JP2565759B2 - Equipment for crushing polycrystalline silicon - Google Patents

Equipment for crushing polycrystalline silicon

Info

Publication number
JP2565759B2
JP2565759B2 JP63303993A JP30399388A JP2565759B2 JP 2565759 B2 JP2565759 B2 JP 2565759B2 JP 63303993 A JP63303993 A JP 63303993A JP 30399388 A JP30399388 A JP 30399388A JP 2565759 B2 JP2565759 B2 JP 2565759B2
Authority
JP
Japan
Prior art keywords
crushing
polycrystalline silicon
crushed
silicon
pressing
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
JP63303993A
Other languages
Japanese (ja)
Other versions
JPH02152554A (en
Inventor
正勝 竹口
勉 間瀬
常雄 溝口
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
KOJUNDO SHIRIKON KK
Original Assignee
KOJUNDO SHIRIKON KK
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by KOJUNDO SHIRIKON KK filed Critical KOJUNDO SHIRIKON KK
Priority to JP63303993A priority Critical patent/JP2565759B2/en
Publication of JPH02152554A publication Critical patent/JPH02152554A/en
Application granted granted Critical
Publication of JP2565759B2 publication Critical patent/JP2565759B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B02CRUSHING, PULVERISING, OR DISINTEGRATING; PREPARATORY TREATMENT OF GRAIN FOR MILLING
    • B02CCRUSHING, PULVERISING, OR DISINTEGRATING IN GENERAL; MILLING GRAIN
    • B02C1/00Crushing or disintegrating by reciprocating members
    • B02C1/02Jaw crushers or pulverisers
    • B02C1/04Jaw crushers or pulverisers with single-acting jaws

Landscapes

  • Engineering & Computer Science (AREA)
  • Mechanical Engineering (AREA)
  • Food Science & Technology (AREA)
  • Crushing And Grinding (AREA)

Description

【発明の詳細な説明】 <産業上の利用分野> 本発明は円柱状の多結晶シリコンを高純度のシリコン
の間で押圧して破砕する装置に関する。
DETAILED DESCRIPTION OF THE INVENTION <Industrial field of use> The present invention relates to a device for pressing cylindrical polycrystalline silicon between high-purity silicon to crush it.

<従来技術と問題点> 多結晶シリコンから単結晶シリコンを製造する方法に
はCZ法とFZ法があり、CZ法においては、シーメンス法で
製造される円柱状の多結晶シリコンを適当な大きさに破
砕して石英るつぼ中で溶解し、液面に種結晶をつけて引
き上げる。即ち、CZ法においては破砕された多結晶の純
度および粒度分布等が、得られる単結晶に重要な影響を
およぼすこととなる。従って円柱状の多結晶の破砕方法
および装置が極めて重要である。
<Prior arts and problems> There are CZ method and FZ method for producing single crystal silicon from polycrystalline silicon. In CZ method, cylindrical polycrystalline silicon produced by Siemens method has an appropriate size. Crush into pieces and dissolve in a quartz crucible, attach seed crystals to the liquid surface and pull up. That is, in the CZ method, the purity and particle size distribution of the crushed polycrystals have an important influence on the obtained single crystal. Therefore, a method and apparatus for crushing a cylindrical polycrystal is extremely important.

円柱状もしくは塊状の多結晶シリコンの破砕方法およ
び装置については、従来(1)ダイヤモンド製の刃を使
った装置で適当な大きさに切断する、(2)シリコンの
比較的脆い性質を利用して例えばジョークラッシャーな
どの破砕装置により機械的に破砕する、(3)高温状態
のシリコンを急冷して熱応力を利用して破砕する、等が
用いられている。しかし上記(1)(2)の手段におい
ては、装置や材料の摩耗破損等に伴う不純物の混入が避
けられず不純物除去の工程が必要である。更に(2)の
方法では、切断に時間がかかる。また、(3)の方法に
おいては、高温処理(600〜750℃)の為、高温処理装置
や高温にすることによりシリコンが汚染される。又破砕
粒子の管理が難しい等の問題もある。以上、従来方法の
破砕では何れも破砕されたシリコンの洗浄工程が必要と
なる。
Regarding the method and apparatus for crushing cylindrical or massive polycrystalline silicon, (1) cutting into an appropriate size with a device using a diamond blade, (2) utilizing the relatively brittle nature of silicon For example, mechanical crushing is performed by a crushing device such as a jaw crusher, (3) crushing is performed by rapidly cooling high temperature silicon and utilizing thermal stress. However, in the above means (1) and (2), it is inevitable that impurities are mixed in due to wear and damage of the equipment and materials, and a step of removing impurities is necessary. Further, in the method (2), it takes a long time to cut. Further, in the method (3), since the high temperature treatment (600 to 750 ° C.) is performed, the silicon is contaminated by the high temperature treatment apparatus or the high temperature treatment. There is also a problem that it is difficult to control the crushed particles. As described above, the conventional method of crushing requires a washing step of crushed silicon.

<問題点を解決するための手段> 本発明は、前記従来法の問題点を解決するため円柱状
もしくは塊状多結晶シリコンを高純度のシリコンの間に
挟み込み、圧力および角度等の可変な押圧機構を有する
装置で押圧して多結晶シリコンを破砕するものである。
<Means for Solving Problems> In order to solve the problems of the above-mentioned conventional method, the present invention sandwiches cylindrical or lump polycrystal silicon between high-purity silicon and presses a variable pressure and angle mechanism. The polycrystalline silicon is crushed by pressing with a device having.

すなわち、本発明によれば、(1)円柱状の高純度多
結晶シリコンを密接に並列して形成された相対向する破
砕面が設けられ、該両破砕面を移動させて押圧する機構
と、破砕面の角度を変える機構を有し、該両破砕面の間
に投入された円柱状もしくは塊状の多結晶シリコンを該
両破砕面で押圧して破砕する多結晶シリコンの破砕装置
が提供される。
That is, according to the present invention, (1) a crushing surface that is formed by closely arranging cylindrical high-purity polycrystalline silicon in close contact with each other is provided, and a mechanism that moves and presses both crushing surfaces, Provided is a crushing device for polycrystalline silicon, which has a mechanism for changing the angle of the crushing surface, and presses the columnar or lumpy polycrystalline silicon charged between the crushing surfaces by the crushing surfaces. .

さらに、本発明によれば、その好適な実施態様とし
て、(2)相対向して設置された支持体を有し、両支持
体には円柱状の高純度多結晶シリコンが密接に並列され
た破砕面が形成されており、さらに少なくとも一方の支
持体の上部と下部には該支持体を移動する押圧手段がお
のおの連結され、該押圧手段は支持体に傾動自在に軸着
されており、該押圧手段によって両破砕面が押圧される
と共に傾きが調整される上記(1)に記載の破砕装置が
提供される。
Further, according to the present invention, as a preferred embodiment thereof, (2) the supports are provided so as to face each other, and the column-shaped high-purity polycrystalline silicon is closely arranged in parallel to both the supports. A crushing surface is formed, and pressing means for moving the supporting body are respectively connected to the upper and lower portions of at least one supporting body, and the pressing means is pivotally attached to the supporting body in a tiltable manner. The crushing device according to (1) is provided in which both crushing surfaces are pressed by the pressing means and the inclination is adjusted.

<具体的な説明> 本発明を図面によって具体的に説明する。第1図に示
すように支持体7に密着して並べられた円柱状の高純度
多結晶シリコン2で形成される破砕面10,11の間に、破
砕される円柱状もしくは塊状の多結晶シリコン3が投入
される。このとき両破砕面10,11の下部のクリアランス
8を調整することによって多結晶シリコン破砕片の粒度
分布が制御される。支持体7の破砕面10,11は押圧機構4
a,4bおよび6によって移動自在に支持されており、クリ
アランス8の調整は第1図の破砕面11を固定しておき破
砕面10を動かして行なう。多結晶シリコンが投入された
後、破砕面11と破砕面10の下部押圧機構4bを固定したま
ま破砕面10の上部押圧機構4aを動かす。これにより第2
図(B)に示されるように、投入された多結晶シリコン
が両破砕面で押圧破砕される。次いで破砕面10の上部を
固定したまま同図(C)のように破砕面10の下部押圧機
構4bを移動させて両破砕面10,11の下部を開き、多結晶
シリコンの破砕片を下の受器に落下させる。その後同図
(D)のように破砕面10の上部を開いて再び同図(A)
のようにクリアランスを調整して次の押圧破砕工程に入
る。
<Detailed Description> The present invention will be specifically described with reference to the drawings. As shown in FIG. 1, between the crushing surfaces 10 and 11 formed of the columnar high-purity polycrystalline silicon 2 arranged in close contact with the support 7, the columnar or massive polycrystalline silicon to be crushed. 3 is thrown in. At this time, the particle size distribution of the polycrystalline silicon crushed pieces is controlled by adjusting the clearance 8 under the crushed surfaces 10 and 11. The crushing surfaces 10 and 11 of the support 7 are pressing mechanisms 4
The clearance 8 is movably supported by a, 4b and 6, and the clearance 8 is adjusted by fixing the crushing surface 11 in FIG. 1 and moving the crushing surface 10. After the polycrystalline silicon is charged, the upper pressing mechanism 4a of the crushing surface 11 is moved while the lower pressing mechanism 4b of the crushing surface 11 and the crushing surface 10 is fixed. This makes the second
As shown in FIG. 3B, the injected polycrystalline silicon is pressed and crushed on both crushing surfaces. Next, with the upper part of the crushing surface 10 fixed, the lower pressing mechanism 4b of the crushing surface 10 is moved to open the lower parts of both the crushing surfaces 10 and 11 as shown in FIG. Drop it into the receiver. After that, the upper part of the crushing surface 10 is opened as shown in FIG.
The clearance is adjusted as described above and the next pressure crushing step is started.

本発明において破砕面の形成に用いられる円柱状の高
純度多結晶シリコンは、シーメンス法で製造されたもの
である。
The cylindrical high-purity polycrystalline silicon used for forming the crushed surface in the present invention is manufactured by the Siemens method.

本発明の押圧破砕装置は第3図および第4図により詳
細に示される。本装置は箱形のフレーム31を有する。フ
レーム31の内部には相対向して一対の支持体37,38が設
置されている。一方の支持体37の上部は押圧機構44aに
連結し、支持体37の下部には押圧機構44bが連結してい
る。これら押圧機構44a,44bは油圧シリンダー等の適宜
な手段を採用し得る。また両押圧機構44a,44bは、支持
体37を傾動しうるように軸着されている。一方支持体38
はロッド36によって支持され、該ロッド36の回転により
その傾きが微調整される。
The pressure crusher of the present invention is shown in more detail in FIGS. 3 and 4. The device has a box-shaped frame 31. Inside the frame 31, a pair of supports 37, 38 are installed facing each other. The upper part of the one support 37 is connected to the pressing mechanism 44a, and the lower part of the support 37 is connected to the pressing mechanism 44b. As the pressing mechanisms 44a and 44b, appropriate means such as a hydraulic cylinder can be adopted. Both pressing mechanisms 44a and 44b are pivotally mounted so that the support 37 can be tilted. Meanwhile support 38
Is supported by a rod 36, and its inclination is finely adjusted by the rotation of the rod 36.

上記両支持体37,38の相対向する両面には円柱状の高
純度シリコン32が並設され、破砕面が形成されている。
該円柱状シリコン32は縦方向に並べてもよく横方向に並
べてもよい。更にこれら支持体37,38の両側端と上記フ
レーム31との間には破砕面の側部を囲むように円柱状の
高純度シリコン39が並設されている。
Cylindrical high-purity silicon 32 is juxtaposed on both opposing surfaces of both the supports 37, 38 to form crushed surfaces.
The cylindrical silicon 32 may be arranged vertically or horizontally. Further, cylindrical high-purity silicon 39 is provided between the both ends of the supports 37, 38 and the frame 31 so as to surround the side of the crushing surface.

一方、上記支持体37,38の上方には、被破砕多結晶シ
リコンを投入するホッパー41が設けられており、また上
記支持体37,38の下方には破砕された多結晶シリコン片
を収納する受器45が配設されている。
On the other hand, above the supports 37, 38, there is provided a hopper 41 for introducing the polycrystalline silicon to be crushed, and below the supports 37, 38, the crushed polycrystalline silicon pieces are stored. A receiver 45 is provided.

上記構造において、被破砕多結晶シリコンが両破砕面
の間に投入されると、前述の第2図(A)〜(D)に示
すように破砕されて適度な粒径の多結晶シリコン破砕片
となる。
In the above structure, when the crushed polycrystalline silicon is introduced between both crushed surfaces, the crushed polycrystalline silicon crushed pieces are crushed as shown in FIGS. 2 (A) to (D), and have a proper particle size. Becomes

<発明の効果> 本発明の装置により得られる多結晶シリコン粒子は破
砕面に高純度のシリコンを使用している為に、破砕時に
不純物の混入がない。従って不純物除去する工程が不要
である。更に従来の切断方法に比べて大幅な時間の短縮
ができる。また、破砕面の間隔を調整することにより、
適切な粒子径の多結晶シリコンが得られる。
<Effects of the Invention> Since the polycrystalline silicon particles obtained by the device of the present invention use high-purity silicon for the crushing surface, impurities are not mixed during crushing. Therefore, the step of removing impurities is unnecessary. Further, the time can be significantly shortened as compared with the conventional cutting method. Also, by adjusting the spacing of the crushing surface,
Polycrystalline silicon having an appropriate particle size can be obtained.

以上本発明によれば、CZ法単結晶シリコン製造原料の
高純度の多結晶シリコンが所望の粒度分布で効率よく得
ることができる。
As described above, according to the present invention, it is possible to efficiently obtain high-purity polycrystalline silicon as a raw material for producing a CZ single crystal silicon with a desired particle size distribution.

<実施例> 実施例1 第3〜4図に示した本発明の破砕装置に直径110mm、
長さ250mmの円柱状多結晶シリコンを投入し、該円柱状
多結晶シリコンを押圧破砕した。両破砕面の下部のクリ
アランスが22mmの場合落下した破砕片の粒形の分布は第
5図のようであった。またこのときの破砕時間、破砕さ
れた多結晶シリコンの収率を第1表に記す。
<Example> Example 1 A crushing device of the present invention shown in FIGS.
A columnar polycrystalline silicon having a length of 250 mm was charged and the columnar polycrystalline silicon was pressed and crushed. When the clearance at the bottom of both crushed surfaces was 22 mm, the distribution of the particle shape of the crushed pieces dropped was as shown in Fig. 5. The crushing time and the yield of crushed polycrystalline silicon at this time are shown in Table 1.

実施例2 実施例1と同じ装置および作動要領で、100〜150mmの
大きさの塊状多結晶シリコンを押圧破砕し、両破砕面の
下部のクリアランスが38mmの場合の粒径分布は第6図の
ようであった。このときの破砕された多結晶シリコンの
収率、破砕時間を第1表に示した。又実施例1,2共に得
られたシリコンは汚染がなく、洗浄工程は不要であっ
た。
Example 2 With the same apparatus and operating procedure as in Example 1, the crushed polycrystalline silicon having a size of 100 to 150 mm was pressed and crushed, and the particle size distribution when the clearance under both crushed surfaces is 38 mm is shown in FIG. It seemed. The yield of the crushed polycrystalline silicon and the crushing time at this time are shown in Table 1. In addition, the silicon obtained in both Examples 1 and 2 was free from contamination and did not require a washing step.

比較例 ダイヤモンドブレードを取り付けた従来の切断装置で
円柱状多結晶シリコン(直径120mm)を185mmの長さに切
断し、切断所要時間、収率を第1表で比較した。得られ
たシリコンはダイヤモンドブレードや切断時の水等の汚
染が有りCZ法単結晶製造用に供するには洗浄工程が必要
であった。
Comparative Example Cylindrical polycrystalline silicon (diameter 120 mm) was cut into a length of 185 mm with a conventional cutting device equipped with a diamond blade, and cutting time and yield were compared in Table 1. The obtained silicon was contaminated with water such as diamond blades and water at the time of cutting, and a washing step was required to use it for CZ method single crystal production.

【図面の簡単な説明】[Brief description of drawings]

第1図は本発明に係る円柱状多結晶シリコンの押圧破砕
装置の概略図、第2図(A)(B)(C)および(D)
は装置の作動順序を示す概略図、第3図は装置の平面
図、第4図は装置の立面図、第5図は実施例1の破砕片
の粒度分布、第6図は実施例2における破砕片の粒度分
布図である。 1……多結晶シリコン投入口、2,32,39……円柱状高純
度シリコン、3……被破砕多結晶シリコン、4a,4b,44a,
44b……押圧機構、5,45……シリコン破砕片受器、6,36
……ロッド、7,37,38……支持体、8……クリアラン
ス、10,11……破砕面。
FIG. 1 is a schematic view of a cylindrical polycrystalline silicon pressing and crushing device according to the present invention, and FIGS. 2 (A), (B), (C) and (D).
Is a schematic view showing the operation sequence of the apparatus, FIG. 3 is a plan view of the apparatus, FIG. 4 is an elevation view of the apparatus, FIG. 5 is a particle size distribution of the crushed pieces of Example 1, and FIG. 6 is Example 2. It is a particle size distribution diagram of the crushed pieces in. 1 ... Polycrystalline silicon input port, 2,32,39 ... Cylindrical high-purity silicon, 3 ... Crushed polycrystalline silicon, 4a, 4b, 44a,
44b …… Pressing mechanism, 5,45 …… Silicon fragment receiver, 6,36
…… Rod, 7,37,38 …… Supporting body, 8 …… Clearing, 10,11 …… Crushing surface.

Claims (2)

(57)【特許請求の範囲】(57) [Claims] 【請求項1】円柱状の高純度多結晶シリコンを密接に並
列して形成された相対向する破砕面が設けられ、該両破
砕面を移動させて押圧する機構と、破砕面の角度を変え
る機構を有し、該両破砕面の間に投入された円柱状もし
くは塊状の多結晶シリコンを該両破砕面で押圧して破砕
する多結晶シリコンの破砕装置。
1. A crushing surface, which is formed by closely arranging cylindrical high-purity polycrystalline silicon closely in parallel, is provided, and a mechanism for moving and pressing both crushing surfaces and an angle of the crushing surface are changed. A crushing device for polycrystalline silicon, which has a mechanism and crushes cylindrical or lump-shaped polycrystalline silicon charged between both crushing surfaces by pressing with both crushing surfaces.
【請求項2】相対向して設いされた支持体を有し、両支
持体には円柱状の高純度多結晶シリコンが密接に並列さ
れた破砕面が形成されており、さらに少なくとも一方の
支持体の上部と下部には該支持体を移動する押圧手段が
おのおの連結され、該押圧手段は支持体に傾動自在に軸
着されており、該押圧手段によって両破砕面が押圧され
ると共に傾きが調整される特許請求の範囲第1項に記載
の破砕装置。
2. A crushing surface in which cylindrical high-purity polycrystalline silicon is closely arranged in parallel is formed on both of the supports, and the supports are provided so as to face each other. Pressing means for moving the supporting body are connected to the upper and lower portions of the supporting body, and the pressing means is pivotally attached to the supporting body so that both crushing surfaces are pressed and tilted by the pressing means. The crushing device according to claim 1, wherein
JP63303993A 1988-12-02 1988-12-02 Equipment for crushing polycrystalline silicon Expired - Lifetime JP2565759B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP63303993A JP2565759B2 (en) 1988-12-02 1988-12-02 Equipment for crushing polycrystalline silicon

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP63303993A JP2565759B2 (en) 1988-12-02 1988-12-02 Equipment for crushing polycrystalline silicon

Publications (2)

Publication Number Publication Date
JPH02152554A JPH02152554A (en) 1990-06-12
JP2565759B2 true JP2565759B2 (en) 1996-12-18

Family

ID=17927758

Family Applications (1)

Application Number Title Priority Date Filing Date
JP63303993A Expired - Lifetime JP2565759B2 (en) 1988-12-02 1988-12-02 Equipment for crushing polycrystalline silicon

Country Status (1)

Country Link
JP (1) JP2565759B2 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR101614277B1 (en) * 2009-08-20 2016-04-21 쵸슈 산교 가부시키가이샤 Silicon starting material crushing device

Families Citing this family (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP3285054B2 (en) * 1993-08-26 2002-05-27 三菱マテリアルポリシリコン株式会社 Polycrystalline silicon crushing method
US6874713B2 (en) 2002-08-22 2005-04-05 Dow Corning Corporation Method and apparatus for improving silicon processing efficiency
JP4007228B2 (en) * 2003-03-31 2007-11-14 三菱マテリアル株式会社 Negative electrode material for lithium secondary battery and method for producing the same
JP4340963B2 (en) 2003-10-01 2009-10-07 株式会社 アイアイエスマテリアル Method for crushing scrap silicon lump
US7270706B2 (en) * 2004-10-04 2007-09-18 Dow Corning Corporation Roll crusher to produce high purity polycrystalline silicon chips
DE102004048948A1 (en) 2004-10-07 2006-04-20 Wacker Chemie Ag Apparatus and method for low-contamination, automatic breakage of silicon breakage
KR20090067177A (en) 2006-10-16 2009-06-24 가부시끼가이샤 도꾸야마 Silicon lump crushing tool
JP5627461B2 (en) 2008-08-06 2014-11-19 株式会社トクヤマ Crusher for crushing silicon lump and silicon crusher provided with a plurality of such crushers
CN102059170B (en) * 2010-11-26 2011-10-19 镇江荣德新能源科技有限公司 Device and method for breaking polycrystalline silicon rod
KR20140071381A (en) * 2011-09-29 2014-06-11 쵸슈 산교 가부시키가이샤 Raw material silicon crushing device

Family Cites Families (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5757802Y2 (en) * 1980-03-21 1982-12-11
JPS58145611A (en) * 1982-02-23 1983-08-30 Shin Etsu Chem Co Ltd Crushing and sieving of silicon particle

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR101614277B1 (en) * 2009-08-20 2016-04-21 쵸슈 산교 가부시키가이샤 Silicon starting material crushing device

Also Published As

Publication number Publication date
JPH02152554A (en) 1990-06-12

Similar Documents

Publication Publication Date Title
JP2565759B2 (en) Equipment for crushing polycrystalline silicon
US4871117A (en) Low-contamination method for comminuting solid silicon fragments
KR830001462B1 (en) Process for producing cubic boron nitride from hexagonal boron nitride in the absence of a catalyst
US4070796A (en) Method of producing abrasive grits
JP3309141B2 (en) Method and apparatus for casting crystalline silicon ingot by electron beam melting
Price et al. Electron petrography of shock-produced veins in the Tenham chondrite
JP4658453B2 (en) Flowable chip, method for producing and using the same, and apparatus used for carrying out the method
US5499598A (en) Method for producing a silicon rod
JP5779654B2 (en) Raw material silicon crusher
JPH1015422A (en) Crushing method of polycrystalline silicon
KR20010109276A (en) Method and device for purifying aluminium by segregation
CN218841923U (en) High-efficient glass smelting pot of glass thermo jug production
JPH10308336A (en) Device and method for protecting semiconductor material
Sankaranarayanan et al. Growth of benzophenone single crystals from solution: A novel approach with 100% solute‐crystal conversion efficiency
JP4459519B2 (en) Compound raw material and method for producing compound single crystal
CN111575801A (en) Preparation method and wafer growth raw material
SU631209A1 (en) Mineral disintegration method
CN111501100B (en) Preparation method and application of rubidium silicate nonlinear optical crystal
RU2588627C1 (en) Method of refining metallurgical silicon
CN214694462U (en) Growth device for YCOB crystal growth
US5230873A (en) Process for producing amorphous boron nitride of high hardness
JPS61145828A (en) Sputtering target and manufacture of the same
JPH1192142A (en) Production of alpha-gypsum hemihydrate
CN117103478A (en) System and method for crushing unqualified crystal bar segments
Guangzhong et al. Improved Bridgman technique for the growth of AgGaSe/sub 2/single crystals