JP3285054B2 - Polycrystalline silicon crushing method - Google Patents

Polycrystalline silicon crushing method

Info

Publication number
JP3285054B2
JP3285054B2 JP23413893A JP23413893A JP3285054B2 JP 3285054 B2 JP3285054 B2 JP 3285054B2 JP 23413893 A JP23413893 A JP 23413893A JP 23413893 A JP23413893 A JP 23413893A JP 3285054 B2 JP3285054 B2 JP 3285054B2
Authority
JP
Japan
Prior art keywords
crushing
polycrystalline silicon
silicon
laser
irradiation
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
JP23413893A
Other languages
Japanese (ja)
Other versions
JPH0761808A (en
Inventor
秀男 伊藤
守 中野
孝 山本
昌之 手計
Original Assignee
三菱マテリアルポリシリコン株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 三菱マテリアルポリシリコン株式会社 filed Critical 三菱マテリアルポリシリコン株式会社
Priority to JP23413893A priority Critical patent/JP3285054B2/en
Publication of JPH0761808A publication Critical patent/JPH0761808A/en
Application granted granted Critical
Publication of JP3285054B2 publication Critical patent/JP3285054B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Landscapes

  • Disintegrating Or Milling (AREA)
  • Silicon Compounds (AREA)

Description

【発明の詳細な説明】DETAILED DESCRIPTION OF THE INVENTION

【0001】[0001]

【産業上の利用分野】本発明は半導体の原料である多結
晶シリコンの破砕方法に関する。詳しくは半導体用単結
晶シリコンの原料である多結晶シリコンを、反応炉で析
出生成した際の形状から単結晶引上げに適する大きさの
塊に、雰囲気や工具からの汚染を防ぎつつ破砕する方法
に関する。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a method for crushing polycrystalline silicon which is a raw material of a semiconductor. More specifically, it relates to a method of crushing polycrystalline silicon, which is a raw material of single crystal silicon for semiconductors, into a lump having a size suitable for pulling a single crystal from a shape generated by precipitation in a reaction furnace while preventing contamination from atmosphere and tools. .

【0002】[0002]

【従来技術】従来、多結晶シリコンの一般的な破砕方法
として、ダイヤモンドブレードで切断する方法、ハンマ
ーなどで打ち砕く方法、クラッシャーで砕く方法などが
実施されている。これらの方法は破砕手段が何れもシリ
コン以外の材質であり、破砕の際に多結晶シリコンがこ
れらと接触して汚染されるのを避けることができず、破
砕後にフッ硝酸などによる洗浄を余儀なくされている。
このような機械的衝撃を加えて破砕する方法の他に、多
結晶シリコンを高温に加熱した後に水中に投下して急冷
させ、この熱歪みによって破砕する方法も知られている
が、高温加熱時の酸化汚染および水中での汚染が問題と
なる。
2. Description of the Related Art Conventionally, methods of crushing polycrystalline silicon include a method of cutting with a diamond blade, a method of crushing with a hammer, a method of crushing with a crusher, and the like. In all of these methods, the crushing means is made of a material other than silicon, and it is unavoidable that polycrystalline silicon comes into contact with and contaminates them during crushing, and after crushing, cleaning with hydrofluoric nitric acid or the like is inevitable. ing.
In addition to the method of crushing by applying such a mechanical impact, there is also known a method of heating polycrystalline silicon to a high temperature, then dropping the same in water and quenching it, and crushing by thermal strain. Oxidation contamination and contamination in water pose a problem.

【0003】この欠点を解消する方法として、特開昭6
0−33210号および特開昭63−287565号の
技術が提案されている。前者はオーブン中のマイクロ波
により多結晶シリコンを誘電加熱して破砕する方法であ
り、後者はマイクロ波オーブンに空洞共振器を付設して
用いる方法である。これらの方法は確かに破砕手段がが
シリコンに接触しないので、これによるシリコンの汚染
を防止できるが、オーブンに装入しなければならないの
で、オーブンより大きいものは破砕することができず、
予めオーブンの大きさに切断しなければならない。例え
ば、現在、シーメンス法によって長さが約2m程度の長
大な多結晶シリコン棒が得られるが、これを上記手段で
破砕するには、予め、オーブンに入る大きさに切断する
必要があり、切断面の汚染を免れない。この解決策とし
てオーブンを大きくすることが考えられるが、費用が嵩
み、実用にはほど遠い。またマイクロ波による破砕で
は、多結晶シリコンの内部から熱膨張などによる爆発的
な破砕が全方向に及ぶため、破砕物の形状や大きさを予
測し難い上に、破砕物の爆発的な飛散を招き危険を伴う
のみならず、オーブンの破損を招く虞れがある。さらに
シリコン棒全体に熱歪みを生じるまで加熱するので酸化
汚染が酷くなる。
[0003] As a method of solving this disadvantage, Japanese Patent Application Laid-Open No.
The techniques of 0-33210 and JP-A-63-287565 have been proposed. The former is a method in which polycrystalline silicon is dielectrically heated and crushed by microwaves in an oven, and the latter is a method in which a cavity is attached to a microwave oven. These methods certainly prevent contamination of the silicon by the crushing means that do not come into contact with the silicon, but since they must be charged into the oven, anything larger than the oven cannot be crushed,
They must be cut to oven size beforehand. For example, at present, a long polycrystalline silicon rod having a length of about 2 m can be obtained by the Siemens method. However, in order to crush the rod by the above-described means, it is necessary to cut the rod into a size that can be put into an oven in advance. Surface contamination is inevitable. A possible solution to this problem is to make the oven larger, but it is expensive and far from practical. In addition, in the case of crushing by microwave, explosive crushing due to thermal expansion and the like extends from the inside of polycrystalline silicon in all directions, so it is difficult to predict the shape and size of the crushed material, and explosive scattering of crushed material In addition to the risk of inviting the oven, the oven may be damaged. Further, since the entire silicon rod is heated until thermal distortion occurs, oxidation contamination becomes severe.

【0004】さらに特開平2−9706号には他の破砕
方法が提案されている。これはシリコンを 600〜1000℃
に加熱し、急冷してシリコンを弛緩させた後に機械的に
破砕する方法であるが、加熱源である抵抗加熱体が高温
下で気化してシリコン表面に付着する問題があり、また
シリコンが高温下で載置用治具に接触するので治具から
の汚染も無視できない。また、この破砕方法ではシリコ
ン全体に不規則に歪みを生じさせるために、一度に多数
の破片に破砕できる利点があるものの、同時に微粉が生
じ、空中浮遊による作業環境の悪化やシリコンの損失を
招き易い欠点がある。
Further, another crushing method is proposed in Japanese Patent Application Laid-Open No. 2-9706. This is silicon 600-1000 ℃
This is a method in which the silicon is heated and quenched to relax the silicon, and then mechanically crushed.However, there is a problem that the resistance heating element, which is the heating source, vaporizes at a high temperature and adheres to the silicon surface. Since it comes into contact with the mounting jig below, contamination from the jig cannot be ignored. In addition, this crushing method has the advantage that it can be crushed into many pieces at once because irregular strain is generated in the whole silicon, but fine powder is generated at the same time, resulting in a deterioration of the working environment due to floating in the air and loss of silicon. There is an easy disadvantage.

【0005】なお、実開昭57−200385号および
実開昭57−200386号には薄板をレーザで切断加
工する装置が開示されているが、この装置は出来るだけ
クラックや割れを生じないように加工するためのもので
あり、破砕方法とは目的が全く異なる。因みに上記公報
には、レーザ光による加工ではセラミックやシリコンな
どの脆性材料はクラックを生じる虞があると記載されて
いる。これはレーザ光の照射場所とその周囲との著しい
温度差に起因する熱衝撃により生じ得るが、この種のク
ラックはレーザ光の照射場所の近傍にのみ生じ、シリコ
ンウェハーのような薄い材料では割れ等が生じることは
あっても、塊状の材料では表面にクラックが生じても部
分的に止まり全体が破砕されない場合が多い。従って、
これらの材料がレーザ光によって容易に破砕されるわけ
ではない。
Japanese Utility Model Application Laid-Open No. 57-200385 and Japanese Utility Model Application Laid-Open No. 57-200386 disclose a device for cutting a thin plate with a laser. This device is designed to prevent cracks and cracks as much as possible. It is for processing, and the purpose is completely different from the crushing method. In the above-mentioned publication, it is described that a brittle material such as ceramic or silicon may cause cracks in processing by laser light. Although this can occur due to thermal shock due to a significant temperature difference between the laser light irradiation area and its surroundings, this type of crack occurs only near the laser light irradiation area, and breaks in thin materials such as silicon wafers. Despite the occurrence of cracks and the like, in the case of massive materials, even if cracks occur on the surface, they often stop partially and are not completely crushed. Therefore,
These materials are not easily crushed by laser light.

【0006】[0006]

【発明の解決課題】本発明は、多結晶シリコンの破砕方
法に関する従来技術の上記問題を解決した破砕方法を提
供するものであり、不純物や表面酸化による汚染がな
く、作業が安全かつ容易で後処理を必要としない破砕方
法を提供することを目的とする。
SUMMARY OF THE INVENTION The present invention provides a crushing method which solves the above-mentioned problems of the prior art relating to a crushing method of polycrystalline silicon. The crushing method is free of impurities and contamination by surface oxidation, and is safe and easy to carry out. It is an object of the present invention to provide a crushing method that does not require processing.

【0007】前述のように、通常のシリコン結晶ではこ
れに高密度レーザを照射しても照射部近傍にクラックを
生じることはあっても、これが塊状の材料全体の破砕を
引き起こすものではなかった。ところが、本発明者の研
究によれば、シーメンス法などの熱CVD法によって棒
状に析出成長した多結晶シリコンには、その成長過程お
よび冷却過程に起因する残留歪みがあり、かつ、中心部
のシリコン芯から径方向に向かって結晶が成長してお
り、この内部の歪みおよび結晶構造をうまく利用すれば
塊状ないし棒状の多結晶シリコンを破砕できる知見を得
た。
As described above, even when a normal silicon crystal is irradiated with a high-density laser, cracks may be generated in the vicinity of the irradiated portion, but this does not cause crushing of the bulk material as a whole. However, according to the study of the present inventor, polycrystalline silicon deposited and grown in a rod shape by a thermal CVD method such as a Siemens method has a residual strain caused by its growth process and cooling process, and has The crystal grows in the radial direction from the core, and it has been found that if the internal strain and the crystal structure are properly used, the bulk or rod-like polycrystalline silicon can be crushed.

【0008】[0008]

【課題の解決手段:発明の構成】本発明は上記知見に基
づくものであり、本発明によれば以下の破砕方法が提供
される。 (1)熱CVD法によって棒状に析出成長した多結晶シ
リコンの破砕方法であって、多結晶シリコン表面に、そ
の軸方向または径方向から高密度レーザ光を局所的に短
時間照射し、この熱衝撃によって表面に生じたクラック
を内部歪みによって多結晶シリコン内部に進行させて破
砕することを特徴とする多結晶シリコンの破砕方法。 (2)棒状の多結晶シリコン表面に高密度レーザ光を照
射する際に、照射方向を軸方向から径方向に、または径
方向から軸方向に切替えて照射する上記(1) の破砕方
法。 (3)高密度レーザ光のパワー密度が1〜500 kW/cm
2 であり、かつ照射スポットの直径が1〜30mmである
上記(1) または(2) の破砕方法。 (4)該レーザが炭酸ガスレーザである上記(1) 〜(3)
の何れかの破砕方法。
The present invention is based on the above findings, and according to the present invention, the following crushing method is provided. (1) A method of crushing polycrystalline silicon deposited and grown in a rod shape by a thermal CVD method, in which a high-density laser beam is locally radiated to the polycrystalline silicon surface in an axial direction or a radial direction for a short time. A method for crushing polycrystalline silicon, wherein a crack generated on the surface by an impact is advanced into the polycrystalline silicon by internal strain and crushed. (2) The crushing method according to (1), wherein the irradiation direction is switched from the axial direction to the radial direction or from the radial direction to the axial direction when irradiating the rod-shaped polycrystalline silicon surface with the high-density laser light. (3) Power density of high-density laser light is 1 to 500 kW / cm
2. The crushing method according to (1) or (2) above, wherein the diameter of the irradiation spot is 1 to 30 mm. (4) The above (1) to (3), wherein the laser is a carbon dioxide laser.
Any of the crushing methods.

【0009】[0009]

【発明の具体的な説明】本発明の対象となる多結晶シリ
コンはシーメンス法に代表される熱CVD法によって棒
状に析出成長したものである。具体的には、棒状のシリ
コン芯を有する密閉容器にトリクロロシランなどの原料
ガスを供給し、赤熱したシリコン芯の表面で原料ガスの
加熱分解によってシリコンを析出させ、棒状に成長させ
たものである。この析出成長反応は吸熱反応であるた
め、中心のシリコン芯に通電して加熱しても、外周部で
は中心部に比べて温度の低下が起こる。また反応終了後
の冷却時も外周部が先に冷却し、中心部は高温のままで
ある。このため多結晶シリコンはその成長過程および冷
却過程に起因する内部歪みを有している。また中心のシ
リコン芯から外部に向かって成長して行くため、結晶は
シリコン芯から円周方向に向かって成長しており、シリ
コン棒の軸に対して垂直な面と該軸を含む面の2種の面
で劈開し易い。
DETAILED DESCRIPTION OF THE INVENTION Polycrystalline silicon, which is the subject of the present invention, has been deposited and grown in a rod shape by a thermal CVD method represented by the Siemens method. Specifically, a raw material gas such as trichlorosilane is supplied to an airtight container having a rod-shaped silicon core, and silicon is deposited by thermal decomposition of the raw material gas on the surface of the red-heated silicon core, and is grown into a rod shape. . Since this precipitation growth reaction is an endothermic reaction, even if the central silicon core is energized and heated, the temperature of the outer peripheral portion is lower than that of the central portion. Also, at the time of cooling after completion of the reaction, the outer peripheral portion is cooled first, and the central portion remains at a high temperature. For this reason, polycrystalline silicon has internal strain caused by its growth process and cooling process. Further, since the crystal grows from the central silicon core to the outside, the crystal grows in the circumferential direction from the silicon core, and two planes, a plane perpendicular to the axis of the silicon rod and a plane including the axis, are included. It is easy to cleave at the seed surface.

【0010】本発明の破砕方法は多結晶シリコンの上記
内部歪みおよび劈開し易い面の存在を利用する。多結晶
シリコンの破砕状態はレーザ光の照射方向によって大き
く相違し、その軸方向あるいは径方向に沿って照射した
ときに最も破砕され易く、これ以外の方向から照射した
場合には、破砕が起こらなかったり、破砕のために過度
のパワーのレーザ光を照射してしまうために表面が溶融
あるいは酸化してしまう。本発明は多結晶シリコンの軸
方向または径方向に沿ってレーザ光を照射することによ
り上記内部歪みに沿ってクラックを進行させる。
The crushing method of the present invention utilizes the above-mentioned internal strain of polycrystalline silicon and the presence of a plane which is easily cleaved. The state of crushing of polycrystalline silicon varies greatly depending on the irradiation direction of the laser beam, and is most easily crushed when irradiated along its axial direction or radial direction, and crushing does not occur when irradiated from other directions. In addition, the surface is melted or oxidized due to irradiating laser light of excessive power for crushing. In the present invention, cracks are caused to progress along the internal strain by irradiating the laser light along the axial direction or the radial direction of the polycrystalline silicon.

【0011】上記内部歪みおよび劈開し易い面の存在を
うまく利用して該多結晶シリコンを単結晶引き上げに適
する大きさに破砕するには、まず棒状シリコンの外周面
に径方向からレーザ光を照射して、所望の長さの円柱状
の塊にする。次にこの円柱状シリコンの切断面にその軸
方向からレーザ光を照射すると、シリコン棒はその中心
と照射箇所を結ぶ直線に沿って割れ半円柱状になる。な
お照射箇所が円柱状シリコンの中心である場合は割れる
方向を予測できない。よって破砕方向を制御する場合に
は円柱状シリコンの中心からずらしてレーザ光を照射す
ることが望ましい。その後この半円形の面の中央付近に
照射することにより、断面が扇型の柱状に破砕する。以
上のような破砕の規則性は多結晶シリコン中に内部歪み
と劈開し易い面が存在することによる。このようにレー
ザ光の照射方向を軸方向と径方向とに切り替えて破砕す
ることにより、棒状の多結晶シリコンを所望の大きさに
加工することができる。
In order to crush the polycrystalline silicon into a size suitable for pulling a single crystal by making good use of the internal strain and the existence of a surface which is easily cleaved, first, the outer peripheral surface of the rod-shaped silicon is irradiated with a laser beam from the radial direction. To form a columnar mass of a desired length. Next, when the cut surface of the columnar silicon is irradiated with laser light from the axial direction, the silicon rod is broken into a semi-cylindrical shape along a straight line connecting the center and the irradiated portion. In addition, when the irradiation location is the center of the columnar silicon, the direction in which it is broken cannot be predicted. Therefore, when controlling the crushing direction, it is desirable to irradiate a laser beam shifted from the center of the cylindrical silicon. Then, by irradiating near the center of this semicircular surface, the cross section is broken into a fan-shaped column shape. The regularity of the crushing described above is due to the internal strain and the presence of a plane that is easily cleaved in the polycrystalline silicon. By switching the irradiation direction of the laser light between the axial direction and the radial direction and crushing, the rod-shaped polycrystalline silicon can be processed to a desired size.

【0012】以上のように本発明は、多結晶シリコン表
面にクラックを生じさせ、これを内部歪みによって内部
に進行させて破砕する方法であり、従って、照射するレ
ーザ光は多結晶シリコンの表面に熱衝撃を与えてクラッ
クを生じさせる出力とパワー密度を有するものであれば
良い。また過剰な照射は表面を溶融させ鏡面化を引起こ
すので好ましくない。従って、レーザ光は高密度ないし
高輝度で短時間、例えば数秒、照射するのが好ましい。
As described above, the present invention is a method in which cracks are generated on the surface of polycrystalline silicon, and the cracks are caused to progress inside due to internal strain, so that the laser light to be irradiated is applied to the surface of the polycrystalline silicon. Any material may be used as long as it has an output and a power density that cause cracks due to thermal shock. Excessive irradiation is not preferred because it causes the surface to melt and cause a mirror surface. Therefore, it is preferable to irradiate the laser light with high density or high luminance for a short time, for example, several seconds.

【0013】高密度レーザ光を多結晶シリコンの表面に
照射すると、そのエネルギーは熱に変換されて局所的に
急激な温度上昇が起こる。この照射部分の温度上昇はレ
ーザ光を照射した瞬間に起こり、一方、照射部の周囲は
熱伝導によるため温度上昇が遅れる。このため照射部と
その周囲との間に著しい熱応力が働き、表面にクラック
が生じる。表面に生じたこのクラックが、多結晶シリコ
ンの析出過程で蓄積された内部歪みによって多結晶内部
に進行し、多結晶シリコン全体の破砕に至る。この多結
晶シリコンの内部歪みなどの応力はクラックなどの欠陥
部に集中する性質があるため、一度クラックが発生する
とこの内部歪みよってクラックが直線的に進行する。こ
のため破砕は主に一面に集中し、その破砕面はほぼ直線
的に連続した面になり、多数の小片に粉砕することが少
ない。
When the surface of polycrystalline silicon is irradiated with high-density laser light, its energy is converted into heat and a sharp rise in temperature occurs locally. The temperature rise of the irradiated portion occurs at the moment of irradiating the laser beam. On the other hand, the temperature around the irradiated portion is delayed due to heat conduction. For this reason, a remarkable thermal stress acts between the irradiated portion and its surroundings, and cracks occur on the surface. The cracks generated on the surface progress into the polycrystal due to internal strain accumulated during the process of depositing the polycrystalline silicon, leading to crushing of the entire polycrystalline silicon. Since stress such as internal strain of the polycrystalline silicon tends to concentrate on a defect such as a crack, once a crack occurs, the crack proceeds linearly due to the internal strain. For this reason, the crushing is mainly concentrated on one surface, and the crushing surface becomes a substantially linearly continuous surface, and is rarely crushed into many small pieces.

【0014】本発明で用いるレーザ装置は、多結晶シリ
コンに熱衝撃を与え、表面にクラックを生じさせるに足
るだけの出力、パワー密度、照射時間を有するものであ
ればよい。多結晶シリコンは十分な厚みを持つため、レ
ーザ光は表面周囲に吸収されて大部分が熱に変わる。ま
た多結晶シリコンの表面は一般に鏡面ではないので光り
の反射は問題にならない。このようなことから、本発明
に用いるレーザー装置としては炭酸ガスレーザ、一酸化
炭素レーザ、沃素レーザ、YAGレーザ、アルゴンレー
ザ、エキシマレーザなど市販のほとんどのものを使用す
ることができるが、熱変換効率、運転コストなどの面か
ら炭酸ガスレーザ、YAGレーザが望ましい。また前述
の如く、過剰のレーザ照射は表面を溶融し鏡面化するの
で、照射は高密度のレーザ光を短時間照射するのが良
く、パルス発振のレーザーが望ましい。またYAGレー
ザは光フアイバの使用が可能であり、装置の組立てや操
作が容易である。
The laser device used in the present invention only needs to have an output, a power density and an irradiation time sufficient to apply a thermal shock to the polycrystalline silicon and to cause cracks on the surface. Since polycrystalline silicon has a sufficient thickness, laser light is absorbed around the surface and most of the light is converted into heat. Since the surface of polycrystalline silicon is generally not a mirror surface, reflection of light does not matter. For this reason, most commercially available laser devices such as a carbon dioxide laser, a carbon monoxide laser, an iodine laser, a YAG laser, an argon laser, and an excimer laser can be used as the laser device used in the present invention. A carbon dioxide laser and a YAG laser are desirable from the viewpoint of operation cost and the like. As described above, since excessive laser irradiation melts the surface and makes it mirror-finished, it is preferable to irradiate high-density laser light for a short time, and a pulsed laser is desirable. In addition, the YAG laser can use an optical fiber, and assembling and operation of the device are easy.

【0015】シリコンは近赤外線および赤外線を透過し
易いため、これらの光を照射すると光は表面からある程
度内部にまで到達して熱に変わる。ところが紫外線や可
視光線を照射すると、内部に到達せずシリコン表面での
み吸収され、表面近傍のシリコンにダメージが生じて溶
融や酸化が起きたり、アブレーションとよばれるシリコ
ンのイオン化が起こり、レーザ光が破砕に必要な熱衝撃
の効果を発揮できなくなる。これらのことからレーザ光
としてはYAGレーザや炭酸ガスレーザのような近赤外
線あるいは赤外線のレーザがより望ましい。またこの種
のレーザでは光がシリコン内部にも到達することから、
熱の発生領域が照射箇所の表面だけでなく、照射箇所か
ら部材内部に向かう円錐状となるため、クラックが照射
方向に向かって伸びる。そのため、レーザを軸方向ある
いは径方向から照射すると、クラックは劈開し易い面に
沿って生じるため、破砕を容易にし、かつ破砕方向の制
御性を良好にする効果を持つ。
Since silicon easily transmits near-infrared rays and infrared rays, when these lights are irradiated, the light reaches a certain extent from the surface to the inside and turns into heat. However, when irradiated with ultraviolet or visible light, it is absorbed only on the silicon surface without reaching the inside, causing damage to the silicon near the surface, causing melting or oxidation, or ionization of the silicon called ablation, and the laser light is emitted. The effect of thermal shock required for crushing cannot be exhibited. From these facts, a near infrared or infrared laser such as a YAG laser or a carbon dioxide laser is more preferable as the laser light. Also, in this type of laser, light also reaches inside silicon,
Since the heat generation region has a conical shape not only from the surface of the irradiated portion but also from the irradiated portion toward the inside of the member, the cracks extend in the irradiation direction. Therefore, when the laser beam is irradiated from the axial direction or the radial direction, cracks are generated along a surface that is easily cleaved, so that crushing is facilitated and controllability of the crushing direction is improved.

【0016】レーザ光の照射は、前述の如くシリコン塊
の表面にクラックが生ずる程度に高密度で行えばよい。
多結晶シリコン棒はその結晶の成長方向によって強度が
異なるが、径方向および軸方向の何れの場合でも、レー
ザ光のパワー密度が1ないし500 kW/cm2 で、かつ照
射スポットの直径が1ないし30mmであればよい。パワ
ー密度が弱いとクラックが生じず、また強すぎると表面
の溶融、蒸発、酸化が起きたり、切断やアブレーション
などが起きて破砕には好ましくない。また照射面積が小
さいとパワー密度が大きくても、照射される全エネルギ
ーが小さいので破砕が起こりにくく、逆に照射面積が大
きいとクラックが種々の方向に多数生じてしまい、破砕
がおこりにくくなったり、破砕の方向性が制御できなく
なる。照射時間に関しては、破砕が照射箇所と周辺との
著しい温度差による熱衝撃で引き起こすため、10秒程
度以内の短時間で十分である。長時間の照射では、過度
のエネルギーにより表面の溶融、酸化を起こすばかり
か、シリコン塊全体の温度上昇を引き起こし、次の照射
時の温度差を減少させ破砕を起こしにくくしたり、破砕
後の冷却工程が必要となる。
The irradiation of the laser beam may be performed at such a high density as to cause cracks on the surface of the silicon mass as described above.
The strength of the polycrystalline silicon rod varies depending on the crystal growth direction. In both the radial direction and the axial direction, the power density of the laser beam is 1 to 500 kW / cm 2 and the diameter of the irradiation spot is 1 to 500 kW / cm 2. It may be 30 mm. If the power density is too low, no cracks will occur, and if it is too high, the surface will melt, evaporate, oxidize, cut or ablate, etc., which is undesirable for crushing. Also, if the irradiation area is small, even if the power density is large, the total energy to be irradiated is small, so that crushing is difficult to occur. Conversely, if the irradiation area is large, many cracks are generated in various directions, and crushing is difficult to occur. In addition, the direction of crushing cannot be controlled. As for the irradiation time, a short time of about 10 seconds or less is sufficient because the crushing is caused by a thermal shock due to a remarkable temperature difference between the irradiated portion and the periphery. Long-time irradiation not only causes the surface to melt and oxidize due to excessive energy, but also causes the temperature of the whole silicon mass to rise, reducing the temperature difference during the next irradiation, making crushing difficult, and cooling after crushing. A process is required.

【0017】実施例1 シーメンス法で製造した直径100mm、長さ1800mm
の多結晶シリコン棒を可動式ステージ上に数本設置し、
炭酸ガスレーザ装置(三菱電機社製 50C型)を用い、お
のおのの多結晶シリコン棒の側面に垂直に5kwのレーザ
光を5〜100kw/cm2 のパワー密度、スポット径2〜
10mmで5秒間照射したところ、照射した瞬間から円周
面にクラックが入り、あるものは音をたてて2つに割
れ、他のものは軽く叩くと直ぐに2つに割れた。順次照
射場所を変えても同様であった。破砕面は径方向に生じ
ており、全て平滑であった。
EXAMPLE 1 A diameter of 100 mm and a length of 1800 mm manufactured by the Siemens method
Place several polycrystalline silicon rods on the movable stage,
Using a carbon dioxide laser device (Mitsubishi Electric 50C type), 5 kW laser light is applied vertically to the side surface of each polycrystalline silicon rod at a power density of 5 to 100 kw / cm 2 and a spot diameter of 2 to 2.
When irradiation was performed at 10 mm for 5 seconds, a crack was formed on the circumferential surface from the moment of irradiation, and some of them cracked into two by making a sound, and others cracked immediately when they were tapped lightly. It was the same even if the irradiation place was changed sequentially. The fracture surfaces were generated in the radial direction, and were all smooth.

【0018】実施例2 実施例1と同一のレーザ装置を用い、実施例1で得た輪
切り状の多結晶シリコン塊の破砕面に対して垂直に破砕
面の中心付近に3〜5kwのレーザ光を3〜100 kw/cm
2 のパワー密度、スポット径2〜10mmで2秒間照射し
たところ、厚さ100mm未満の試料では照射した瞬間に
照射箇所を通ってクラックが入り、半円柱形に2つに割
れた。割れは1方向のみで、多数の破片には分かれなか
った。その後、この半円形の面の中央付近に照射したと
ころ、断面が扇型の柱状に破砕した。一方、厚さ100
mmの試料では、その一部に、照射箇所から斜め方向に割
れる現象が見られた。実施例1の破砕と本例の破砕を繰
り返すことにより、単結晶シリコン引き上げの原料とし
て使われる規格のシリコン塊が得られた。なお実施例1
で用いたのと同じ未加工の多結晶シリコン棒を、ダイヤ
モンドカッターで輪切りした試料を用いても、同様に破
砕することができた。
Example 2 Using the same laser device as in Example 1, a laser beam of 3 to 5 kW was applied to the vicinity of the center of the crushed surface perpendicular to the crushed surface of the sliced polycrystalline silicon lump obtained in Example 1. 3 to 100 kw / cm
When irradiation was performed at a power density of 2 and a spot diameter of 2 to 10 mm for 2 seconds, a sample having a thickness of less than 100 mm cracked through the irradiated portion at the moment of irradiation, and was broken into two into a semi-cylindrical shape. The cracks were in only one direction and did not split into many pieces. Thereafter, when irradiation was performed near the center of this semicircular surface, the cross section was broken into a fan-shaped column. On the other hand, thickness 100
In the case of the mm sample, a phenomenon was observed in which a part of the sample cracked obliquely from the irradiated part. By repeating the crushing of Example 1 and the crushing of this example, a standard silicon lump used as a raw material for pulling single crystal silicon was obtained. Example 1
The same unprocessed polycrystalline silicon rod as used in (1) could be similarly crushed by using a sample cut in a circle with a diamond cutter.

【0019】実施例3 連続波とパルス波を発振するYAGレーザ装置(日本電
気社製SL117-2C型)を使用し、直径100mmの多結晶
シリコン棒の側面に垂直に、連続波での出力400W 、
パルス波でのピーク値250KW、スポット径2mmでレー
ザ光を照射したところ、連続波でもパルス波でもレーザ
を照射した瞬間から5秒以内にシリコン棒のレーザ照射
面にクラックが生じて2つに割れた。このYAGレーザ
光は光フアイバによって送られているため、照射場所や
方向を変えて操作してみたが、軸方向と径方向の何れの
方向でも、また何れの場所でも所望どおりに輪切り破砕
することができた。一方、シリコン塊の側面および破砕
面に斜めからレーザ光を照射した場合には表面部分が剥
離して内部にクラックが進行しないものがみられた。
Example 3 A continuous wave output of 400 W was applied vertically to the side of a polycrystalline silicon rod having a diameter of 100 mm using a YAG laser device (type SL117-2C manufactured by NEC Corporation) that oscillates continuous waves and pulse waves. ,
When laser light was irradiated with a pulse wave peak value of 250 kW and a spot diameter of 2 mm, the laser irradiation surface of the silicon rod cracked and split into two within 5 seconds from the moment the laser was irradiated, whether continuous or pulsed. Was. Since this YAG laser beam was sent by an optical fiber, the operation was performed by changing the irradiation location and direction. However, in any of the axial and radial directions, and at any location, it was possible to crush and crush as desired. Was completed. On the other hand, when the side face and the crushed face of the silicon lump were irradiated with the laser beam from an oblique direction, the surface portion was peeled off and cracks did not progress inside.

【0020】[0020]

【発明の効果】本発明の破砕方法によれば次のような効
果が得られる。 (1)レーザ照射による非接触の破砕方法であるため、破
砕工具などから不純物が混入することがない。 (2)多結晶シリコンの表面のごく一部に熱衝撃を与え
る、加熱による表面酸化や加熱の際の雰囲気からの不純
物、例えば加熱炉の材質の揮発汚染などがない。従って
装置内に設置した治具類による破損や汚染の危険がな
い。 (3)破砕は多結晶シリコンの内部歪みによって生ずるた
め、破砕面が滑らかであり、袋詰めなどの際に、表面に
不純物が付着し難いので製品が清浄に保たれる。また使
用エネルギーは最小限で足り、爆発的な破砕の危険性も
ない。しかも微粉が発生しないので空気が清浄に保たれ
作業環境を良好に維持することができる。 (4)多結晶シリコン中の歪みの方向性から破砕方向が予
測できるため、所望の大きさ、形状に加工することがで
きる。 (5)レーザ照射後、照射部付近はやや温度が上昇するが
最高で100℃程度であり、照射表面に変化は生じず、
従来方法におけるような製品の冷却や、洗浄処理が不要
であり、破砕分級の後にそのまま製品検査、包装が行え
る。従って工程の大幅な省略が可能になると共に従来方
法で問題となるシリコン微粉や溶剤を含んだ汚水処理の
手間も省略できる。 (6)多結晶シリコンの大きさ、形状に制限を受けずに簡
便に実施することができる。 (7)レーザ光はミラーや光フアイバなどによって光路変
更や光の分割などが容易にできるので、照射場所の順次
移動による連続的破砕や1台のレーザ装置で数台の破砕
装置の稼働が可能である。またレーザ光の焦点合わせは
光による自動調節が可能であり、作業を自動化すること
ができる。
According to the crushing method of the present invention, the following effects can be obtained. (1) Since it is a non-contact crushing method by laser irradiation, no impurities are mixed in from a crushing tool or the like. (2) There is no surface oxidation by heating or impurities from the atmosphere at the time of heating, such as volatile contamination of the material of the heating furnace, which gives thermal shock to a very small part of the surface of polycrystalline silicon. Therefore, there is no danger of damage or contamination by the jigs installed in the apparatus. (3) Since the crushing is caused by internal strain of the polycrystalline silicon, the crushing surface is smooth, and impurities are less likely to adhere to the surface during bagging, so that the product is kept clean. Also, the energy used is minimal and there is no danger of explosive crushing. Moreover, since no fine powder is generated, the air can be kept clean and the working environment can be favorably maintained. (4) Since the crushing direction can be predicted from the directionality of the strain in the polycrystalline silicon, it can be processed into a desired size and shape. (5) After laser irradiation, the temperature rises slightly near the irradiated part, but it is about 100 ° C at the maximum, and the irradiated surface does not change,
There is no need to cool or wash the product as in the conventional method, and the product can be inspected and packaged as it is after crushing classification. Therefore, the process can be largely omitted, and the trouble of treating wastewater containing silicon fine powder and a solvent, which is a problem in the conventional method, can be omitted. (6) It can be easily carried out without being limited by the size and shape of the polycrystalline silicon. (7) Since the laser light can be easily changed in the optical path or split by a mirror or optical fiber, continuous crushing can be performed by sequentially moving the irradiation location, and several crushing devices can be operated with one laser device. It is. The focusing of the laser light can be automatically adjusted by light, and the work can be automated.

フロントページの続き (72)発明者 手計 昌之 三重県四日市市三田町5番地 高純度シ リコン株式会社内 (56)参考文献 特開 昭60−33210(JP,A) 特開 昭58−213623(JP,A) 特開 平1−140690(JP,A) 特開 平2−9706(JP,A) 特開 平2−152554(JP,A) 特開 昭63−287565(JP,A) 実開 昭57−200385(JP,U) 実開 昭57−200386(JP,U) 特公 昭51−48688(JP,B1) (58)調査した分野(Int.Cl.7,DB名) C01B 33/00 - 33/193 B02C 19/18 WPI/L(QUESTEL)Continuation of the front page (72) Inventor Masayuki Tekei 5 Mita-cho, Yokkaichi-shi, Mie Inside High Purity Silicon Co., Ltd. (56) References JP-A-60-33210 (JP, A) JP-A-58-213623 ( JP, A) JP-A-1-140690 (JP, A) JP-A-2-9706 (JP, A) JP-A-2-152554 (JP, A) JP-A-63-287565 (JP, A) Showa 57-200385 (JP, U) Actually open Showa 57-200386 (JP, U) Japanese Patent Publication No. 51-48688 (JP, B1) (58) Fields investigated (Int. Cl. 7 , DB name) C01B 33 / 00-33/193 B02C 19/18 WPI / L (QUESTEL)

Claims (4)

(57)【特許請求の範囲】(57) [Claims] 【請求項1】 熱CVD法によって棒状に析出成長した
多結晶シリコンの破砕方法であって、多結晶シリコン表
面に、その軸方向または径方向から高密度レーザ光を局
所的に短時間照射し、この熱衝撃によって表面に生じた
クラックを内部歪みによって多結晶シリコン内部に進行
させて破砕することを特徴とする多結晶シリコンの破砕
方法。
1. A method for crushing polycrystalline silicon deposited and grown in a rod shape by a thermal CVD method, comprising irradiating a polycrystalline silicon surface with a high-density laser beam for a short time locally in an axial direction or a radial direction thereof. A method of crushing polycrystalline silicon, wherein a crack generated on the surface by the thermal shock is advanced into the polycrystalline silicon by internal strain and crushed.
【請求項2】 棒状の多結晶シリコン表面に高密度レー
ザ光を照射する際に、照射方向を軸方向から径方向に、
または径方向から軸方向に切替えて照射する請求項1の
破砕方法。
2. When irradiating a rod-shaped polycrystalline silicon surface with high-density laser light, the irradiation direction is changed from an axial direction to a radial direction.
The crushing method according to claim 1, wherein the irradiation is performed by switching from the radial direction to the axial direction.
【請求項3】 高密度レーザ光のパワー密度が1〜50
0 kW/cm2 であり、かつ照射スポットの直径が1〜30
mmである請求項1または2の破砕方法。
3. The high-density laser beam has a power density of 1 to 50.
0 kW / cm 2 and the irradiation spot diameter is 1 to 30
3. The crushing method according to claim 1 or 2, wherein
【請求項4】 該レーザが炭酸ガスレーザである請求項
1〜3の何れかの破砕方法。
4. The crushing method according to claim 1, wherein said laser is a carbon dioxide gas laser.
JP23413893A 1993-08-26 1993-08-26 Polycrystalline silicon crushing method Expired - Lifetime JP3285054B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP23413893A JP3285054B2 (en) 1993-08-26 1993-08-26 Polycrystalline silicon crushing method

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP23413893A JP3285054B2 (en) 1993-08-26 1993-08-26 Polycrystalline silicon crushing method

Publications (2)

Publication Number Publication Date
JPH0761808A JPH0761808A (en) 1995-03-07
JP3285054B2 true JP3285054B2 (en) 2002-05-27

Family

ID=16966240

Family Applications (1)

Application Number Title Priority Date Filing Date
JP23413893A Expired - Lifetime JP3285054B2 (en) 1993-08-26 1993-08-26 Polycrystalline silicon crushing method

Country Status (1)

Country Link
JP (1) JP3285054B2 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US8939336B2 (en) 2011-12-21 2015-01-27 Wacker Chemie Ag Polycrystalline silicon portion and method for breaking a silicon body

Families Citing this family (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6874713B2 (en) 2002-08-22 2005-04-05 Dow Corning Corporation Method and apparatus for improving silicon processing efficiency
US7270706B2 (en) * 2004-10-04 2007-09-18 Dow Corning Corporation Roll crusher to produce high purity polycrystalline silicon chips
JP5689382B2 (en) * 2011-07-25 2015-03-25 信越化学工業株式会社 Crushing method of polycrystalline silicon rod
CN103816973A (en) * 2014-02-20 2014-05-28 亚洲硅业(青海)有限公司 Method for contactlessly breaking polycrystalline silicon
CN110182810A (en) * 2019-07-03 2019-08-30 山东澳联新材料有限公司 The continuous production processes and device of broken silicon material are heated based on industrial microwave

Family Cites Families (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5148688B2 (en) * 1972-05-16 1976-12-22
JPS57200385U (en) * 1981-06-09 1982-12-20
JPS57200386U (en) * 1981-06-09 1982-12-20
JPS58213623A (en) * 1982-06-07 1983-12-12 Hitachi Ltd Preparation of high purity silicon
JPS6033210A (en) * 1983-08-02 1985-02-20 Komatsu Denshi Kinzoku Kk Crushing method of silicon for semiconductor
JPS63287565A (en) * 1987-05-19 1988-11-24 小松電子金属株式会社 Method of crushing silicon for semiconductor
DE3733489A1 (en) * 1987-10-03 1989-04-20 Telemit Electronic Gmbh METHOD AND DEVICE FOR PROCESSING MATERIALS WITH THE AID OF A LASER
DE3811091A1 (en) * 1988-03-31 1989-10-12 Heliotronic Gmbh METHOD FOR COMMANDING LOW CONTAMINATION OF SOLID, PIECE OF SILICONE
JP2565759B2 (en) * 1988-12-02 1996-12-18 高純度シリコン株式会社 Equipment for crushing polycrystalline silicon

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US8939336B2 (en) 2011-12-21 2015-01-27 Wacker Chemie Ag Polycrystalline silicon portion and method for breaking a silicon body

Also Published As

Publication number Publication date
JPH0761808A (en) 1995-03-07

Similar Documents

Publication Publication Date Title
EP1609559B1 (en) Laser beam machining method
Buerhop et al. Glass surface treatment with excimer and CO2 lasers
US8247734B2 (en) Laser beam machining method
US5902368A (en) Method for the heat-softened severance of glass tubes or plates
JP2012527356A (en) Substrate processing method and apparatus using laser
WO1999067048A1 (en) Ultrashort pulse laser machining of metals and alloys
JP3285054B2 (en) Polycrystalline silicon crushing method
AU2014309466A1 (en) Method for blunting sharp edges of glass objects
Yan et al. Micro and nanoscale laser processing of hard brittle materials
WO2019029535A1 (en) Device and method for preparing amorphous alloy using pulse laser, and use
EP1609558B1 (en) Laser beam machining method
Pedraza Interaction of UV laser light with wide band gap materials: Mechanisms and effects
JP2004351477A (en) Laser beam machining method
Smith et al. Fracture characteristics of an aluminum oxide ceramic during continuous wave carbon dioxide laser cutting
TWI314488B (en) Verfahren zum trennen flacher werkstucke aus keramik
Cao et al. The effects of the atmosphere on the surface modification of alumina by pulsed-laser-irradiation
Savriama et al. Laser micro-cutting of wide band gap materials
Bruneau et al. Femtosecond laser ablation of materials
RU2163226C1 (en) Method of blunting of article sharp edges (versions)
RU2056253C1 (en) Method for recovery of parts with surface cracks
JP2007105888A (en) First crack forming method of fragile material
Gong et al. Effects of excimer laser irradiation on the KDP crystal
Raman et al. Surface characterization of laser-induced molten area in micro-grooving of silicon by ultraviolet (UV) laser
Gurvich et al. Rock processing with CO2 laser radiation
JP2003088979A (en) Laser beam machining method

Legal Events

Date Code Title Description
R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

S111 Request for change of ownership or part of ownership

Free format text: JAPANESE INTERMEDIATE CODE: R313111

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20080308

Year of fee payment: 6

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090308

Year of fee payment: 7

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090308

Year of fee payment: 7

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100308

Year of fee payment: 8

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100308

Year of fee payment: 8

S531 Written request for registration of change of domicile

Free format text: JAPANESE INTERMEDIATE CODE: R313531

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100308

Year of fee payment: 8

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110308

Year of fee payment: 9

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110308

Year of fee payment: 9

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120308

Year of fee payment: 10

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130308

Year of fee payment: 11

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20140308

Year of fee payment: 12

EXPY Cancellation because of completion of term