton of the material is determined by the water. It is formed, where the capillary force of the water acts. At this time, the tensile force tends to act in a direction perpendicular to the surface, and if the tensile force is greater than the strength of the material skeleton, it is conceivable that a material defect or a surface recess is generated as a material defect. Second, physicochemical degradation of the material due to the ingress of water containing rainfall, especially acid rain, etc., is raised. On the other hand, compounded water bonded to the functional group of the material itself has relatively little effect on the material defect.

【0010】本発明では、この浸入する水を含め材料が
保有する水分の全含有量を測定することによって、材料
解析または材料特性の改善の基礎的データを提供するも
のである。水分量の測定では、好ましくは材料から完全
に脱離させることが必要である。通常、水は気化して脱
離するが、十分に気化させるためには材料を短時間で気
化温度に到達させた後、所定の時間保持して気化が飽和
する状態で分布を測定することが望ましく、このためか
なりの時間を要していた。通常のヒーター加熱において
は水の脱離までに時間を要し、その間に脱離水が他の部
位に転移し、正しい水分量が把握できなくなる。一方、
本発明では電磁波加熱の周波数を水分子のO−H結合の
振動数に一致させて用いることにより水を瞬時に共鳴・
吸収させ、測定が短時間で精度良く行なえる。
The present invention provides basic data for material analysis or improvement of material properties by measuring the total content of water contained in the material, including the water that enters. Measurement of the water content preferably requires complete elimination from the material. Normally, water evaporates and desorbs.However, in order to sufficiently evaporate, it is necessary to reach the evaporating temperature in a short time, then hold it for a predetermined time and measure the distribution in a state where the vaporization is saturated. Desirably, this took considerable time. In normal heater heating, it takes time until water is desorbed, during which time the desorbed water transfers to other parts, making it impossible to grasp the correct amount of water. on the other hand,
In the present invention, water is instantaneously resonated by using the frequency of electromagnetic wave heating in accordance with the frequency of the O—H bond of water molecules.
Absorption and measurement can be performed accurately in a short time.

【0011】以上のように本発明では、被測定物中の水
分のみを電磁波加熱により共鳴・吸収させ脱離させるこ
とができるため、精度の向上が図れる。脱離した水分量
は、光学的(吸水レンズ、赤外線)変化として把握で
き、前処理することなく短時間に測定が可能であり、か
つ微量な場合にも精度良く測定できる。以下に本発明の
具体的な装置の実施例を添付図面によって説明する。
As described above, according to the present invention, only the moisture in the object to be measured can be desorbed by resonance / absorption by electromagnetic wave heating, thereby improving the accuracy. The amount of desorbed water can be grasped as an optical (water-absorbing lens, infrared) change, can be measured in a short time without any pretreatment, and can be accurately measured even in a small amount. An embodiment of a specific apparatus according to the present invention will be described below with reference to the accompanying drawings.

【0012】[0012]

【実施例】本実施例は吸水レンズを利用する方法で、そ
の装置を図1および図2に示す。本実施例ではサンプル
として、プラスチックス製の厚さ約1mm、大きさ10×
10mmのものを用い、電磁波加熱により脱離させた水分
を吸水レンズに吸わせ、吸水膨脹したレンズの干渉縞の
広がり量でもって、サンプル中水分量の評価を行った。
なお、サンプル1の大きさはサンプル室内2にセットで
きる大きさであればよい。また、電磁周波数は水分子O
−H結合振動数に一致させた。サンプル室2中にセット
したサンプル1を電磁波加熱装置4で電磁波加熱し、水
分を脱離させた後、直ちにシャッター3を直ちに閉じ脱
離した水分が再度サンプルに戻らないようにし、吸水レ
ンズ5(プラスチックス製)に吸水させた。電磁加熱時
間は数分程度で十分であった。吸水レンズ5は、真上か
ら観察される干渉縞の幅が等間隔となるように、ソロバ
ン玉状の形状またはこれの二分割形状とし、透明で吸水
性の高いプラスチックスを用いる。さらにレンズ吸水量
(又はサンプル脱水量)と干渉縞幅との関係を予め求め
ておく。本実施例では、図1のように、プラスチックス
製吸水レンズ5をサンプル1の表面に近づけて設けた。
この場合吸水レンズ材質はよくコントロールされてお
り、官能基の不均一分布はないものを用いた。本実施例
においては、図2(b)示すように、隣なり合う干渉縞
7での光路差は2d=λであり、ここでλ=500n
m、θ=3°に設定すると、干渉縞間隔Dは、D=d/
tanθで4.8μmである。この約5μm間隔の干渉
縞7は光顕(×500)で確認は可能であった。吸水膨
脹したレンズの干渉縞幅Dを光学顕微鏡で読み取り、水
分量と干渉縞幅との関係より、サンプル中の水分量を求
めた。
This embodiment is a method using a water-absorbing lens, and its apparatus is shown in FIGS. In this embodiment, as a sample, a thickness of about 1 mm made of plastics and a size of 10 ×
Using a 10 mm one, water desorbed by electromagnetic wave heating was absorbed by a water-absorbing lens, and the amount of water in the sample was evaluated based on the spread of interference fringes of the lens that expanded and absorbed water.
The size of the sample 1 may be any size that can be set in the sample chamber 2. The electromagnetic frequency is O
-H bond frequency was matched. After the sample 1 set in the sample chamber 2 is electromagnetically heated by the electromagnetic wave heating device 4 to desorb water, the shutter 3 is immediately closed immediately so that the desorbed water does not return to the sample again. (Made of plastics). The electromagnetic heating time of about several minutes was sufficient. The water-absorbing lens 5 is made of a soloban ball or a two-part shape thereof so that the width of the interference fringes observed from directly above is equal, and is made of transparent and highly water-absorbing plastics. Further, the relationship between the lens water absorption (or sample dehydration) and the interference fringe width is determined in advance. In this embodiment, as shown in FIG. 1, a plastics water-absorbing lens 5 is provided close to the surface of the sample 1.
In this case, the material of the water-absorbing lens was well controlled, and a material having no uneven distribution of the functional groups was used. In the present embodiment, as shown in FIG. 2B, the optical path difference between adjacent interference fringes 7 is 2d = λ, where λ = 500n.
m, θ = 3 °, the interference fringe interval D is D = d /
tan θ is 4.8 μm. The interference fringes 7 at intervals of about 5 μm could be confirmed with a light microscope (× 500). The interference fringe width D of the water-swollen and expanded lens was read with an optical microscope, and the water content in the sample was determined from the relationship between the water content and the interference fringe width.

【0013】この場合に、図6の様にレンズの吸水量%
と干渉縞幅との関係を求めたが、脱離した水の全量がレ
ンズに吸収されたものではなく、図7のようにサンプル
脱水量と干渉縞幅との関係において、レンズの飽和水分
量mが存在する。このため、水分量はW(サンプルの脱
水量)=mα(m:レンズの飽和水分量)とした。
In this case, as shown in FIG.
And the width of the interference fringes were determined. However, the total amount of desorbed water was not absorbed by the lens, and as shown in FIG. m exists. Therefore, the amount of water was set to W (the amount of dehydration of the sample) = mα (m: the amount of saturated water of the lens).

【0014】[0014]

【発明の効果】本発明は、被測定物中の水分のみを電磁
波加熱によって短時間で完全に脱離し、この脱離状態の
水分を短時間に、光学的測定によって精度良く測定する
ので、従来の各種測定方法より簡便でしかも測定精度よ
く材料中の微量水分の測定が可能となる。
According to the present invention, only water in an object to be measured is completely desorbed in a short time by electromagnetic wave heating, and the water in the desorbed state is accurately measured in a short time by optical measurement. It is possible to measure a trace amount of water in a material more simply and with higher measurement accuracy than the above various measuring methods.

【図面の簡単な説明】[Brief description of the drawings]

【図1】本発明の実施例に係る測定方法を示す概要図で
ある。
FIG. 1 is a schematic diagram showing a measuring method according to an embodiment of the present invention.

【図2】本発明の実施例に係る解析方法を示す概要図
で、(a)吸収レンズと干渉縞、(b)干渉縞幅による
解析を示す図である。
FIGS. 2A and 2B are schematic diagrams illustrating an analysis method according to an embodiment of the present invention, in which FIG. 2A illustrates analysis based on an absorption lens and interference fringes, and FIG.

【図3】従来のTG法における重量減量チャートであ
る。
FIG. 3 is a weight loss chart in a conventional TG method.

【図4】従来のカールフィッシャー法の測定方法を示す
図である。
FIG. 4 is a diagram showing a conventional Karl Fischer method.

【図5】従来のDSC法の熱量測定チャートである。FIG. 5 is a calorimetry chart of a conventional DSC method.

【図6】本発明の実施例に係るレンズ吸水量と干渉縞幅
の関係を示す図である。
FIG. 6 is a diagram illustrating a relationship between a lens water absorption and an interference fringe width according to an example of the present invention.

【図7】本発明の実施例に係るサンプル脱水量と干渉縞
幅の関係を示す図である。
FIG. 7 is a diagram showing a relationship between a sample dehydration amount and an interference fringe width according to an example of the present invention.

【符号の説明】[Explanation of symbols]

1…サンプル 2…サンプル室 3…シャッター 4…電磁波加熱装置 5…吸水レンズ 6…光学顕微鏡 7…干渉縞 DESCRIPTION OF SYMBOLS 1 ... Sample 2 ... Sample chamber 3 ... Shutter 4 ... Electromagnetic wave heating device 5 ... Water absorption lens 6 ... Optical microscope 7 ... Interference fringe

───────────────────────────────────────────────────── フロントページの続き (58)調査した分野(Int.Cl.7,DB名) G01N 5/04 G01N 19/10 G01N 21/45 JICSTファイル(JOIS)────────────────────────────────────────────────── ─── Continued on the front page (58) Field surveyed (Int.Cl. 7 , DB name) G01N 5/04 G01N 19/10 G01N 21/45 JICST file (JOIS)

Claims (1)

(57)【特許請求の範囲】(57) [Claims] 【請求項1】 被測定物の微量水分量を測定する方法で
あって、電磁波加熱により被測定物中の水分を脱離さ
せ、脱離した水分を吸水レンズに吸収させ、吸収した水
分によって膨張したレンズの干渉縞の広がり量を、予め
求めておいた水分量と干渉縞の広がり量の相関関係と比
較することにより水分量を求めることを特徴とする材料
中の微量水分測定方法。
1. A method for measuring a trace amount of water in an object to be measured, wherein the water in the object to be measured is desorbed by electromagnetic wave heating, the desorbed water is absorbed by a water-absorbing lens, and expansion is performed by the absorbed water. A method for measuring a trace amount of moisture in a material, wherein the amount of spread of interference fringes of the lens is compared with a predetermined correlation between the amount of spread of water and the amount of spread of interference fringes.
JP11087996A 1996-05-01 1996-05-01 Method for measuring trace moisture in materials Expired - Fee Related JP3289597B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP11087996A JP3289597B2 (en) 1996-05-01 1996-05-01 Method for measuring trace moisture in materials

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP11087996A JP3289597B2 (en) 1996-05-01 1996-05-01 Method for measuring trace moisture in materials

Related Child Applications (1)

Application Number Title Priority Date Filing Date
JP2001375829A Division JP3613684B2 (en) 2001-12-10 2001-12-10 Method for measuring trace moisture in materials

Publications (2)

Publication Number Publication Date
JPH09297095A JPH09297095A (en) 1997-11-18
JP3289597B2 true JP3289597B2 (en) 2002-06-10

Family

ID=14547019

Family Applications (1)

Application Number Title Priority Date Filing Date
JP11087996A Expired - Fee Related JP3289597B2 (en) 1996-05-01 1996-05-01 Method for measuring trace moisture in materials

Country Status (1)

Country Link
JP (1) JP3289597B2 (en)

Families Citing this family (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
PL1850111T3 (en) * 2006-04-25 2015-02-27 Mettler Toledo Ag Measuring device for gravimetric moisture determination
JP6061393B2 (en) * 2013-09-17 2017-01-18 公益財団法人鉄道総合技術研究所 Degradation state evaluation apparatus, deterioration state evaluation method, and deterioration state evaluation program
US20170074766A1 (en) 2015-09-11 2017-03-16 Cem Corporation Moisture and volatiles analyzer
CN108592986A (en) * 2018-05-10 2018-09-28 山东省医疗器械产品质量检验中心 The unimpeded verifying attachment of micropore needle tubing and dressing anthemorrhagic performance in-vitro evaluation system and method
CN111948090B (en) * 2020-08-12 2022-02-01 东北大学 Method and device for monitoring moisture content change of material in vacuum drying process
CN113933204A (en) * 2021-10-14 2022-01-14 深圳市艾溹技术研究有限公司 Electronic atomizer and method for measuring moisture content of smoke of electronic atomizer
CN114397219A (en) * 2022-01-25 2022-04-26 上海兰钧新能源科技有限公司 Infiltration duration measuring and calculating method and device

Also Published As

Publication number Publication date
JPH09297095A (en) 1997-11-18

Similar Documents

Publication Publication Date Title
Skaar Wood-water relations
JP3076604B2 (en) Surface plasmon resonance device
US5983711A (en) Temperature controlled gravimetric moisture analyzer and method therefor
US5017007A (en) Apparatus and microbase for surface-enhanced raman spectroscopy system and method for producing same
JP3289597B2 (en) Method for measuring trace moisture in materials
Galipeau et al. Surface acoustic wave microsensors and applications
Liu et al. Study on diffusion behavior of water in epoxy resins cured by active ester
Giordano et al. An high sensitivity optical sensor for chloroform vapours detection based on nanometric film of δ-form syndiotactic polystyrene
Lu et al. Detection of the specific binding on protein microarrays by oblique-incidence reflectivity difference method
Seiler et al. Quantitative mass spectrometry by internal standardisation using a single focusing mass spectrometer and the peak switching facilities of a peak matching device
Çapan et al. Poly (methyl methacrylate) films for organic vapour sensing
Fowler et al. Determination of molecular weight and composition of a perfluorinated polymer from fragment intensities in time-of-flight secondary ion mass spectrometry
JP3613684B2 (en) Method for measuring trace moisture in materials
WO2018204545A1 (en) Method for rapid temperature measurement and apparatus thereof
JP3277092B2 (en) Polymer film for organic gas detection
JPH10293011A (en) Method and device for evaluating anisotropic thin film
SU1134908A1 (en) Method of determination of water content in wood
Yang et al. Development of headspace solid-phase microextraction/attenuated total reflection infrared chemical sensing method for the determination of volatile organic compounds in aqueous solutions
Grinzato et al. Evaluation of moisture content in porous material by dynamic energy balance
JP3239733B2 (en) Material surface moisture distribution measurement method
Otsuki et al. Reversible opacity change of hydroxypropyl cellulose films as a basis for optical humidity measurements
Liu et al. Ex situ and in situ ellipsometric studies of the thermal oxide on InP
JPH0756790B2 (en) Mass spectrometer
JP2917938B2 (en) Polarization analysis method and polarization analyzer
JPH0259645A (en) Method for measuring water content in sample

Legal Events

Date Code Title Description
FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090322

Year of fee payment: 7

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100322

Year of fee payment: 8

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110322

Year of fee payment: 9

LAPS Cancellation because of no payment of annual fees