JP3288440B2 - Joining method and joined body of heat-resistant alloy containing Al - Google Patents

Joining method and joined body of heat-resistant alloy containing Al

Info

Publication number
JP3288440B2
JP3288440B2 JP23375492A JP23375492A JP3288440B2 JP 3288440 B2 JP3288440 B2 JP 3288440B2 JP 23375492 A JP23375492 A JP 23375492A JP 23375492 A JP23375492 A JP 23375492A JP 3288440 B2 JP3288440 B2 JP 3288440B2
Authority
JP
Japan
Prior art keywords
heat
resistant alloy
oxide
oxide film
melting point
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
JP23375492A
Other languages
Japanese (ja)
Other versions
JPH0687634A (en
Inventor
省吾 紺谷
晃 岡本
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nippon Steel Corp
Original Assignee
Nippon Steel Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nippon Steel Corp filed Critical Nippon Steel Corp
Priority to JP23375492A priority Critical patent/JP3288440B2/en
Publication of JPH0687634A publication Critical patent/JPH0687634A/en
Application granted granted Critical
Publication of JP3288440B2 publication Critical patent/JP3288440B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Description

【発明の詳細な説明】DETAILED DESCRIPTION OF THE INVENTION

【0001】[0001]

【産業上の利用分野】本発明は耐熱合金、詳しくは後述
するAlを含有する耐熱合金の接合方法に関し、例えば
800℃以上の高温環境下でかつ熱サイクル環境下にお
いて使用される自動車排ガス浄化メタル担体等、極めて
厳しい耐熱性、耐熱サイクル性、電気絶縁性を要求され
る耐熱合金の接合方法ならびに接合体に関する。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a heat-resistant alloy, and more particularly to a method for joining a heat-resistant alloy containing Al, which will be described later. The present invention relates to a joining method and a joined body of a heat-resistant alloy which is required to have extremely severe heat resistance, heat cycle resistance, and electric insulation, such as a carrier.

【0002】[0002]

【従来の技術】板あるいは箔状の耐熱合金同士を接合す
る方法としては、各種の有機接着剤あるいは無機接着剤
を用いる方法、ろう付けによる方法、溶接による方法等
が一般に知られている。
2. Description of the Related Art As a method for joining heat-resistant alloys in the form of a plate or a foil, a method using various organic or inorganic adhesives, a method by brazing, a method by welding, and the like are generally known.

【0003】一方、金属表面に酸化物層を形成し、金属
素地と表面との電気絶縁性を得る技術として、例えば特
開平2−97686号、特開平2−97687号、特開
平1−141834号、特開昭63−312985号、
特開昭63−203779号等で開示される琺瑯技術が
あることも周知である。
On the other hand, as a technique for forming an oxide layer on a metal surface to obtain electrical insulation between the metal substrate and the surface, for example, JP-A-2-97686, JP-A-2-97687, and JP-A-1-141834. JP-A-63-312985,
It is also well known that there is an enamel technique disclosed in JP-A-63-203779.

【0004】しかしながら前述したろう付け、溶接によ
る方法では、接合部に電気絶縁性をもたせることは不可
能である。電気絶縁性だけを得る方法としては、例えば
耐熱合金の間に電気絶縁材を挟み、絶縁材と耐熱合金箔
を有機接着剤で接合する方法がある。あるいは、有機接
着剤の電気絶縁性を利用し、耐熱合金を直接有機接着剤
で接合する方法も考えられる。しかし、いずれの方法に
しても、有機接着剤は耐熱性に乏しいため本発明が目的
とする高温環境下での使用には適さない。
[0004] However, it is impossible to impart electrical insulation to the joints by the above-mentioned brazing and welding methods. As a method of obtaining only electric insulation, for example, there is a method of sandwiching an electric insulating material between heat-resistant alloys and joining the insulating material and the heat-resistant alloy foil with an organic adhesive. Alternatively, a method is also conceivable in which a heat-resistant alloy is directly joined with an organic adhesive by utilizing the electrical insulating properties of the organic adhesive. However, any of these methods is not suitable for use in a high-temperature environment, which is the object of the present invention, because the organic adhesive has poor heat resistance.

【0005】また耐熱合金の間に絶縁材を挟み、絶縁材
と耐熱合金箔を無機接着剤で接合する方法、あるいは、
無機接着剤の電気絶縁性を利用し、耐熱合金を直接無機
接着剤で接合する方法では、耐熱性は得られるものの、
熱サイクルの負荷を与えると接着剤内にクラックが発生
し、ついには破壊してしまい、耐熱サイクル性の問題点
を解決することができなかった。すなわち有機あるいは
無機接着剤を用いる方法でも本発明の目的を解決するこ
とはできなかった。
A method of sandwiching an insulating material between heat-resistant alloys and joining the insulating material and the heat-resistant alloy foil with an inorganic adhesive, or
In the method of joining the heat-resistant alloy directly with the inorganic adhesive using the electrical insulation properties of the inorganic adhesive, although heat resistance is obtained,
When a heat cycle load is applied, cracks occur in the adhesive and eventually break, and the problem of heat cycle resistance cannot be solved. That is, the method of using an organic or inorganic adhesive could not solve the object of the present invention.

【0006】一方、前述した琺瑯技術は電気絶縁性と耐
熱サイクル性を得るという技術思想はあるものの、あく
まで金属の表面処理技術に関するものであり、金属同士
を接合する本発明にそのまま適用できるものではない。
[0006] On the other hand, the above-mentioned enamel technique has a technical idea of obtaining electrical insulation and heat cycle resistance, but is only concerned with metal surface treatment techniques and cannot be directly applied to the present invention for joining metals. Absent.

【0007】[0007]

【発明が解決しようとする課題】本発明は板あるいは箔
状のAlを含有する耐熱合金同士を接合するに際し、こ
の接合部が、800℃以上の高温に耐え得る耐熱性、室
温と800℃以上の高温の間の熱サイクルに耐え得る耐
熱サイクル性、接合した耐熱合金間の電気絶縁性の3つ
の特性を同時に満足し、かつ接合体の接合強度が特に高
い接合方法ならびに接合体を提供することを主たる課題
とするものである。
SUMMARY OF THE INVENTION In the present invention, when joining heat-resistant alloys containing Al in the form of a plate or a foil, the joining portion has a heat resistance capable of withstanding a high temperature of 800.degree. To provide a joining method and a joined body that simultaneously satisfy the three characteristics of heat cycle resistance that can withstand the heat cycle at high temperatures and electrical insulation between the joined heat-resistant alloys and that have a particularly high joint strength. Is the main issue.

【0008】[0008]

【課題を解決するための手段】前記課題を解決する本発
明は、Alを含有する耐熱合金の表面を酸化してアルミ
ナを主体とする酸化皮膜を形成し、その表面層にTiま
たはZr金属を接触させ、非酸化性雰囲気中で加熱する
ことにより耐熱合金内に拡散させる処理を行い、しかる
後TiまたはZr金属を除去し、前記拡散処理を施した
1対の耐熱合金の任意の面同士を対峙し、この対峙面に
融点800℃以上1400℃以下、厚さ1mm以下の酸化
物を介在させ、この酸化物の融点の9/10以上に加熱
することにより、前記耐熱合金を接合させることを特徴
とするものである。
The present invention for solving the above-mentioned problems is to oxidize the surface of a heat-resistant alloy containing Al to form an oxide film mainly composed of alumina, and to form a Ti or Zr metal on the surface layer. Contacting and heating in a non-oxidizing atmosphere to perform a process of diffusing into the heat-resistant alloy, then removing the Ti or Zr metal, and bringing any surfaces of the pair of heat-resistant alloys subjected to the diffusion process together. An oxide having a melting point of 800 ° C. or more and 1400 ° C. or less and a thickness of 1 mm or less is interposed between the facing surfaces, and the heat-resistant alloy is joined by heating to 9/10 or more of the melting point of the oxide. It is a feature.

【0009】また、Alを含有する耐熱合金の表面を酸
化してアルミナを主体とする酸化皮膜を形成し、その片
側の表面層にTiまたはZr金属を配置し、非酸化性雰
囲気中で加熱することにより耐熱合金内に拡散させる処
理を行い、しかる後前記拡散処理を施した1対の耐熱合
金の、前記TiまたはZrを配置した面の逆の面同士を
対峙し、この対峙面に融点800℃以上1400℃以
下、厚さ1mm以下の酸化物を介在させ、この酸化物の融
点の9/10以上に加熱することにより、前記耐熱合金
を接合させることを他の特徴とするものである。
Further, the surface of the heat-resistant alloy containing Al is oxidized to form an oxide film mainly composed of alumina, and Ti or Zr metal is disposed on one surface layer thereof and heated in a non-oxidizing atmosphere. In this way, a process of diffusing into the heat-resistant alloy is performed, and then the surfaces of the pair of heat-resistant alloys subjected to the diffusion process, which are opposite to the surfaces on which the Ti or Zr is arranged, face each other. Another feature is that the heat-resistant alloy is joined by interposing an oxide having a temperature of 1 ° C. or more and 1400 ° C. or less and a thickness of 1 mm or less and heating to 9/10 or more of the melting point of the oxide.

【0010】また、Alを含有する耐熱合金の表面を酸
化してアルミナを主体とする酸化皮膜を形成し、その片
側の表面層にTiまたはZr金属と、ろう材と、金属板
を順次積層配置した後、非酸化性雰囲気中でろう付け処
理して接合体を形成し、しかる後前記ろう付け処理を施
した接合体1対の前記TiまたはZrを配置した逆の面
同士を対峙し、この対峙面に融点800℃以上1400
℃以下、厚さ1mm以下の酸化物を介在させ、この酸化物
の融点の9/10以上に加熱することにより、前記耐熱
合金を接合させることを他の特徴とするものである。
Further, the surface of the heat-resistant alloy containing Al is oxidized to form an oxide film mainly composed of alumina, and a Ti or Zr metal, a brazing material and a metal plate are sequentially laminated on one surface layer. Then, brazing treatment is performed in a non-oxidizing atmosphere to form a joined body. Then, the opposite surfaces of the pair of joined bodies subjected to the brazing treatment on which the Ti or Zr are arranged face each other. Melting point 800 ° C or higher 1400 on the facing surface
Another feature is that the heat-resistant alloy is bonded by interposing an oxide having a thickness of 1 ° C. or less and a temperature of 9/10 or more of the melting point of the oxide.

【0011】また、Alを含有する耐熱合金の表面を酸
化してアルミナを主体とする酸化皮膜を形成し、その片
側の表面層にTiまたはZr金属と、ろう材と、金属板
を順次積層配置し、前記積層配置体2組について、耐熱
合金のTiまたはZrを配置した逆の面同士を対峙し、
この対峙面に融点800℃以上1400℃以下、厚さ1
mm以下の酸化物を介在させ、この酸化物の融点の9/1
0以上に加熱することにより、前記耐熱合金を接合させ
ることを他の特徴とするものである。
The surface of the heat-resistant alloy containing Al is oxidized to form an oxide film mainly composed of alumina, and a Ti or Zr metal, a brazing material, and a metal plate are sequentially laminated on one surface layer. Then, with respect to the two sets of the stacked arrangement bodies, the opposite surfaces on which the heat-resistant alloy Ti or Zr is arranged face each other,
A melting point of 800 ° C. or more and 1400 ° C. or less and a thickness of 1
mm or less of the melting point of this oxide.
Another feature is that the heat-resistant alloy is joined by heating to 0 or more.

【0012】また、耐熱合金の接合体が、表面にアルミ
ナを主体とする酸化皮膜を有しかつその片側の表面層に
TiまたはZrを拡散したことにより、酸化皮膜と耐熱
合金素地の界面にTiまたはZrの偏析部が存在するA
lを含有する耐熱合金の板或いは箔の1対と、該1対の
板或いは箔の面同士の間に介在し、融点800℃以上1
400℃以下、厚さ1mm以下で該融点の9/10以上に
加熱して形成した酸化物の中間接合層とからなることを
特徴とする。
[0012] Further, since the joint body of the heat-resistant alloy has an oxide film mainly composed of alumina on the surface and diffuses Ti or Zr into the surface layer on one side thereof, the interface between the oxide film and the heat-resistant alloy substrate is formed at the interface. Or A having a segregated part of Zr
1 interposed between a pair of plates or foils of a heat-resistant alloy containing
An oxide intermediate bonding layer formed by heating at a temperature of 400 ° C. or less and a thickness of 1 mm or less to 9/10 or more of the melting point.

【0013】[0013]

【作用】本発明は、Alを含有する耐熱合金を予め酸化
してアルミナを主体とする酸化皮膜を形成せしめ、その
酸化皮膜と介在酸化物が反応して接合することにより、
耐熱合金同士をより効率的に接合させるとともに、T
i、あるいはZrを外方から拡散させることにより、そ
の酸化皮膜と耐熱合金素地の接着強度を向上させるもの
である。従って、耐熱合金にAlが添加されていること
は必須であり、好ましくは、1重量%程度以上添加され
ていると、十分に緻密な酸化皮膜が形成される。
According to the present invention, a heat-resistant alloy containing Al is oxidized in advance to form an oxide film mainly composed of alumina, and the oxide film reacts with an intervening oxide to join.
In addition to joining the heat-resistant alloys more efficiently,
By diffusing i or Zr from the outside, the adhesive strength between the oxide film and the heat-resistant alloy substrate is improved. Therefore, it is indispensable that Al is added to the heat-resistant alloy. Preferably, if about 1% by weight or more is added, a sufficiently dense oxide film is formed.

【0014】Alを含有する耐熱合金表面にアルミナを
主体とする酸化皮膜を形成させたのち、TiあるいはZ
rを耐熱合金内に拡散させると、これらの元素は、図1
に示すようにアルミナを主体とする酸化皮膜11と耐熱
合金素地12の界面に偏析し、耐熱合金の酸化皮膜11
と、TiあるいはZrは酸化皮膜11と耐熱合金素地1
2の界面に複合酸化物13を形成する。アルミナを主体
とする酸化皮膜11と複合酸化物13は接合されてお
り、従って、TiあるいはZrがない場合の耐熱合金の
酸化皮膜11と耐熱合金素地12の界面13aが平坦で
あるのに対し、TiあるいはZrの複合酸化物13を形
成した場合にはその界面13aが耐熱合金素地内にくい
込んだ領域が生じ、投錨効果により、酸化皮膜11と耐
熱合金素地12の接着性が向上する。
After forming an oxide film mainly composed of alumina on the surface of the heat-resistant alloy containing Al, Ti or Z
When r is diffused into the heat-resistant alloy, these elements become
As shown in FIG. 5, segregation occurs at the interface between the oxide film 11 mainly composed of alumina and the heat-resistant alloy base material 12 and the oxide film 11 of the heat-resistant alloy is formed.
And Ti or Zr are oxide film 11 and heat-resistant alloy base 1
The composite oxide 13 is formed at the interface of No. 2. The oxide film 11 mainly composed of alumina and the composite oxide 13 are joined, and thus the interface 13a between the oxide film 11 of the heat-resistant alloy and the heat-resistant alloy base 12 in the absence of Ti or Zr is flat, When the composite oxide 13 of Ti or Zr is formed, a region where the interface 13a is stuck in the heat-resistant alloy base is formed, and the adhesion between the oxide film 11 and the heat-resistant alloy base 12 is improved by the anchoring effect.

【0015】TiあるいはZr金属の拡散方法として
は、以下の方法が考えられる。まず耐熱合金を酸化して
表面にアルミナを主体とする酸化皮膜を形成し、図2に
示すように、酸化皮膜を形成した耐熱合金10に対し、
直接TiあるいはZr金属20を接触させ、真空、不活
性、還元雰囲気のいずれかを用い、加熱して拡散せしめ
る。TiあるいはZr金属20は、粉末状、箔状、板状
のものあるいは蒸着したもの等が使用でき、また接触方
法は図2に示す片側のみに接触させる方法の他に、箔状
あるいは板状のTiあるいはZr金属を全面に被覆する
方法、あるいはTiあるいはZr金属の粉末中に埋没さ
せる等の方法をとってもよい。拡散処理が終了次第Ti
あるいはZr金属を除去する。その後、図3に示すよう
に、TiあるいはZrが拡散した耐熱合金14(以下、
拡散済み合金という)2体の任意の面に対し、酸化物1
5を介在せしめ、その後焼成して接合せしめる。
The following method can be considered as a method for diffusing Ti or Zr metal. First, the heat-resistant alloy is oxidized to form an oxide film mainly composed of alumina on the surface, and as shown in FIG.
The Ti or Zr metal 20 is brought into direct contact and heated and diffused using any of vacuum, inert, and reducing atmospheres. As the Ti or Zr metal 20, powder, foil, plate or vapor-deposited can be used. In addition to the method of contacting only one side shown in FIG. A method of coating the entire surface with Ti or Zr metal, or a method of burying in Ti or Zr metal powder may be used. As soon as the diffusion process is completed, Ti
Alternatively, the Zr metal is removed. Thereafter, as shown in FIG. 3, the heat-resistant alloy 14 in which Ti or Zr is diffused (hereinafter, referred to as “heat-resistant alloy”).
Oxide 1 on any two surfaces (referred to as diffused alloy)
5 and then fired to join.

【0016】また、図2に示すように酸化皮膜を形成し
た耐熱合金10に対し、TiあるいはZr金属20を、
酸化皮膜を形成した耐熱合金10の片面に接触させる方
法で拡散処理を施した場合、TiあるいはZrを配置し
た面の反対側の面に酸化物15を介在させる場合は、拡
散処理終了後、TiあるいはZr金属を除去する必要は
ない。
As shown in FIG. 2, a Ti or Zr metal 20 is added to a heat-resistant alloy 10 having an oxide film formed thereon.
When the diffusion treatment is performed by a method of contacting one surface of the heat-resistant alloy 10 with the oxide film formed thereon, and when the oxide 15 is interposed on the surface opposite to the surface on which Ti or Zr is arranged, after the diffusion treatment is completed, Ti Alternatively, there is no need to remove the Zr metal.

【0017】また耐熱合金を介在酸化物を介在させて接
合し、その両側に、別の金属を接合しようとする場合、
別の金属と耐熱合金のろう付け処理と、TiあるいはZ
rの拡散処理を同時に行う方が有利である。
Further, when joining a heat-resistant alloy with an intervening oxide and joining another metal to both sides thereof,
Brazing treatment of another metal and heat-resistant alloy, Ti or Z
It is advantageous to perform the diffusion process of r at the same time.

【0018】その場合は、耐熱合金の表面を酸化してア
ルミナを主体とする酸化皮膜を形成した耐熱合金10を
形成し、その後図4に示すように、TiまたはZr金属
20を配置し、その外側にろう材30を配置し、その外
側に金属板40を配置し、ろう付け処理を施して、ろう
付け体2(図5参照)を作製する。その際ろう付けとT
iあるいはZrの拡散処理は同時に進行する。その後図
5に示すようにろう付け体2における酸化皮膜を形成し
た耐熱合金10のTiまたはZr金属20を配置した逆
の面同士の間に酸化物15を介在させ、その後焼成し、
ろう付けして接合せしめる。
In this case, the surface of the heat-resistant alloy is oxidized to form a heat-resistant alloy 10 having an oxide film mainly composed of alumina. Thereafter, as shown in FIG. The brazing material 30 is arranged on the outside, the metal plate 40 is arranged on the outside, and the brazing is performed to produce the brazed body 2 (see FIG. 5). At that time brazing and T
The diffusion process of i or Zr proceeds simultaneously. Thereafter, as shown in FIG. 5, the oxide 15 is interposed between the opposite surfaces of the heat-resistant alloy 10 on which the oxide film is formed and the Ti or Zr metal 20 is arranged in the brazing body 2, and thereafter, sintering is performed.
Braze and join.

【0019】さらにまた、耐熱合金の接合のための焼成
と、別の金属と耐熱合金のろう付け処理の条件が同一で
あれば、別の金属と耐熱合金のろう付け処理と、Tiあ
るいはZrの拡散処理、並びに耐熱合金接合の焼成の3
工程を同時に行う方が有利である。
Furthermore, if the conditions for firing for joining the heat-resistant alloy and the brazing process for another metal and the heat-resistant alloy are the same, the brazing process for another metal and the heat-resistant alloy, Diffusion treatment and sintering of heat-resistant alloy 3
It is advantageous to perform the steps simultaneously.

【0020】その場合には、耐熱合金の表面を酸化して
アルミナを主体とする酸化皮膜を形成した耐熱合金10
を形成し、その後図6に示すように、酸化物15、酸化
皮膜を形成した耐熱合金10、TiあるいはZr金属2
0、ろう材30、金属板40を配置し、その後焼成して
接合せしめる。その際、ろう付け、TiあるいはZrの
拡散処理、耐熱合金の接合は同時に進行する。
In this case, the surface of the heat-resistant alloy is oxidized to form an oxide film mainly composed of alumina.
Then, as shown in FIG. 6, an oxide 15, a heat-resistant alloy 10 having an oxide film formed thereon, a Ti or Zr metal 2
0, a brazing material 30, and a metal plate 40 are arranged, and then fired and joined. At this time, the brazing, the diffusion treatment of Ti or Zr, and the joining of the heat-resistant alloy proceed simultaneously.

【0021】図7は、本発明に基づく接合体1の一実施
例を示す断面構造図である。図において120はAlを
含有する耐熱合金素地であり、この耐熱合金素地120
の少なくとも片側の面には酸化皮膜110が形成されて
いる。この酸化皮膜110と耐熱合金素地120の界面
にはTiまたはZrが偏析して形成された複合酸化物1
30が存在している。このような酸化皮膜を形成した耐
熱合金は前記酸化皮膜110同士が対峙するよう配置さ
れ、その対峙面間には、酸化物による中間接合層16が
介在されている。このように構成された接合体1は、こ
の接合部を絶縁体として、接合体1が単独で使用される
か、あるいは接合体1の外側に、例えば金属板等他の部
材を接合し、複雑な構造体を構成することが可能とな
る。
FIG. 7 is a sectional structural view showing one embodiment of the joined body 1 according to the present invention. In the figure, reference numeral 120 denotes a heat-resistant alloy substrate containing Al.
Has an oxide film 110 formed on at least one side thereof. At the interface between the oxide film 110 and the heat-resistant alloy substrate 120, the composite oxide 1 formed by segregation of Ti or Zr is formed.
There are 30. The heat-resistant alloy having such an oxide film is disposed such that the oxide films 110 face each other, and an intermediate bonding layer 16 made of oxide is interposed between the facing surfaces. The joined body 1 configured as described above has a complicated structure in which the joined portion is used as an insulator, the joined body 1 is used alone, or another member such as a metal plate is joined to the outside of the joined body 1. It is possible to configure a simple structure.

【0022】つぎに、耐熱合金同士を接合させるために
前述した対峙面間に酸化物を介在させた後の焼成温度に
ついてであるが、本発明者らは介在させる酸化物15の
融点(絶対温度)の9/10以上に加熱することによ
り、十分な接合強度が得られることを見いだした。その
理由は介在酸化物を十分に流動させて、酸化皮膜全面に
わたって介在酸化物15と酸化皮膜11を反応させる必
要がある。それを下回った場合、酸化物が十分な流動を
せず、高い強度を得ることができなかった。多くの酸化
物の場合、融点以下の温度に軟化点が存在するが、高い
接合強度を得ようとする場合、軟化点以上でも融点の9
/10未満の加熱では酸化物の流動性の見地から加熱温
度が不十分であり、少なくとも融点の9/10以上の加
熱は不可欠である。焼成雰囲気は、TiあるいはZrの
拡散処理を伴う場合は、酸化性雰囲気を用いることはで
きないが、ろう付け体2、あるいは拡散済み合金10を
用いての接合の場合、即ちTiあるいはZrの拡散処理
が終了している場合は、還元性雰囲気、不活性雰囲気、
真空雰囲気、酸化雰囲気のいずれを用いても良い。
Next, with respect to the firing temperature after the oxide is interposed between the facing surfaces in order to join the heat-resistant alloys, the present inventors consider that the melting point of the oxide 15 (absolute temperature) It has been found that sufficient bonding strength can be obtained by heating to 9/10 or more of ()). The reason is that it is necessary to cause the intervening oxide 15 to react with the oxide film 11 over the entire surface of the oxide film by sufficiently flowing the intervening oxide. If it is lower than this, the oxide does not flow sufficiently and high strength cannot be obtained. In the case of many oxides, the softening point exists at a temperature lower than the melting point.
If the heating is less than / 10, the heating temperature is insufficient from the viewpoint of the fluidity of the oxide, and heating at least 9/10 or more of the melting point is indispensable. An oxidizing atmosphere cannot be used when the sintering atmosphere involves the diffusion treatment of Ti or Zr. However, in the case of joining using the brazing body 2 or the diffused alloy 10, that is, the diffusion treatment of Ti or Zr. Is completed, reducing atmosphere, inert atmosphere,
Either a vacuum atmosphere or an oxidizing atmosphere may be used.

【0023】本発明が対象としている使用環境は、例え
ば自動車排ガス浄化用メタル担体のような少なくとも8
00℃の高温環境であるため、介在酸化物として融点の
低い酸化物、例えば鉛を多量に含有している低融点ガラ
スは使用できない。本発明者らの研究から、800℃以
上の融点をもつ酸化物を使用すれば、耐熱性が得られる
ことが判明した。それを下回ると酸化物の強度が低下
し、十分な接合強度を得ることができなかった。
The use environment to which the present invention is directed is at least 8 environments such as a metal carrier for purifying automobile exhaust gas.
Because of the high temperature environment of 00 ° C., an oxide having a low melting point, for example, a low melting point glass containing a large amount of lead cannot be used as an intervening oxide. The present inventors have found that heat resistance can be obtained by using an oxide having a melting point of 800 ° C. or higher. If it is lower than that, the strength of the oxide decreases, and it is not possible to obtain sufficient bonding strength.

【0024】また自動車排ガス浄化用メタル担体では、
エンジンの運転−停止に伴い、熱サイクルが発生する。
耐熱サイクル性を得るには、介在させる酸化物それ自体
を薄くする必要がある。この上限の値は1mmである。ま
た室温と800℃の熱サイクルに耐えるためには、酸化
物の融点を1400℃以下にする必要がある。厚みの上
限を超えた場合は酸化物と耐熱合金素地の熱膨張差から
破壊が生じ易くなる。また融点を1400℃以下にする
と、酸化物が比較的低温で変形可能になることによっ
て、熱衝撃を吸収することができる。融点が1400℃
を超えると、酸化物の変形能が不十分であるため、耐熱
サイクル性が劣化する。
Further, in the case of a metal carrier for purifying automobile exhaust gas,
A thermal cycle occurs as the engine runs and stops.
In order to obtain heat cycle resistance, it is necessary to reduce the thickness of the intervening oxide itself. The value of this upper limit is 1 mm. In order to withstand a thermal cycle at room temperature and 800 ° C., the melting point of the oxide needs to be 1400 ° C. or less. If the thickness exceeds the upper limit, breakage tends to occur due to the difference in thermal expansion between the oxide and the heat-resistant alloy base. Further, when the melting point is 1400 ° C. or less, the oxide can be deformed at a relatively low temperature, so that thermal shock can be absorbed. Melting point 1400 ° C
If it exceeds 300, the heat deformability of the oxide is insufficient, so that the heat cycle resistance deteriorates.

【0025】本発明においては、電気絶縁性、耐熱性、
耐熱サイクル性の3つの特性を同時に満足することを目
的とし、かつTiあるいはZrを拡散することにより、
酸化皮膜と耐熱合金の接着強度を向上させることを目的
としている。これを満足するには金属基板、介在酸化物
の特性、焼成条件の全てを、最適条件にすることで初め
て本発明が目的とする3つの特性が満足され、かつ酸化
皮膜と耐熱合金の接着強度も向上する。
In the present invention, electrical insulation, heat resistance,
With the aim of simultaneously satisfying the three properties of heat cycle resistance, and by diffusing Ti or Zr,
The purpose is to improve the adhesive strength between the oxide film and the heat-resistant alloy. The three properties aimed at by the present invention can be satisfied only by optimizing the properties of the metal substrate, the properties of the intervening oxide, and the firing conditions, and the adhesive strength between the oxide film and the heat-resistant alloy can be satisfied. Also improve.

【0026】[0026]

【実施例】【Example】

実施例1 本発明の効果を把握するため、以下の試験を実施した。
まず、60μm厚、長さ100mm、幅17mmの耐熱合金
箔(Fe−20Cr−5Al合金)を1100℃の大気
中に60分保持することにより、約1μmの酸化皮膜を
形成した。その後、酸化皮膜を形成した耐熱合金箔10
0の表面に、図8に示すように、表1に示す組成の種々
の融点をもつ酸化物のペースト150を塗布した。酸化
物は平均粒径10μmの粉末状のものを、有機ビークル
で混練することによりペースト化したものをスクリーン
印刷することにより、酸化皮膜を形成した耐熱合金箔1
00の表面の半分が被覆されるように塗布した。その
後、図9に示すように塗布面同士を向かい合わせ、ま
た、長さ100mmで厚さ3mmのSUS430板41、厚
さ5μmのTi箔21、厚さ25μmのBNi−5ろう
材箔31を配置した。その後、治具で固定し、真空雰囲
気中において所定の温度で焼成し、図10に示す、SU
S430板41a、酸化皮膜を形成した耐熱合金箔10
0a、介在酸化物150aからなる接合体1aを作製し
た。
Example 1 The following test was performed to grasp the effects of the present invention.
First, a heat-resistant alloy foil (Fe-20Cr-5Al alloy) having a thickness of 60 μm, a length of 100 mm, and a width of 17 mm was kept in the air at 1100 ° C. for 60 minutes to form an oxide film of about 1 μm. Then, the heat-resistant alloy foil 10 on which the oxide film was formed 10
As shown in FIG. 8, an oxide paste 150 having a composition shown in Table 1 and having various melting points was applied to the surface of No. 0. The oxide is a heat-resistant alloy foil 1 having an oxide film formed by screen-printing a powdery material having an average particle size of 10 μm and kneading with an organic vehicle to form a paste.
00 was coated so that half of its surface was coated. Then, as shown in FIG. 9, the application surfaces face each other, and a SUS430 plate 41 having a length of 100 mm and a thickness of 3 mm, a Ti foil 21 having a thickness of 5 μm, and a BNi-5 brazing material foil 31 having a thickness of 25 μm are arranged. did. Then, it is fixed with a jig and baked at a predetermined temperature in a vacuum atmosphere.
S430 plate 41a, heat-resistant alloy foil 10 with oxide film formed
0a, a joined body 1a made of an intervening oxide 150a was produced.

【0027】その後、接合体1aに対し、20℃〜80
0℃の温度間における1000サイクルまでの熱サイク
ル試験を行った。表1に本試験の結果を示す。酸化物融
点が800〜1400℃の焼成温度が融点の9/10以
上であるときに高い耐熱サイクル性が得られた。なお、
接合の可否判断は、焼成した接合体がハンドリング中に
破壊するか否かで判断した。
Thereafter, the joined body 1a is heated at a temperature of 20.degree.
A thermal cycle test was performed up to 1000 cycles at a temperature of 0 ° C. Table 1 shows the results of this test. High heat cycle resistance was obtained when the firing temperature at an oxide melting point of 800 to 1400 ° C. was 9/10 or more of the melting point. In addition,
The determination as to whether or not bonding was possible was made based on whether or not the fired bonded body was broken during handling.

【0028】[0028]

【表1】 [Table 1]

【0029】実施例2 また、接合体の耐熱性を評価するため、接合体1aが8
00℃の温度に曝されたときの接合性を評価した。本試
験においては、800℃の温度下において図11に示す
ように、接合体1aに矢印の方向に10kgの荷重を印加
し、接合体が破断するかどうかを調査した。結果を表2
に示す。融点800℃以上の酸化物では破断しないとい
う結果が得られた。
Example 2 In order to evaluate the heat resistance of the joined body, the joined body 1a
The bondability when exposed to a temperature of 00 ° C. was evaluated. In this test, as shown in FIG. 11, a load of 10 kg was applied to the joined body 1a in the direction of the arrow at a temperature of 800 ° C. to examine whether or not the joined body was broken. Table 2 shows the results
Shown in It was found that the oxide having a melting point of 800 ° C. or higher did not break.

【0030】[0030]

【表2】 [Table 2]

【0031】実施例3 次に実施例1と同様のサンプルを用い、TiあるいはZ
rの存在が接合強度に及ぼす効果について試験した。ま
ず耐熱合金箔(Fe−20Cr−5Al)を大気中11
00℃60分の条件で酸化し、約1μmの酸化皮膜を形
成した耐熱合金箔100に、図8に示すように融点12
00℃(10Al2 3 −45MnO−45SiO
2 系)の酸化物150を、厚み10μmで塗布した後、
塗布面同士を向かい合わせ、図9に示すようにSUS4
30板41、Ti箔21、BNi−5ろう材箔31を配
置し、焼成条件真空中1200℃10分保持で焼成し、
接合体1aを作製した。
Example 3 Next, using the same sample as in Example 1, Ti or Z
The effect of the presence of r on the joint strength was tested. First, heat-resistant alloy foil (Fe-20Cr-5Al) was placed in air 11
As shown in FIG. 8, the heat-resistant alloy foil 100 having been oxidized at 00 ° C. for 60 minutes to form an oxide film of about 1 μm has a melting point of 12 μm.
00 ° C (10Al 2 O 3 -45MnO-45SiO
After applying the 2 ) oxide 150 with a thickness of 10 μm,
The application surfaces face each other, and as shown in FIG.
30 plate 41, Ti foil 21 and BNi-5 brazing material foil 31 were arranged, and baked at 1200 ° C. for 10 minutes in a sintering condition vacuum,
The joined body 1a was produced.

【0032】また図12に示すように、酸化物150を
塗布した酸化皮膜を形成した耐熱合金箔100、SUS
430板41、Zr箔22、BNi−5ろう材箔31を
配置し、焼成条件真空中1200℃10分保持で焼成
し、接合体1bを作製した。また図13に示すように、
酸化物150を塗布した酸化皮膜を形成した耐熱合金箔
100、SUS430板41、BNi−5ろう材箔31
を配置し、焼成条件真空中1200℃10分保持で焼成
し、接合体1cを作製した。その後、接合体1a,1
b,1cを図11に示すように矢印方向に荷重を印加
し、接合部が破壊したときの強度を調査した。表3はそ
の結果の一例を示すもので、いずれの場合もろう付け部
での破壊はなかったが、TiあるいはZrの存在によっ
て、絶縁材周りの接合強度、特に酸化皮膜とステンレス
素地界面の接合強度が著しく向上することが確認され
た。
As shown in FIG. 12, a heat-resistant alloy foil 100 having an oxide film coated with an oxide 150 and SUS
The 430 plate 41, the Zr foil 22, and the BNi-5 brazing material foil 31 were arranged, and fired in a vacuum at 1200 ° C. for 10 minutes in a firing condition to produce a joined body 1b. Also, as shown in FIG.
Heat-resistant alloy foil 100 having an oxide film coated with oxide 150, SUS430 plate 41, BNi-5 brazing material foil 31
And sintering was carried out in a vacuum at 1200 ° C. for 10 minutes in vacuum to produce a joined body 1c. Then, the joined bodies 1a, 1
As shown in FIG. 11, a load was applied to b and 1c in the direction of the arrow, and the strength when the joint was broken was examined. Table 3 shows an example of the results. In each case, there was no breakage at the brazing portion. However, due to the presence of Ti or Zr, the bonding strength around the insulating material, particularly the bonding between the oxide film and the stainless steel substrate interface. It was confirmed that the strength was significantly improved.

【0033】[0033]

【表3】 [Table 3]

【0034】実施例4 次に被接合材である耐熱合金について、実施例1に示し
たFe−20Cr−5Al合金の他に、60μm厚、長
さ100mm、幅17mmの耐熱合金箔Fe−12Al合
金、Fe−15Cr−3Al合金、Ni基超耐熱合金で
あるInconel 700、Nimonic 100
を用い、それらを1100℃60分間大気中で酸化して
約1μmの酸化皮膜を形成した耐熱合金箔100に、図
8に示すように融点1200℃(10Al2 3 −45
MnO−45SiO2 系)の酸化物150を、厚み10
μmで塗布した後、図9に示すようにSUS430板4
1、Ti箔21、BNi−5ろう材箔31を配置し、真
空中1200℃10分保持で焼成して図10に示す接合
体1aを作製し、常温での強度を測定した。強度はFe
−20Cr−5Al合金の場合と同等で、主たる破壊部
位は、いずれの場合も絶縁材内部であり、耐熱合金素地
と酸化皮膜の界面での破壊は少なかった。
Example 4 Next, in addition to the Fe-20Cr-5Al alloy shown in Example 1, a heat-resistant alloy foil Fe-12Al alloy having a thickness of 60 μm, a length of 100 mm, and a width of 17 mm was used as a heat-resistant alloy to be joined. , Fe-15Cr-3Al alloy, Inconel 700, Nimonic 100 which are Ni-base super heat resistant alloys
Then, they were oxidized in the air at 1100 ° C. for 60 minutes to form a heat-resistant alloy foil 100 having an oxide film of about 1 μm on the heat-resistant alloy foil 100 at a melting point of 1200 ° C. (10Al 2 O 3 −45, as shown in FIG. 8).
(MnO-45SiO 2 based) oxide 150 having a thickness of 10
After coating with a thickness of μm, as shown in FIG.
1, the Ti foil 21 and the BNi-5 brazing material foil 31 were arranged and fired at 1200 ° C. for 10 minutes in a vacuum to produce a joined body 1a shown in FIG. 10, and the strength at room temperature was measured. Strength is Fe
As in the case of the -20Cr-5Al alloy, the main fracture site was in the insulating material in each case, and the fracture at the interface between the heat-resistant alloy base and the oxide film was small.

【0035】実施例5 次に、酸化物の厚みの影響と耐熱サイクル性を評価し
た。まず耐熱合金箔(Fe−20Cr−5Al)を大気
中1100℃60分の条件で酸化し、約1μmの酸化皮
膜を形成した耐熱合金箔100に、図8に示すように融
点1200℃(10Al2 3 −45MnO−45Si
2 系)の酸化物150を、種々の厚みで塗布した後、
塗布面同士を向かい合わせ、図9に示すようにSUS4
30板41、Ti箔21、BNi−5ろう材箔31を配
置した。次に焼成条件真空中1200℃10分保持で焼
成し、図10に示す接合体1aを作製した。本試験は前
述した表1の試験と同様に20〜800℃の温度間にお
いて1000サイクルまでの熱サイクル試験を実施し、
電気絶縁性は図10に示す接合体1aにおける、2枚の
SUS430板41aの間に導通があるか否かで判断し
た。具体的には1000オーム以下の場合、導通ありと
した。その結果を表4に示す。電気絶縁性は全ての接合
体で良好であったが、介在酸化物の厚みが1mmを超える
と、熱サイクル性が劣化した。
Example 5 Next, the influence of the thickness of the oxide and the heat cycle resistance were evaluated. First heat-resistant alloy foil (Fe-20Cr-5Al) was oxidized under the conditions of 1100 ° C. 60 minutes in the air, the heat-resistant alloy foil 100 to form an oxide film of about 1 [mu] m, the melting point of 1200 ° C. As shown in FIG. 8 (10Al 2 O 3 -45MnO-45Si
The oxide 150 of the O 2 system) was applied at various thicknesses,
The application surfaces face each other, and as shown in FIG.
30 plates 41, a Ti foil 21, and a BNi-5 brazing material foil 31 were arranged. Next, firing conditions were sintering in vacuum at 1200 ° C. for 10 minutes to produce a joined body 1a shown in FIG. In this test, a heat cycle test was performed up to 1000 cycles at a temperature of 20 to 800 ° C. as in the test of Table 1 described above.
The electrical insulation was determined based on whether or not there was conduction between the two SUS430 plates 41a in the joined body 1a shown in FIG. Specifically, when the resistance was 1000 ohms or less, conduction was determined. Table 4 shows the results. Although the electrical insulation was good in all the joined bodies, when the thickness of the intervening oxide exceeded 1 mm, the thermal cycling property was deteriorated.

【0036】[0036]

【表4】 [Table 4]

【0037】実施例6 酸化皮膜が接合強度にどのように効果があるかを調査し
た。Fe−20Cr−5Al合金を1100℃60分間
大気中1100℃60分の条件で酸化し、約1μmの酸
化皮膜を形成した耐熱合金箔100と、酸化を施さない
耐熱合金箔101の2つを用意し、図8あるいは図14
に示すように融点1200℃(10Al2 3 −45M
nO−45SiO2 系)の酸化物を、厚み10μmで塗
布した後、塗布面同士を向かい合わせ、図9あるいは図
15に示すようにSUS430板41、Ti箔21、B
Ni−5ろう材箔31を配置した。次に焼成条件真空中
1200℃10分保持で焼成し、接合体を作製し、常温
での強度を測定した。酸化皮膜がない場合は強度が10
MPa 程度しか得られず、酸化皮膜の有効性が確認され
た。
Example 6 The effect of an oxide film on bonding strength was investigated. Two kinds of heat-resistant alloy foils 100, each of which is formed by oxidizing an Fe-20Cr-5Al alloy at 1100 ° C. for 60 minutes in the air at 1100 ° C. for 60 minutes, and forming an oxide film of about 1 μm, and a heat-resistant alloy foil 101 not subjected to oxidation are prepared. 8 or 14
As shown in the figure, the melting point is 1200 ° C. (10 Al 2 O 3 -45M
After coating an oxide of (nO-45SiO 2 ) with a thickness of 10 μm, the coated surfaces face each other, and as shown in FIG. 9 or FIG.
The Ni-5 brazing material foil 31 was arranged. Next, firing conditions were baked in vacuum at 1200 ° C. for 10 minutes to produce a joined body, and the strength at room temperature was measured. Strength is 10 when there is no oxide film
Only about MPa was obtained, confirming the effectiveness of the oxide film.

【0038】実施例7 60μm厚、長さ100mm、幅17mmの耐熱合金箔(F
e−20Cr−5Al合金)を1100℃の大気中に6
0分保持することにより、約1μmの酸化皮膜を形成さ
せ、その後、長さ100mm、幅17mm、厚さ1mmのTi
板23を図16に示すように、酸化皮膜を形成した耐熱
合金箔100の片側に接触させるように配置し、120
0℃で100分間拡散処理を施した。ついでTi板を除
去し、拡散済み合金箔140のTiを配置しなかった面
140aに、図17に示すように、表1に示す種々の融
点をもつ酸化物150のペーストを塗布した。酸化物は
平均粒径10μmの粉末状のものを、有機ビークルで混
練することによりペースト化したものをスクリーン印刷
することにより、酸化皮膜を形成した耐熱合金箔100
の表面の半分が被覆されるように塗布した。その後、図
18に示すように接合面同士を向かい合わせて密着さ
せ、治具で固定し、真空雰囲気中において所定の温度で
焼成し、図19に示す接合体1dを作製した。その後、
20〜800℃の1000サイクルまでの熱サイクル試
験を行ったところ、実施例1と全く同様の結果が得られ
た。また同様に酸化皮膜を形成した耐熱合金箔100の
両側に接触させるように配置し、1200℃で100分
間拡散処理を施してTi板を除去し、同様の接合を行っ
た場合も、ほぼ同じ結果が得られた。
Example 7 A heat-resistant alloy foil having a thickness of 60 μm, a length of 100 mm and a width of 17 mm (F
e-20Cr-5Al alloy) in air at 1100 ° C.
By holding for 0 minutes, an oxide film of about 1 μm is formed, and then a Ti film having a length of 100 mm, a width of 17 mm and a thickness of 1 mm is formed.
As shown in FIG. 16, the plate 23 is arranged so as to be in contact with one side of the heat-resistant alloy foil 100 on which the oxide film has been formed, and
The diffusion treatment was performed at 0 ° C. for 100 minutes. Then, the Ti plate was removed, and pastes of oxides 150 having various melting points shown in Table 1 were applied to a surface 140a of the diffused alloy foil 140 where no Ti was arranged, as shown in FIG. The oxide is a heat-resistant alloy foil 100 having an oxide film formed by screen-printing a paste having a mean particle size of 10 μm by kneading with an organic vehicle.
Was applied so as to cover half of the surface. Thereafter, as shown in FIG. 18, the joining surfaces face each other and closely adhered to each other, fixed with a jig, and baked at a predetermined temperature in a vacuum atmosphere to produce a joined body 1 d shown in FIG. 19. afterwards,
When a heat cycle test was performed up to 1000 cycles at 20 to 800 ° C., exactly the same results as in Example 1 were obtained. In the same manner, the same result is obtained when the heat-resistant alloy foil 100 on which the oxide film is formed is placed so as to be in contact with both sides, and diffusion processing is performed at 1200 ° C. for 100 minutes to remove the Ti plate, and similar bonding is performed. was gotten.

【0039】実施例8 次に実施例7と同様の方法で作製した接合体1dと、酸
化皮膜を形成した耐熱合金箔100に、図8に示すよう
に融点1200℃(10Al2 3 −45MnO−45
SiO2 系)の酸化物を、厚み10μmで塗布した後、
TiあるいはZrの拡散処理を施さずに、塗布面同士を
向かい合わせ、次に焼成条件真空中1200℃10分保
持で焼成し、接合体を作製し、その後、接合体を図19
に示す矢印方向に荷重を印加し、接合部が破壊したとき
の強度を調査した。その結果、実施例3の結果と同様
に、Tiの拡散処理を施した方が強度が向上することが
認められた。
Example 8 Next, as shown in FIG. 8, a bonded body 1d produced in the same manner as in Example 7 and a heat-resistant alloy foil 100 on which an oxide film was formed were melted at 1200 ° C. (10Al 2 O 3 -45MnO 2 ). −45
After applying an oxide of SiO 2 ) with a thickness of 10 μm,
The coated surfaces were faced to each other without performing the Ti or Zr diffusion treatment, and then fired at 1200 ° C. for 10 minutes in vacuum under the sintering conditions to produce a joined body.
A load was applied in the direction of the arrow shown in FIG. As a result, similarly to the result of Example 3, it was recognized that the strength was improved by performing the Ti diffusion treatment.

【0040】実施例9 60μm厚、長さ100mm、幅17mmの耐熱合金箔(F
e−20Cr−5Al合金)を1100℃の大気中に6
0分保持することにより、約1μmの酸化皮膜を形成し
た耐熱合金箔100を作製し、その後、長さ100mm、
幅17mm、厚さ5μmのTi箔21、25μm厚のBN
i−5ろう材箔31、3mm厚のSUS430板41を図
20に示すように配置し、真空中で1200℃で10分
間ろう付け処理を施してろう付け体2eを作製し、つい
で耐熱合金箔のTiを配置しなかった面に、図21に示
すように、表1に示す、種々の融点をもつ平均粒径10
μmの粉末状の酸化物を、有機ビークルで混練すること
によりペースト化した酸化物ペースト150をスクリー
ン印刷することにより、酸化皮膜を形成した耐熱合金箔
100eの表面の半分が被覆されるように塗布し、塗布
面同士を向かい合わせて密着させ、治具で固定し、真空
雰囲気中において所定の温度で焼成して図22に示す接
合体1fを作製した。その後、20〜800℃の100
0サイクルまでの熱サイクル試験を行ったところ、実施
例1と全く同様の結果が得られた。
Example 9 A heat-resistant alloy foil (F) having a thickness of 60 μm, a length of 100 mm and a width of 17 mm
e-20Cr-5Al alloy) in air at 1100 ° C.
By holding it for 0 minutes, a heat-resistant alloy foil 100 having an oxide film of about 1 μm was prepared, and then 100 mm long,
Ti foil 21 of 17 mm width and 5 μm thickness, BN of 25 μm thickness
An i-5 brazing material foil 31, a 3 mm thick SUS430 plate 41 is arranged as shown in FIG. 20, and brazed at 1200 ° C. for 10 minutes in a vacuum to produce a brazed body 2e. As shown in FIG. 21, on the surface on which no Ti was arranged, as shown in FIG.
A powdery oxide of μm is kneaded with an organic vehicle and screen-printed to form an oxide paste 150, so that half of the surface of the heat-resistant alloy foil 100e having an oxide film is coated. Then, the coated surfaces were brought into close contact with each other, fixed with a jig, and fired at a predetermined temperature in a vacuum atmosphere to produce a bonded body 1f shown in FIG. Thereafter, 100-200 ° C.
When a heat cycle test was performed up to 0 cycles, the same results as in Example 1 were obtained.

【0041】[0041]

【発明の効果】以上述べたように本発明により、従来は
不可能であった電気絶縁性、耐熱性、耐熱サイクル性を
同時に満足し、しかも、耐熱合金素地と酸化皮膜の密着
性が著しく向上するため、特に接合強度が高い耐熱合金
の接合体を得ることができる。特にこの接合方法は、こ
の特性が必要である予加熱型の自動車排ガス浄化用メタ
ル担体等の絶縁材に適用できる。
As described above, according to the present invention, electrical insulation, heat resistance, and heat cycle resistance, which were previously impossible, are simultaneously satisfied, and the adhesion between the heat-resistant alloy substrate and the oxide film is remarkably improved. Therefore, a joined body of a heat-resistant alloy having particularly high joining strength can be obtained. In particular, this bonding method can be applied to an insulating material such as a preheated metal carrier for purifying automobile exhaust gas which requires this property.

【図面の簡単な説明】[Brief description of the drawings]

【図1】耐熱合金と酸化皮膜の界面にTiあるいはZr
の複合酸化物が形成されたことを示す断面模式図。
FIG. 1 Ti or Zr on the interface between heat-resistant alloy and oxide film
FIG. 4 is a schematic cross-sectional view showing that a composite oxide of FIG.

【図2】酸化皮膜を形成した耐熱合金にTiあるいはZ
r金属が接触されている状態を示す側面図。
FIG. 2 shows a heat-resistant alloy with an oxide film formed on Ti or Z
The side view which shows the state which r metal is contacting.

【図3】拡散済み合金の間に酸化物が介在していること
を示す側面図。
FIG. 3 is a side view showing that an oxide is interposed between diffused alloys.

【図4】金属板、ろう材、TiあるいはZr金属、酸化
皮膜を形成した耐熱合金箔の配置を示す側面図。
FIG. 4 is a side view showing an arrangement of a metal plate, a brazing material, a Ti or Zr metal, and a heat-resistant alloy foil having an oxide film formed thereon.

【図5】ろう付け体の間に酸化物が介在していることを
示す側面図。
FIG. 5 is a side view showing that an oxide is interposed between brazing bodies.

【図6】金属板、ろう材、TiあるいはZr金属、酸化
皮膜を形成した耐熱合金箔、介在酸化物の配置を示す側
面図。
FIG. 6 is a side view showing the arrangement of a metal plate, a brazing material, a Ti or Zr metal, a heat-resistant alloy foil having an oxide film formed thereon, and an intervening oxide.

【図7】耐熱合金の接合体の構造を示す断面図。FIG. 7 is a sectional view showing the structure of a joined body of a heat-resistant alloy.

【図8】酸化皮膜を形成した耐熱合金箔に酸化物ペース
トが塗布された状態を示す側面図。
FIG. 8 is a side view showing a state in which an oxide paste is applied to a heat-resistant alloy foil having an oxide film formed thereon.

【図9】SUS430板、ろう材箔、Ti箔、酸化物が
塗布された酸化皮膜を形成した耐熱合金箔の配置を示す
側面図。
FIG. 9 is a side view showing the arrangement of a SUS430 plate, a brazing filler metal foil, a Ti foil, and a heat-resistant alloy foil having an oxide film coated with an oxide.

【図10】配置したSUS430板、ろう材箔、Ti
箔、酸化物が塗布された酸化皮膜を形成した耐熱合金箔
を焼成してなる接合体を示す側面図。
FIG. 10: SUS430 plate, brazing filler metal foil, Ti
The side view which shows the joined body which baked the foil and the heat-resistant alloy foil which formed the oxide film to which the oxide was applied.

【図11】配置したSUS430板、ろう材箔、Ti
箔、酸化物が塗布された酸化皮膜を形成した耐熱合金箔
を焼成してなる接合体を示す側面図。
FIG. 11: SUS430 plate, brazing filler metal foil, Ti
The side view which shows the joined body which baked the foil and the heat-resistant alloy foil which formed the oxide film to which the oxide was applied.

【図12】SUS430板、ろう材箔、Zr箔、酸化物
が塗布された酸化皮膜を形成した耐熱合金箔の配置を示
す側面図と、それを焼成してなる接合体を示す側面図。
FIG. 12 is a side view showing an arrangement of a SUS430 plate, a brazing material foil, a Zr foil, a heat-resistant alloy foil having an oxide film coated with an oxide, and a side view showing a joined body obtained by firing the same.

【図13】SUS430板、ろう材箔、酸化物が塗布さ
れた酸化皮膜を形成した耐熱合金箔の配置を示す側面図
と、それを焼成してなる接合体を示す側面図。
FIG. 13 is a side view showing the arrangement of a SUS430 plate, a brazing filler metal foil, and a heat-resistant alloy foil having an oxide film coated with an oxide, and a side view showing a joined body obtained by firing the same.

【図14】酸化皮膜を形成していない耐熱合金箔に酸化
物ペーストが塗布された状態を示す側面図。
FIG. 14 is a side view showing a state in which an oxide paste is applied to a heat-resistant alloy foil having no oxide film formed thereon.

【図15】SUS430板、ろう材箔、Ti箔、酸化物
が塗布された酸化皮膜を形成していない耐熱合金箔の配
置を示す側面図。
FIG. 15 is a side view showing an arrangement of a SUS430 plate, a brazing material foil, a Ti foil, and a heat-resistant alloy foil having no oxide film coated with an oxide.

【図16】酸化皮膜を形成した耐熱合金箔にTiあるい
はZr金属が接触されている状態を示す側面図。
FIG. 16 is a side view showing a state in which Ti or Zr metal is in contact with a heat-resistant alloy foil having an oxide film formed thereon.

【図17】拡散済み合金箔に酸化物ペーストが塗布され
た状態を示す側面図。
FIG. 17 is a side view showing a state in which an oxide paste is applied to a diffused alloy foil.

【図18】酸化物が塗布された拡散済み合金箔の塗布面
同士が向かい合っている状態を示す側面図。
FIG. 18 is a side view showing a state where the application surfaces of the diffused alloy foil on which the oxide is applied face each other.

【図19】酸化物が塗布された拡散済み合金箔の塗布面
同士を向かい合わせ焼成してなる接合体を示す側面図。
FIG. 19 is a side view showing a joined body formed by sintering the coated surfaces of the diffused alloy foil coated with the oxide face to face.

【図20】SUS430板、ろう材箔、Ti箔、酸化物
が塗布された酸化皮膜を形成した耐熱合金箔の配置を示
す側面図とそれをろう付けしてなるろう付け体を示す側
面図。
FIG. 20 is a side view showing an arrangement of a SUS430 plate, a brazing filler metal foil, a Ti foil, a heat-resistant alloy foil having an oxide film coated with an oxide, and a brazing body formed by brazing the same.

【図21】酸化物が塗布されたろう付け体の塗布面同士
が向かい合っている状態を示す側面図。
FIG. 21 is a side view showing a state in which the application surfaces of the brazing body to which the oxide has been applied face each other;

【図22】酸化物が塗布されたろう付け体の塗布面同士
を向かい合わせ焼成してなる接合体を示す側面図。
FIG. 22 is a side view showing a joined body formed by sintering the brazed bodies to which oxides have been applied with their applied surfaces facing each other.

【符号の説明】[Explanation of symbols]

1,1a,1b,1c,1d,1f 接合体 2,2e ろう付け体 10 酸化皮膜を形成した耐熱合金 100,100a,100b,100c,100d,1
00e 酸化皮膜を形成した耐熱合金箔 101 酸化皮膜を形成していない耐熱合金
箔 11,110 酸化皮膜 12,120 耐熱合金素地 13,130 複合酸化物 14 拡散済み合金 140,140d 拡散済み合金箔酸化物ペーストが塗
布された耐熱合金箔 140a 拡散済み合金箔のTiが配置された
面の反対の面 15 介在酸化物 150 酸化物ペーストが塗布された状態の
もの 150a,150b,150c,150d,150f
酸化物ペーストが塗布された状態のものをろう付けある
いは焼成処理したもの 20 TiあるいはZr金属 21 Ti箔 22 Zr箔 23 Ti板 30 ろう材 31 BNi−5ろう材箔 40 金属板 41,41a,41b,41c,41e,41f SU
S430板
1,1a, 1b, 1c, 1d, 1f Joined body 2,2e Brazing body 10 Heat-resistant alloy with oxide film formed 100,100a, 100b, 100c, 100d, 1
00e Heat-resistant alloy foil with oxide film formed 101 Heat-resistant alloy foil without oxide film formed 11,110 Oxide film 12,120 Heat-resistant alloy substrate 13,130 Complex oxide 14 Diffusion alloy 140,140d Diffusion alloy foil oxide Paste-coated heat-resistant alloy foil 140a Surface of diffused alloy foil opposite to the surface on which Ti is arranged 15 Interposed oxide 150 In the state where oxide paste is applied 150a, 150b, 150c, 150d, 150f
20 Ti or Zr metal 21 Ti foil 22 Zr foil 23 Ti plate 30 brazing material 31 BNi-5 brazing material foil 40 Metal plate 41, 41 a, 41 b , 41c, 41e, 41f SU
S430 board

───────────────────────────────────────────────────── フロントページの続き (58)調査した分野(Int.Cl.7,DB名) C03C 29/00 B23K 1/19 B23K 20/00 310 ──────────────────────────────────────────────────続 き Continued on the front page (58) Field surveyed (Int. Cl. 7 , DB name) C03C 29/00 B23K 1/19 B23K 20/00 310

Claims (5)

(57)【特許請求の範囲】(57) [Claims] 【請求項1】 Alを含有する耐熱合金の表面を酸化し
てアルミナを主体とする酸化皮膜を形成し、その表面層
にTiまたはZr金属を接触させ、非酸化性雰囲気中で
加熱することにより耐熱合金内に拡散させる処理を行
い、しかる後TiまたはZr金属を除去し、前記拡散処
理を施した1対の耐熱合金の任意の面同士を対峙し、こ
の対峙面に融点800℃以上1400℃以下、厚さ1mm
以下の酸化物を介在させ、この酸化物の融点の9/10
以上に加熱することにより、前記耐熱合金を接合させる
ことを特徴とする耐熱合金の接合方法。
1. A method of oxidizing the surface of a heat-resistant alloy containing Al to form an oxide film mainly composed of alumina, bringing a Ti or Zr metal into contact with the surface layer, and heating in a non-oxidizing atmosphere. A process of diffusing into the heat-resistant alloy is performed, after which the Ti or Zr metal is removed, and any surface of the pair of heat-resistant alloys subjected to the diffusion process faces each other. Below, thickness 1mm
The following oxide is interposed, and 9/10 of the melting point of this oxide
A method for joining heat-resistant alloys, comprising joining the heat-resistant alloy by heating as described above.
【請求項2】 Alを含有する耐熱合金の表面を酸化し
てアルミナを主体とする酸化皮膜を形成し、その片側の
表面層にTiまたはZr金属を配置し、非酸化性雰囲気
中で加熱することにより耐熱合金内に拡散させる処理を
行い、しかる後前記拡散処理を施した1対の耐熱合金
の、前記TiまたはZrを配置した面の逆の面同士を対
峙し、この対峙面に融点800℃以上1400℃以下、
厚さ1mm以下の酸化物を介在させ、この酸化物の融点の
9/10以上に加熱することにより、前記耐熱合金を接
合させることを特徴とする耐熱合金の接合方法。
2. A surface of a heat-resistant alloy containing Al is oxidized to form an oxide film mainly composed of alumina, and a Ti or Zr metal is disposed on one surface layer thereof and heated in a non-oxidizing atmosphere. In this way, a process of diffusing into the heat-resistant alloy is performed, and then the surfaces of the pair of heat-resistant alloys subjected to the diffusion process, which are opposite to the surfaces on which the Ti or Zr is arranged, face each other. ℃ to 1400 ℃,
A method for joining a heat-resistant alloy, comprising: interposing an oxide having a thickness of 1 mm or less, and heating the oxide to 9/10 or more of a melting point of the oxide to join the heat-resistant alloy.
【請求項3】 Alを含有する耐熱合金の表面を酸化し
てアルミナを主体とする酸化皮膜を形成し、その片側の
表面層にTiまたはZr金属と、ろう材と、金属板を順
次積層配置した後、非酸化性雰囲気中でろう付け処理し
て接合体を形成し、しかる後前記ろう付け処理を施した
接合体1対の前記TiまたはZrを配置した逆の面同士
を対峙し、この対峙面に融点800℃以上1400℃以
下、厚さ1mm以下の酸化物を介在させ、この酸化物の融
点の9/10以上に加熱することにより、前記耐熱合金
を接合させることを特徴とする耐熱合金の接合方法。
3. A surface of a heat-resistant alloy containing Al is oxidized to form an oxide film mainly composed of alumina, and a Ti or Zr metal, a brazing material, and a metal plate are sequentially laminated on one surface layer. Then, brazing treatment is performed in a non-oxidizing atmosphere to form a joined body. Then, the opposite surfaces of the pair of joined bodies subjected to the brazing treatment on which the Ti or Zr are arranged face each other. An oxide having a melting point of 800 ° C. or more and 1400 ° C. or less and a thickness of 1 mm or less is interposed on the opposing surface, and the heat-resistant alloy is joined by heating to 9/10 or more of the melting point of the oxide. Alloy joining method.
【請求項4】 Alを含有する耐熱合金の表面を酸化し
てアルミナを主体とする酸化皮膜を形成し、その片側の
表面層にTiまたはZr金属と、ろう材と、金属板を順
次積層配置し、前記積層配置体2組について、耐熱合金
のTiまたはZrを配置した逆の面同士を対峙し、この
対峙面に融点800℃以上1400℃以下、厚さ1mm以
下の酸化物を介在させ、この酸化物の融点の9/10以
上に加熱することにより、前記耐熱合金を接合させるこ
とを特徴とする耐熱合金の接合方法。
4. A surface of a heat-resistant alloy containing Al is oxidized to form an oxide film mainly composed of alumina, and a Ti or Zr metal, a brazing material, and a metal plate are sequentially laminated on one surface layer. Then, with respect to the two sets of the stacked arrangement bodies, the opposite surfaces on which the heat-resistant alloy Ti or Zr is arranged face each other, and an oxide having a melting point of 800 ° C. or more and 1400 ° C. or less and a thickness of 1 mm or less is interposed on the facing surfaces, A method for joining heat-resistant alloys, wherein the heat-resistant alloy is joined by heating to 9/10 or more of the melting point of the oxide.
【請求項5】 表面にアルミナを主体とする酸化皮膜を
有しかつその片側の表面層にTiまたはZrを拡散した
ことにより、酸化皮膜と耐熱合金素地の界面にTiまた
はZrの偏析部が存在するAlを含有する耐熱合金の板
或いは箔の1対と、該1対の板或いは箔の面同士の間に
介在し、融点800℃以上1400℃以下、厚さ1mm以
下で該融点の9/10以上に加熱して形成した酸化物の
中間接合層とからなることを特徴とする、耐熱性、耐熱
サイクル性、電気絶縁性及び接合強度に優れた耐熱合金
の接合体。
5. A segregated portion of Ti or Zr is present at the interface between the oxide film and the heat-resistant alloy substrate due to having an oxide film mainly composed of alumina on the surface and diffusing Ti or Zr into one surface layer of the oxide film. A pair of plates or foils of a heat-resistant alloy containing Al and a surface of the pair of plates or foils having a melting point of 800 ° C. or more and 1400 ° C. or less, and a thickness of 1 mm or less and 9/9 of the melting point. A bonded body of a heat-resistant alloy having excellent heat resistance, heat cycle resistance, electrical insulation and bonding strength, comprising an oxide intermediate bonding layer formed by heating to 10 or more.
JP23375492A 1992-09-01 1992-09-01 Joining method and joined body of heat-resistant alloy containing Al Expired - Lifetime JP3288440B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP23375492A JP3288440B2 (en) 1992-09-01 1992-09-01 Joining method and joined body of heat-resistant alloy containing Al

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP23375492A JP3288440B2 (en) 1992-09-01 1992-09-01 Joining method and joined body of heat-resistant alloy containing Al

Publications (2)

Publication Number Publication Date
JPH0687634A JPH0687634A (en) 1994-03-29
JP3288440B2 true JP3288440B2 (en) 2002-06-04

Family

ID=16960061

Family Applications (1)

Application Number Title Priority Date Filing Date
JP23375492A Expired - Lifetime JP3288440B2 (en) 1992-09-01 1992-09-01 Joining method and joined body of heat-resistant alloy containing Al

Country Status (1)

Country Link
JP (1) JP3288440B2 (en)

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2001118710A (en) 1999-10-15 2001-04-27 Matsushita Electric Ind Co Ltd Rare-earth-resin magnet and magnet rotor
JP3956760B2 (en) 2002-04-25 2007-08-08 松下電器産業株式会社 Manufacturing method of flexible magnet and its permanent magnet type motor
JP5019753B2 (en) * 2006-02-03 2012-09-05 新日鉄マテリアルズ株式会社 Exhaust gas purification catalytic converter

Also Published As

Publication number Publication date
JPH0687634A (en) 1994-03-29

Similar Documents

Publication Publication Date Title
US4699310A (en) Method of bonding alumina to metal
JPH0936540A (en) Ceramic circuit board
US20080217382A1 (en) Metal-ceramic composite air braze with ceramic particulate
JP3288440B2 (en) Joining method and joined body of heat-resistant alloy containing Al
JP3095490B2 (en) Ceramic-metal joint
JPH0777989B2 (en) Method for manufacturing ceramic-metal bonded body
JP6266918B2 (en) Joined body of ceramic body and Ni-Cr-Fe alloy, and joining method of ceramic body and Ni-Cr-Fe alloy
CN113857605B (en) Method for aluminizing surface of low-carbon steel and performing air reaction brazing with alumina ceramic
JPH03261669A (en) Bonded product between ceramics and metal and production thereof
JP3302714B2 (en) Ceramic-metal joint
JP3064113B2 (en) Method for joining ZrO2 ceramics
JPH0223498B2 (en)
JP3370060B2 (en) Ceramic-metal joint
JPS61117172A (en) Ceramic bonding structure
JPH0240631B2 (en)
JPS6029518A (en) Heater for glow plug
JP2945198B2 (en) Joining method of copper plate and ceramics
JP3153872B2 (en) Metal-nitride ceramic bonding structure
JP3152087B2 (en) Metallization and joining method for ceramics
JPS61222965A (en) Method of joining ceramic and metal
JPS59156976A (en) Metal member-ceramic member bonded body and method therefor
JPH07157373A (en) Joining method of ceramic material and metallic material and production of airtight vessel
JPH0788263B2 (en) Joining structure of ceramic member and metal member and joining method thereof
JP2016141572A (en) Junction between ceramic and metal, and method for joining ceramic to metal
JPH07187839A (en) Nitride ceramics-metal joined body and its production

Legal Events

Date Code Title Description
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20020226

S111 Request for change of ownership or part of ownership

Free format text: JAPANESE INTERMEDIATE CODE: R313111

R360 Written notification for declining of transfer of rights

Free format text: JAPANESE INTERMEDIATE CODE: R360

R371 Transfer withdrawn

Free format text: JAPANESE INTERMEDIATE CODE: R371

S111 Request for change of ownership or part of ownership

Free format text: JAPANESE INTERMEDIATE CODE: R313111

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20080315

Year of fee payment: 6

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090315

Year of fee payment: 7

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090315

Year of fee payment: 7

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100315

Year of fee payment: 8

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100315

Year of fee payment: 8

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110315

Year of fee payment: 9

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110315

Year of fee payment: 9

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120315

Year of fee payment: 10

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120315

Year of fee payment: 10

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130315

Year of fee payment: 11

EXPY Cancellation because of completion of term
FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130315

Year of fee payment: 11