JP3284753B2 - Displacement measuring device - Google Patents

Displacement measuring device

Info

Publication number
JP3284753B2
JP3284753B2 JP11675194A JP11675194A JP3284753B2 JP 3284753 B2 JP3284753 B2 JP 3284753B2 JP 11675194 A JP11675194 A JP 11675194A JP 11675194 A JP11675194 A JP 11675194A JP 3284753 B2 JP3284753 B2 JP 3284753B2
Authority
JP
Japan
Prior art keywords
light
measured
flat plate
reflectance
resonator
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP11675194A
Other languages
Japanese (ja)
Other versions
JPH07325089A (en
Inventor
勝 小林
元久 平野
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nippon Telegraph and Telephone Corp
Original Assignee
Nippon Telegraph and Telephone Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nippon Telegraph and Telephone Corp filed Critical Nippon Telegraph and Telephone Corp
Priority to JP11675194A priority Critical patent/JP3284753B2/en
Publication of JPH07325089A publication Critical patent/JPH07325089A/en
Application granted granted Critical
Publication of JP3284753B2 publication Critical patent/JP3284753B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Landscapes

  • Length Measuring Devices By Optical Means (AREA)
  • Length Measuring Devices With Unspecified Measuring Means (AREA)

Description

【発明の詳細な説明】DETAILED DESCRIPTION OF THE INVENTION

【0001】[0001]

【産業上の利用分野】本発明は変位測定装置に関し、特
に原子間顕微鏡(Atomic Force Microscopy、以下AF
Mと略す)の測定用の探針の変位測定など、微小変位を
高分解能で測定する場合に適用して有用なものである。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a displacement measuring device, and more particularly to an atomic force microscope (hereinafter, referred to as AF).
This is useful when applied to a case where a small displacement is measured with high resolution, such as a displacement measurement of a probe for measurement of M).

【0002】[0002]

【従来の技術】従来技術に係る変位測定装置をAFMの
測定用探針の変位測定を例に説明する。図6に装置の構
成を示す。図中、1は光源、2はハーフミラー、3はガ
ラス製の平板、5は光検出器、8はAFMの測定用の探
針、9はAFMにより表面観察する試料である。このと
き、探針8はL字形で先端が尖らせてあり、試料9の表
面に対し垂直に接近し得る。
2. Description of the Related Art A conventional displacement measuring apparatus will be described with reference to an example of measuring displacement of a measuring probe of an AFM. FIG. 6 shows the configuration of the apparatus. In the figure, 1 is a light source, 2 is a half mirror, 3 is a flat plate made of glass, 5 is a photodetector, 8 is a probe for measuring AFM, and 9 is a sample for surface observation by AFM. At this time, the tip of the probe 8 is L-shaped and has a sharp tip, and can approach perpendicularly to the surface of the sample 9.

【0003】図7に示すように、AFMでは試料9を垂
直方向に移動すると、試料9の表面に原子の凹凸があり
探針8先端との原子の間隔が変化し原子間力が変化する
ので、探針8がたわみ、水平方向の変位が生じる。この
変位を測定することにより試料9の表面の原子配列が観
察できる。
As shown in FIG. 7, in the AFM, when the sample 9 is moved in the vertical direction, the surface of the sample 9 has irregularities of atoms, the distance between the atoms and the tip of the probe 8 changes, and the interatomic force changes. The probe 8 bends, causing a horizontal displacement. By measuring this displacement, the atomic arrangement on the surface of the sample 9 can be observed.

【0004】図6に示す変位測定装置を用いた探針8の
変位の測定方法を以下に説明する。平板3と探針8をコ
ヒーレント光を照射するレーザである光源1の光軸上に
設置し、光源1が照射する入射光を平板3と探針8の表
面で反射させ、2つの反射光をハーフミラー2を介して
光検出器5に入射させる。このとき、平板3は反対側の
面からの反射光を除去するため、無反射コートを施す
か、くさび形としている。
A method of measuring the displacement of the probe 8 using the displacement measuring device shown in FIG. 6 will be described below. The flat plate 3 and the probe 8 are set on the optical axis of the light source 1 which is a laser for irradiating coherent light, and the incident light radiated by the light source 1 is reflected by the surface of the flat plate 3 and the probe 8 to generate two reflected lights. The light enters the photodetector 5 via the half mirror 2. At this time, the flat plate 3 is provided with a non-reflection coating or has a wedge shape in order to remove reflected light from the opposite surface.

【0005】かくして2つの反射光は干渉し、平板3と
探針8の間隔に応じて光検出器5で検出される光強度が
図8に示すように光源1の半波長(1μm以下)を1周
期として変化する。すなわち、平板3と探針8とで光共
振器を構成する。
Thus, the two reflected lights interfere with each other, and the light intensity detected by the photodetector 5 in accordance with the distance between the flat plate 3 and the probe 8 has a half wavelength (1 μm or less) of the light source 1 as shown in FIG. It changes as one cycle. That is, the flat plate 3 and the probe 8 constitute an optical resonator.

【0006】したがって、はじめに変位に対する信号変
化を移動量の測定可能なステージなどにより校正してお
けば、校正値を内挿しオングストロームオーダの微小な
変位が測定できる。信号の勾配が最大の地点(図8中の
a点)の信号が得られるように、はじめに平板3と探針
8の間隔を設定しておけば、より高い分解能で変位測定
ができる。
Therefore, if the signal change with respect to the displacement is first calibrated by a stage or the like capable of measuring the amount of movement, a minute displacement on the order of Angstrom can be measured by interpolating the calibration value. If the distance between the flat plate 3 and the probe 8 is set first so that a signal at the point where the signal gradient is maximum (point a in FIG. 8) is obtained, the displacement can be measured with higher resolution.

【0007】図9に示すような光ファイバ6と光ファイ
バカプラ7を用いた構成により分解能0.1Åを得た報
告がある(文献:D.Rugar et al.,"Improved fiber-opt
ic interferometer for atomic force microscopy" App
l.Phys.Lett.,vol.55,No.25,p.2588,1989.) 。この構成
では図6に示す例における平板3の代わりに光ファイバ
6の端面を用いる。光ファイバであるので、狭い空間に
でも配置可能であり、また、上記の例と比較して光軸調
整が簡単になることが特長である。
[0007] There is a report that a resolution of 0.1 ° has been obtained by a configuration using an optical fiber 6 and an optical fiber coupler 7 as shown in FIG. 9 (Reference: D. Rugar et al., "Improved fiber-opt").
ic interferometer for atomic force microscopy "App
l.Phys. Lett., vol. 55, No. 25, p. 2588, 1989.). In this configuration, the end face of the optical fiber 6 is used instead of the flat plate 3 in the example shown in FIG. Since it is an optical fiber, it can be arranged in a narrow space, and the optical axis can be easily adjusted as compared with the above example.

【0008】なお、図9中、図6と同一部分には同一番
号を付し重複する説明は省略する。
In FIG. 9, the same parts as those of FIG. 6 are denoted by the same reference numerals, and duplicate description will be omitted.

【0009】[0009]

【発明が解決しようとする課題】しかしながら、上述の
如き従来の技術では分解能が低いという問題がある。す
なわち、分解能は変位に対する信号の勾配と雑音レベル
の比で決定されるのであるが、ガラス製の平板3の表面
の空気中、あるいは、真空中での反射率が約4%である
ので、図8に示すように、信号はほぼ正弦波に近く最大
の勾配が小さい。前述の文献を例とすると、光源1の波
長が830nm、光検出器5への入射光が3μWの場
合、最大約1nW/Åの勾配が得られる。これに対して
雑音は0.1nW分程度あり、0.1Åの分解能にとど
まっている。この分解能では物理現象の解明には不十分
であり、もう1けた下の分解能が望まれている。
However, the conventional technique as described above has a problem that the resolution is low. That is, the resolution is determined by the ratio of the signal gradient to the displacement and the noise level. The reflectance of the surface of the glass flat plate 3 in air or vacuum is about 4%. As shown in FIG. 8, the signal is almost a sine wave and the maximum gradient is small. Taking the above document as an example, when the wavelength of the light source 1 is 830 nm and the light incident on the photodetector 5 is 3 μW, a maximum gradient of about 1 nW / Å is obtained. On the other hand, the noise is about 0.1 nW and remains at a resolution of 0.1 °. This resolution is not sufficient for elucidation of physical phenomena, and a resolution one digit lower is desired.

【0010】本発明は、上記従来技術に鑑み、0.01
Å以下の分解能で変位を測定することが可能な変位測定
装置を提供することを目的とする。
The present invention has been made in consideration of the above prior art, and has a
を It is an object of the present invention to provide a displacement measuring device capable of measuring displacement with the following resolution.

【0011】[0011]

【課題を解決するための手段】上記目的を達成する本発
明の構成は、光を反射する滑らかな平面を有する被測定
物、及びこの被測定物に対向し、被測定物の前記平面と
平行な平面を有するとともに、光を透過する平板からな
る光共振器と、光共振器へ向けて入射光を照射する光源
と、光共振器からの反射光の光強度を検出する光検出器
と、入射光及び反射光の光路の途中に配設したハーフミ
ラーとを有して被測定物の微小変位を前記光共振器の共
振長の変化として測定する変位測定装置において、前記
平板の被測定物に対向する側の平面の反射率が、前記入
射光の波長又は前記光共振器の共振長を変化させた場合
の前記共振器からの反射光強度の、前記入射光が前記共
振器を1往復する際に進む位相での微分の最大値が最大
となるように選択して構成したことを特徴とする。
To achieve the above object, according to the present invention, there is provided an object to be measured having a smooth plane for reflecting light, and a plane facing the object to be measured and being parallel to the plane of the object to be measured. An optical resonator having a flat surface and a flat plate that transmits light, a light source that irradiates incident light toward the optical resonator, and a photodetector that detects the light intensity of reflected light from the optical resonator, In a displacement measuring apparatus having a half mirror disposed in the optical path of incident light and reflected light and measuring a minute displacement of the measured object as a change in the resonance length of the optical resonator, When the reflectance of the plane on the side opposite to the wavelength changes the wavelength of the incident light or the resonance length of the optical resonator, the intensity of the reflected light from the resonator, the incident light makes one round trip through the resonator. Select so that the maximum value of the derivative at the phase that advances when Characterized by being configured Te.

【0012】[0012]

【作用】上記構成の本発明では、平板の反射率を最適化
することにより、平板と、変位を測定すべき被測定物の
表面で高フィネスの光共振器が形成され、変位に対して
勾配の大きな信号が得られるので、高い分解能で変位測
定が可能となる。
According to the present invention having the above-described structure, by optimizing the reflectance of a flat plate, an optical resonator having a high finesse is formed on the flat plate and the surface of the object to be measured for displacement, and a gradient with respect to the displacement is obtained. , A displacement can be measured with high resolution.

【0013】[0013]

【実施例】以下、本発明の実施例を図面に基づき詳細に
説明する。
Embodiments of the present invention will be described below in detail with reference to the drawings.

【0014】図1(a)は本発明の実施例を概念的に示
す説明図、図1(b)はその光共振器の部分を抽出・拡
大して示す説明図である。
FIG. 1A is an explanatory view conceptually showing an embodiment of the present invention, and FIG. 1B is an explanatory view showing an extracted and enlarged portion of the optical resonator.

【0015】両図中、1は例えばレーザ等、コヒーレン
ト光を出射する光源、2はハーフミラー、3はガラス製
の平板、4は反射コート、5は光検出器、8は被測定物
であるAFMの測定用の探針、9はAFMにより表面観
察する試料である。
In both figures, 1 is a light source for emitting coherent light such as a laser, 2 is a half mirror, 3 is a flat plate made of glass, 4 is a reflection coat, 5 is a photodetector, 8 is an object to be measured. An AFM measurement probe 9 is a sample whose surface is observed by the AFM.

【0016】このとき、反射コート4は、光源1から照
射する入射光の反射面である探針8の平面と相対向する
よう平板4に形成した透明な薄膜であり、この反射コー
ト4と探針8の前記平面とで光共振器を構成している。
かくして、前述の従来技術と同様の原理に基づき、光検
出器5で反射光の光強度を検出することにより探針8の
微小変位を検出するように構成してある。
At this time, the reflection coat 4 is a transparent thin film formed on the flat plate 4 so as to face the plane of the probe 8 which is the reflection surface of the incident light emitted from the light source 1. The plane of the needle 8 constitutes an optical resonator.
Thus, based on the same principle as that of the above-described prior art, the light detector 5 detects the light intensity of the reflected light to detect the minute displacement of the probe 8.

【0017】しかも、このとき平板3の反射面である反
射コート4の反射率R1 は、探針8の前記平面の反射率
2 との間で次式(1)を満足するように構成してあ
る。
Further, at this time, the reflectivity R 1 of the reflection coat 4 which is the reflection surface of the flat plate 3 is configured to satisfy the following expression (1) with respect to the reflectivity R 2 of the flat surface of the probe 8. I have.

【数2】 ここで、反射率R1 の算出方法を説明する。(Equation 2) Here, a method of calculating the reflectivity R 1.

【0018】図1(b)に示すように、平板3と探針8
の表面で光源1の出射光である入射光が多重反射するの
で、光検出器5に入射する反射光の複素振幅Eは式
(2)であらわされ、検出される光強度Iは式(3)で
あらわされる。ここで、λは光源1の発振波長、dは平
板3と探針8の間隔である。
As shown in FIG. 1B, the flat plate 3 and the probe 8
The complex light E of the reflected light incident on the photodetector 5 is expressed by the equation (2), and the detected light intensity I is expressed by the equation (3). ). Here, λ is the oscillation wavelength of the light source 1, and d is the distance between the flat plate 3 and the probe 8.

【0019】この結果位相差δは式(4)であらわされ
る。
As a result, the phase difference δ is expressed by equation (4).

【0020】また、rを反射係数、tを透過係数、反射
率をRとすると式(5)の関係がある。なお、添字1,
2は平板3と探針8の表面を示し、平板3の平面への入
射光の複素振幅を1とした。
Further, if r is a reflection coefficient, t is a transmission coefficient, and R is a reflectance, there is a relationship of equation (5). The subscripts 1,
Reference numeral 2 denotes the surfaces of the flat plate 3 and the probe 8, and the complex amplitude of light incident on the flat plate 3 is set to 1.

【数3】 (Equation 3)

【0021】図2に式(3)の関係を図示する。同図は
反射率60%の探針8(R2 =0.6)を用い、反射コ
ート4の反射率をR1 =0.04、0.8、0.9とし
た場合である。なお、R1 =0.04はガラスと空気と
の反射率で従来例の信号を示す。
FIG. 2 illustrates the relationship of equation (3). The figure shows the case where the probe 8 having a reflectance of 60% (R 2 = 0.6) is used, and the reflectance of the reflection coat 4 is R 1 = 0.04, 0.8, 0.9. Note that R 1 = 0.04 is the reflectance of glass and air, which is a signal of a conventional example.

【0022】図2を参照すればR1 =0.8とすると信
号の勾配がR1 =0.04の場合よりもかなり大きく、
また、R1 =0.9と比較しても大きいので平面の反射
率に最適値が存在することが直観的にわかる。
Referring to FIG. 2, when R 1 = 0.8, the signal gradient is much larger than when R 1 = 0.04,
In addition, since it is larger than R 1 = 0.9, it is intuitively understood that there is an optimum value for the reflectivity of the plane.

【0023】式(2)を位相δで微分することにより信
号の勾配は式(6)であらわされる。式(6)をさらに
位相δで微分し式(7)が得られるが、式(6)、つま
り勾配が最大となる位相で式(7)は0となる。
By differentiating the equation (2) with the phase δ, the signal gradient is expressed by the equation (6). The equation (6) is further differentiated by the phase δ to obtain the equation (7). However, the equation (6), that is, the equation (7) becomes 0 at the phase at which the gradient becomes maximum.

【0024】そこで、式(7)を0とおいて該当の位相
δ0 を求めると式(8)となる。式(8)を式(6)に
代入し、勾配の最大値は式(9)となる。
Then, when equation (7) is set to 0 and the corresponding phase δ 0 is obtained, equation (8) is obtained. The equation (8) is substituted into the equation (6), and the maximum value of the gradient becomes the equation (9).

【数4】 (Equation 4)

【0025】図3にR2 =0.6の場合について式
(9)を図示する。同図を参照すれば勾配は反射率R1
=0.78付近で最大値を示し、R1 =0.04の場合
に対して約10倍の勾配であることがわかる。
FIG. 3 shows equation (9) for the case where R 2 = 0.6. Referring to the figure, the gradient is the reflectance R 1
It can be seen that the maximum value is shown near = 0.78, and that the gradient is about 10 times that of the case of R 1 = 0.04.

【0026】式(9)をR1 で微分し式(10)が得ら
れるが、式(10)は式(9)が最大となるR1 で0と
なるので、式(10)を0とおいて得られる式(1)を
解くことにより最適な反射率R1 が算出できる。
Equation (9) is differentiated by R 1 to obtain equation (10). Since equation (10) becomes 0 at R 1 at which equation (9) is maximized, equation (10) is set to 0. optimum reflectivity R 1 by solving the stomach resulting formula (1) can be calculated.

【数5】 (Equation 5)

【0027】なお、式(1)〜式(10)で使用したa
〜d,f〜h,k,lは式(1)の但書の式であらわさ
れる。
Note that a used in equations (1) to (10)
~ D, f ~ h, k, l are represented by the proviso of formula (1).

【0028】式(1)の解は解析的にも求められるが、
式が複雑なため困難であり、数値的に算出した。その結
果を図4に示す。これが探針8の反射率R2 に対する最
適な反射コート4平面の反射率R1 である。
Although the solution of equation (1) can be obtained analytically,
It was difficult due to the complexity of the formula, and was calculated numerically. FIG. 4 shows the results. This is the optimum reflectivity R 1 of the reflection coat 4 plane with respect to the reflectivity R 2 of the probe 8.

【0029】なお、これらの式および図ではR1 とR2
を置き換えても成立するので、反射コート4の反射率R
1 が0.04の場合、勾配の大きな信号を得るには、探
針8の反射率を35%程度に下げることがよいことにな
る。ただし、得られる信号の勾配は若干の向上にとどま
る。
In these equations and figures, R 1 and R 2
Is satisfied, the reflectance R of the reflective coat 4 is satisfied.
When 1 is 0.04, it is better to lower the reflectivity of the probe 8 to about 35% in order to obtain a signal having a large gradient. However, the gradient of the obtained signal is only slightly improved.

【0030】上述の手順に従い、反射率約60%のタン
グステンの探針8に対して最適反射率を約78%と決定
し、図5(a)に示す構成、すなわち図1の平板3の代
わりに光ファイバ6の端面を用い、特にこの部分を拡大
した図5(b)に明瞭に示すように、光ファイバ6の端
面に反射コート4を形成した構成において、波長0.6
3μmのレーザ光を用い、光ファイバ6の端面に80%
の反射コート4を施して用いた。その結果、図2のR1
=0.7の場合に示すような最大勾配が約10nW/Å
で従来例の約10倍の信号が得られ、雑音レベルは従来
例と同様に0.1nWであったので、0.01Åの高い
分解能を得ることができた。
According to the above-described procedure, the optimum reflectivity is determined to be about 78% for the tungsten probe 8 having the reflectivity of about 60%, and the structure shown in FIG. 5B in which the end face of the optical fiber 6 is used, and in which the reflection coat 4 is formed on the end face of the optical fiber 6, as clearly shown in FIG.
Using a laser beam of 3 μm, 80%
The reflective coat 4 was used. As a result, R 1 in FIG.
= 0.7 nW / Å as shown in the case of = 0.7
As a result, a signal approximately 10 times that of the conventional example was obtained, and the noise level was 0.1 nW, as in the conventional example. Therefore, a high resolution of 0.01 ° could be obtained.

【0031】なお、さらに探針8の反射率R1 、およ
び、これに合わせて平板3の反射率を上げることにより
さらに分解能を高められると考えられる。また、上記実
施例では平板3をガラス基板に反射コート4を施したも
のを用いたが、勿論これに限定するものではない。
It is considered that the resolution can be further enhanced by further increasing the reflectance R 1 of the probe 8 and the reflectance of the flat plate 3 in accordance with the reflectance R 1 . In the above embodiment, the flat plate 3 is formed by applying the reflection coat 4 to the glass substrate. However, the present invention is not limited to this.

【0032】[0032]

【発明の効果】以上説明したように、本発明によれば、
平板の反射率を最適化することにより、平板と、変位を
測定すべき被測定物の平面で高フィネスの光共振器が形
成され、変位に対して勾配の大きな信号が得られるの
で、高い分解能で変位測定が可能となる。
As described above, according to the present invention,
By optimizing the reflectivity of the flat plate, a high finesse optical resonator is formed between the flat plate and the plane of the object to be measured for displacement, and a signal having a large gradient with respect to the displacement can be obtained. Enables displacement measurement.

【図面の簡単な説明】[Brief description of the drawings]

【図1】本発明の実施例を示す説明図及びその光共振器
を抽出・拡大して示す説明図。
FIG. 1 is an explanatory view showing an embodiment of the present invention and an explanatory view showing an optical resonator extracted and enlarged.

【図2】光強度と位相差との関係を示す特性図。FIG. 2 is a characteristic diagram showing a relationship between light intensity and phase difference.

【図3】光強度の勾配と平板の反射率R1 との関係を示
す特性図。
[Figure 3] characteristic diagram showing the relationship between the reflectance R 1 of the gradient of the light intensity and the flat plate.

【図4】平板の最適反射率と被測定物の反射率R2 との
関係を示す特性図。
FIG. 4 is a characteristic diagram showing a relationship between an optimal reflectance of a flat plate and a reflectance R 2 of an object to be measured.

【図5】本発明の他の実施例を示す説明図及びその光フ
ァイバの端面を抽出・拡大して示す斜視図。
FIG. 5 is an explanatory view showing another embodiment of the present invention and a perspective view showing an end face of the optical fiber extracted and enlarged.

【図6】従来技術に係る装置を概念的に示す説明図。FIG. 6 is an explanatory view conceptually showing an apparatus according to a conventional technique.

【図7】探針と試料表面との間の原子間力の作用の態様
を示す説明図。
FIG. 7 is an explanatory diagram showing a mode of action of an atomic force between a probe and a sample surface.

【図8】原子間顕微鏡の測定原理の基礎となる光強度と
位相差との関係を示す特性図。
FIG. 8 is a characteristic diagram showing the relationship between light intensity and phase difference, which is the basis of the measurement principle of the atomic microscope.

【図9】従来技術に係る他の装置を概念的に示す説明
図。
FIG. 9 is an explanatory view conceptually showing another apparatus according to the related art.

【符号の説明】[Explanation of symbols]

1 光源 2 ハーフミラー 3 平板 4 反射コート 5 光検出器 8 探針 DESCRIPTION OF SYMBOLS 1 Light source 2 Half mirror 3 Flat plate 4 Reflection coat 5 Photodetector 8 Probe

───────────────────────────────────────────────────── フロントページの続き (58)調査した分野(Int.Cl.7,DB名) G01B 9/00 - 11/00 102 G01B 21/00 - 21/32 G01N 13/10 - 13/24 H01J 37/28 ──────────────────────────────────────────────────続 き Continued on the front page (58) Field surveyed (Int. Cl. 7 , DB name) G01B 9/00-11/00 102 G01B 21/00-21/32 G01N 13/10-13/24 H01J 37 / 28

Claims (3)

(57)【特許請求の範囲】(57) [Claims] 【請求項1】 光を反射する滑らかな平面を有する被測
定物、及びこの被測定物に対向し、被測定物の前記平面
と平行な平面を有するとともに、光を透過する平板から
なる光共振器と、 光共振器へ向けて入射光を照射する光源と、 光共振器からの反射光の光強度を検出する光検出器と、 入射光及び反射光の光路の途中に配設したハーフミラー
とを有して被測定物の微小変位を前記光共振器の共振長
の変化として測定する変位測定装置において、 前記平板の被測定物に対向する側の平面の反射率が、前
記入射光の波長又は前記光共振器の共振長を変化させた
場合の前記共振器からの反射光強度の、前記入射光が前
記共振器を1往復する際に進む位相での微分の最大値が
最大となるように選択して構成したことを特徴とする変
位測定装置。
1. An object having an object to be measured having a smooth plane for reflecting light, and an optical resonator comprising a flat plate facing the object to be measured, having a plane parallel to the plane of the object to be measured, and transmitting light. , A light source for irradiating incident light toward the optical resonator, a photodetector for detecting the light intensity of the reflected light from the optical resonator, and a half mirror disposed in the optical path of the incident light and the reflected light In the displacement measuring apparatus having a small displacement of an object to be measured as a change in the resonance length of the optical resonator, the reflectance of a plane of the flat plate facing the object to be measured has a reflectance of the incident light. When the wavelength or the resonance length of the optical resonator is changed, the maximum value of the derivative of the intensity of the reflected light from the resonator with the phase that the incident light travels when making one round trip of the resonator becomes maximum. A displacement measuring device characterized by being selected as described above.
【請求項2】 前記光を透過する平板は、ガラス基板
と、このガラス基板に形成した薄膜であって前記共振器
の反射面となる反射コートとで構成したことを特徴とす
る[請求項1]に記載する変位測定装置。
2. The light-transmitting flat plate comprises a glass substrate and a reflection coat which is a thin film formed on the glass substrate and serves as a reflection surface of the resonator. ] The displacement measuring device described in [1].
【請求項3】 前記平板の反射面の反射率R1 と、被測
定物の入射光の反射面である前記平面の反射率R2 とが
次式(1)の関係を満足するように構成したことを特徴
とする[請求項1]又は[請求項2]に記載する変位測
定装置。 【数1】
3. A configuration in which the reflectance R 1 of the reflecting surface of the flat plate and the reflectance R 2 of the flat surface, which is the reflecting surface of the incident light of the object to be measured, satisfy the following expression (1). A displacement measuring device according to claim 1 or claim 2. (Equation 1)
JP11675194A 1994-05-30 1994-05-30 Displacement measuring device Expired - Fee Related JP3284753B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP11675194A JP3284753B2 (en) 1994-05-30 1994-05-30 Displacement measuring device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP11675194A JP3284753B2 (en) 1994-05-30 1994-05-30 Displacement measuring device

Publications (2)

Publication Number Publication Date
JPH07325089A JPH07325089A (en) 1995-12-12
JP3284753B2 true JP3284753B2 (en) 2002-05-20

Family

ID=14694865

Family Applications (1)

Application Number Title Priority Date Filing Date
JP11675194A Expired - Fee Related JP3284753B2 (en) 1994-05-30 1994-05-30 Displacement measuring device

Country Status (1)

Country Link
JP (1) JP3284753B2 (en)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
ATE549597T1 (en) * 2007-10-04 2012-03-15 Attocube Systems Ag DEVICE FOR POSITION DETECTION

Also Published As

Publication number Publication date
JPH07325089A (en) 1995-12-12

Similar Documents

Publication Publication Date Title
US6643025B2 (en) Microinterferometer for distance measurements
EP0398085B1 (en) High sensitivity position-sensing method
US5394741A (en) Atomic probe microscope
WO2002079720A1 (en) Microinterferometer for distance measurements
US20070229853A1 (en) Nanometer contact detection method and apparatus for precision machining
JP2008051555A (en) Optical displacement detection mechanism, and probe microscope using the same
JPH05503586A (en) Microscopy and near field reflection microscopy
JP3047030B2 (en) Scanning near-field atomic force microscope
JP3284753B2 (en) Displacement measuring device
JP3290356B2 (en) Equipment suitable for performing near-field measurements on workpieces
Campillo et al. Mapping the optical intensity distribution in photonic crystals using a near-field scanning optical microscope
US20030046024A1 (en) Apparatus and method for volumetric dilatometry
US7116429B1 (en) Determining thickness of slabs of materials by inventors
US5646731A (en) Interferometric detecting/imaging method based on multi-pole sensing
JPH0712826A (en) Interferometer, optical scanning tunnel microscope, and optical probe
Bruyant et al. Local complex reflectivity in optical waveguides
JP2941911B2 (en) Reflection type optical scanning tunneling microscope
JPH0954101A (en) Scanning near field optical microscope
Yamashita et al. Measuring longitudinal displacements using laser beam diffraction changes near the focal point
JP2005106706A (en) Instrument and method for measuring refractive index and thickness
Xiao et al. Interference in far-field radiation of two contra-propagating surface plasmon polaritons in the Kretchmann configuration
JP3933881B2 (en) Measuring method using laser beam propagating in solid
Sun et al. Phase-resolved all-fiber reflection-based s-NSOM for on-chip characterization
JP3450460B2 (en) Scanning probe microscope
JPH1194859A (en) Scanning near-field optical microscope utilizing optical resonator

Legal Events

Date Code Title Description
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20020212

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090308

Year of fee payment: 7

LAPS Cancellation because of no payment of annual fees