JP3283941B2 - Mold bushing - Google Patents

Mold bushing

Info

Publication number
JP3283941B2
JP3283941B2 JP01209193A JP1209193A JP3283941B2 JP 3283941 B2 JP3283941 B2 JP 3283941B2 JP 01209193 A JP01209193 A JP 01209193A JP 1209193 A JP1209193 A JP 1209193A JP 3283941 B2 JP3283941 B2 JP 3283941B2
Authority
JP
Japan
Prior art keywords
electric field
field strength
insulating layer
center conductor
angle
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
JP01209193A
Other languages
Japanese (ja)
Other versions
JPH06225413A (en
Inventor
哲雄 吉田
勝 宮川
信男 正木
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Toshiba Corp
Original Assignee
Toshiba Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Toshiba Corp filed Critical Toshiba Corp
Priority to JP01209193A priority Critical patent/JP3283941B2/en
Publication of JPH06225413A publication Critical patent/JPH06225413A/en
Application granted granted Critical
Publication of JP3283941B2 publication Critical patent/JP3283941B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Description

【発明の詳細な説明】DETAILED DESCRIPTION OF THE INVENTION

【0001】[0001]

【産業上の利用分野】本発明は、例えばスイッチギヤに
用いられる電気機器の主回路導体の口出し部に関係す
る。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a lead portion of a main circuit conductor of an electric device used for, for example, a switchgear.

【0002】[0002]

【従来の技術】受配電設備であるスイッチギヤの一例と
して、ガス絶縁開閉装置の構成図を図6に示す。同図に
おいて、外周を金属で気密に囲まれた箱体1の内部は、
図示左方の前面寄りに縦に設けられた隔壁2で前方の遮
断器室1aと後方の母線室1bに仕切られ、各室1a,
1bには例えば六フッ化硫黄ガス(以下、絶縁ガスとい
う)が封入されている。
2. Description of the Related Art FIG. 6 shows a configuration diagram of a gas insulated switchgear as an example of a switchgear as a power receiving and distributing facility. In the figure, the inside of a box 1 whose outer periphery is hermetically surrounded by metal is
A breaker room 1a at the front and a busbar room 1b at the rear are partitioned by a partition wall 2 provided vertically near the left front side in the figure.
1b is filled with, for example, sulfur hexafluoride gas (hereinafter referred to as insulating gas).

【0003】このうち、遮断器室1aの内部には遮断器
3が収納され、隔壁2には図示していない貫通穴に絶縁
スペ―サ9が取付けられ、この前側には遮断器3が連結
されている。
The circuit breaker 3 is accommodated in the circuit breaker room 1a, and an insulating spacer 9 is mounted in a through hole (not shown) in the partition 2 and the circuit breaker 3 is connected to the front side. Have been.

【0004】また母線室1bの天井部には、前側の端子
部が接続導体8を介して上側の絶縁スペ―サ9の後部に
接続された断路器4Aが取付けられ、この断路器4Aの
後部の端子部は、接続導体8を介して後方の碍子6に取
付けられた母線5に接続されている。この母線5により
隣接盤への接続が行われる。
A disconnector 4A whose front terminal is connected to the rear of an upper insulating spacer 9 via a connecting conductor 8 is attached to the ceiling of the busbar room 1b. Are connected to the bus bar 5 attached to the rear insulator 6 via the connection conductor 8. The bus 5 connects to an adjacent board.

【0005】一方、母線室1bの底部には、前側の端子
部が接続導体8を介して下側の絶縁スペ―サ9の後部に
接続された断路器4Aと略同形の断路器4Bが取付けら
れ、この断路器4Bの後部の端子部は、接続導体8を介
して底部の後方に取付けられたケ―ブルヘッド7の上部
端子へ接続されている。
On the other hand, a disconnector 4B having substantially the same shape as the disconnector 4A whose front terminal is connected to the rear of the lower insulating spacer 9 via a connecting conductor 8 is attached to the bottom of the busbar chamber 1b. The terminal at the rear of the disconnector 4B is connected via a connecting conductor 8 to the upper terminal of a cable head 7 attached to the rear of the bottom.

【0006】さらに、図7に図6の絶縁スペ―サ9の横
断面図を示す。同図において、中心導体10を例えばエポ
キシ樹脂より成る絶縁材料で一体で注形した絶縁層11の
略中央部は、隔壁2に取付けられたフランジ12に固定さ
れている。また、フランジ12先端部の電界緩和のため、
絶縁層11側とは略U字形を横配置したU字溝11aがフラ
ンジ12と対向して設けられ、さらに導電塗料等より成る
接地層13が施こされている。なお、中心導体10と周囲の
絶縁ガスと接する絶縁層端部11bは、例えば実開昭64-3
8717に示されているように、絶縁層11bの角度θが約90
度になっている。これは、略中央部の絶縁層11の絶縁厚
さと中心導体10導出部付近の絶縁厚さを略同様として絶
縁層11の貫通方向の絶縁耐力を均一にすると共に、沿面
絶縁距離を伸ばすためである。
FIG. 7 is a cross-sectional view of the insulating spacer 9 shown in FIG. In the figure, a substantially central portion of an insulating layer 11 in which a center conductor 10 is integrally cast with an insulating material made of, for example, epoxy resin is fixed to a flange 12 attached to the partition wall 2. Also, to alleviate the electric field at the tip of the flange 12,
On the insulating layer 11 side, a U-shaped groove 11a having a substantially U-shape is disposed so as to face the flange 12, and a ground layer 13 made of a conductive paint or the like is provided. The end portion 11b of the insulating layer in contact with the center conductor 10 and the surrounding insulating gas is, for example,
8717, the angle θ of the insulating layer 11b is about 90 degrees.
It has become a degree. This is because the insulation thickness of the insulation layer 11 in the substantially central portion and the insulation thickness in the vicinity of the lead-out portion of the center conductor 10 are substantially the same so that the dielectric strength in the penetration direction of the insulation layer 11 is uniform and the creepage insulation distance is increased. is there.

【0007】一方、絶縁層11の比誘電率は、エポキシ樹
脂の場合においては約5であり、また周囲の絶縁ガスの
比誘電率は約1である。つまり、絶縁層の沿面では、比
誘電率が異なることになる。
On the other hand, the relative dielectric constant of the insulating layer 11 is about 5 in the case of epoxy resin, and the relative dielectric constant of the surrounding insulating gas is about 1. That is, the relative dielectric constant differs along the surface of the insulating layer.

【0008】[0008]

【発明が解決しようとする課題】このように2つ以上の
絶縁媒体が異なる比誘電率であると、この境界の等電位
線が屈折し、電界強度が乱れることになる。つまり、絶
縁層11の沿面では電界強度が乱れることになる。この成
分をみると、絶縁層11の角度θが約90度であるため、中
心導体10近傍の沿面では殆んどが接線方向となり、法線
方向は小さい。
When the two or more insulating media have different relative dielectric constants as described above, the equipotential lines at the boundary are refracted, and the electric field intensity is disturbed. That is, the electric field strength is disturbed on the surface of the insulating layer 11. Looking at this component, since the angle θ of the insulating layer 11 is about 90 degrees, almost the tangential direction is along the surface near the center conductor 10, and the normal direction is small.

【0009】一般に破壊電圧は電界強度に大きく左右さ
れ、その成分として法線方向が破壊電界になり、接線方
向は沿面を進展する維持電界となる。このため、破壊電
界が小さく破壊電圧が上昇することが考えられるが、接
線方向の電界強度が大きいと沿面のストリ―マが容易に
伸び易い。さらに、沿面にはゴミ等が付着しやすいので
ストリ―マは更に伸び易くなり、そのため沿面の電界強
度を更に乱して結果的に破壊電圧を下げることになる。
In general, the breakdown voltage largely depends on the electric field strength. The components of the breakdown voltage are the breakdown electric field in the normal direction and the sustaining electric field in the tangential direction along the creeping surface. For this reason, the breakdown electric field may be small and the breakdown voltage may increase. However, if the electric field strength in the tangential direction is large, the streamer on the creeping surface is easily extended. Further, since dust and the like easily adhere to the creeping surface, the streamer is further easily stretched, so that the electric field intensity on the creeping surface is further disturbed, and as a result, the breakdown voltage is reduced.

【0010】なお、絶縁層11の沿面が充分に長い場合に
は電界強度の絶対値が許容値に対し低いため、接線方向
の成分が多くても破壊電圧を下げることがない。しか
し、沿面距離を短くして小形化を図る場合には、沿面の
電界強度は許容値を超えることはないが近づくことにな
る。従って、沿面には容易にゴミ等が付着し、完全に清
浄な表面状態を保つことができないので、接線方向の電
界強度が大きいと沿面のストリ―マが伸び易くなり、破
壊電圧を低下させることになる。このため、沿面距離を
比較的大きくすることにより、沿面の進展電界強度を許
容値に対してある一定の割合以上に抑制しているので、
縮小化は困難であった。この様に、一つの収納機器の絶
縁距離が大形化すると他の収納機器にも波及し、結果的
に装置の全体形状が大形化してしまう。本発明の目的
は、破壊電圧を向上させた電気機器の主回路導体口出し
部を提供することにある。
When the surface of the insulating layer 11 is sufficiently long, the absolute value of the electric field strength is lower than the allowable value, so that the breakdown voltage does not decrease even if the component in the tangential direction is large. However, when the creepage distance is reduced and the size is reduced, the creepage electric field strength does not exceed the allowable value but approaches. Therefore, dust and dirt easily adhere to the creepage surface, and it is not possible to maintain a completely clean surface condition.If the electric field strength in the tangential direction is large, the streamer on the creepage surface is easily elongated, and the breakdown voltage is reduced. become. For this reason, by making the creepage distance relatively large, the developed electric field strength of the creepage is suppressed to a certain ratio or more with respect to the allowable value,
Miniaturization was difficult. In this way, if the insulation distance of one storage device is increased, it spreads to other storage devices, and as a result, the overall shape of the device is increased. SUMMARY OF THE INVENTION It is an object of the present invention to provide a main circuit conductor lead portion of an electric device with improved breakdown voltage.

【0011】[0011]

【課題を解決するための手段】上記目的を達成するため
本発明は、中心導体を絶縁物で注形し、中心導体と接
する絶縁層端部と中心導体の軸とのなす角度を50度以
下とし、中心導体が導出される絶縁層端部の沿面におけ
法線方向の電界強度と接線方向の電界強度とが平衡す
るようにしたことを要旨とする。
In order to achieve the above object, the present invention provides a method of casting a center conductor with an insulator and connecting the center conductor to the center conductor.
Angle between the end of the insulating layer and the axis of the center conductor
Below, and along the edge of the insulating layer where the center conductor is led out.
The point is that the electric field strength in the normal direction and the electric field strength in the tangential direction are balanced.

【0012】[0012]

【作用】これらの構成において、中心導体と接する絶縁
層端部と中心導体の軸とのなす角度を50度以下とし、
中心導体が導出される絶縁層端部の沿面における法線方
向の電界強度と接線方向の電界強度とが平衡するように
したので、破壊電圧を向上させることができる。
In these configurations, the insulation in contact with the center conductor is provided.
The angle between the end of the layer and the axis of the central conductor is set to 50 degrees or less,
Since the electric field strength in the normal direction and the electric field strength in the tangential direction on the surface along the end of the insulating layer from which the center conductor is led out are balanced, the breakdown voltage can be improved.

【0013】すなわち、中心導体に対し絶縁層の角度が
90度であれば、等電位線がほぼ直角に交差するので絶縁
層沿面では接線方向の成分が大きくなる。逆に絶縁層の
角度がほぼ0度であれば、法線方向の成分が大きくな
る。この角度を全角において電界強度の成分をみると、
ある角度において互いの成分が交わる点が生じる。この
点においては、電界強度の絶対値が抑えられると共に、
互いの成分が最小値になる点であり、破壊電圧の向上が
図れる。
That is, the angle of the insulating layer with respect to the center conductor is
If it is 90 degrees, equipotential lines intersect at substantially right angles, so that the tangential component becomes large on the surface of the insulating layer. Conversely, if the angle of the insulating layer is almost 0 degrees, the component in the normal direction becomes large. Looking at the component of the electric field strength at this angle at all angles,
At a certain angle, a point where the components intersect occurs. In this regard, while the absolute value of the electric field strength is suppressed,
This is the point where the mutual components are at the minimum value, and the breakdown voltage can be improved.

【0014】[0014]

【実施例】以下、本発明の一実施例を図面を用いて説明
する。
An embodiment of the present invention will be described below with reference to the drawings.

【0015】図1は、図6における絶縁スペ―サ9の横
断面図である。中心導体10の周囲にはエポキシ樹脂等よ
り成る絶縁材料が注形された絶縁層14が形成され、絶縁
層14の略中央部はフランジ12に固定されている。また、
接地側の絶縁層14にはU字溝14aがフランジ12に対向し
て設けられ、U字溝14aには導電塗料より成る接地層13
が施こされ接地側の電界緩和がされていることは従来と
同様である。ここで、中心導体10と接する絶縁層端部14
bの角度θは50度以下としている。なお、絶縁層14の比
誘電率は約5であり、周囲の絶縁ガスは比誘電率1であ
る。
FIG. 1 is a cross-sectional view of the insulating spacer 9 in FIG. An insulating layer 14 in which an insulating material such as an epoxy resin is cast is formed around the center conductor 10, and a substantially central portion of the insulating layer 14 is fixed to the flange 12. Also,
A U-shaped groove 14a is provided in the ground-side insulating layer 14 so as to face the flange 12, and the U-shaped groove 14a is provided in the ground layer 13 made of conductive paint.
Is applied to alleviate the electric field on the ground side as in the prior art. Here, the insulating layer end 14 in contact with the center conductor 10
The angle θ of b is 50 degrees or less. The relative permittivity of the insulating layer 14 is about 5, and the surrounding insulating gas has a relative permittivity of 1.

【0016】このような構成における絶縁層14の沿面の
電界強度分布を図2,図3に示す。図2は絶縁層14の角
度を変化させたときの電界強度の特性図であり、図3は
電界強度の成分を説明するための電界強度のベクトル図
である。図3では、電界強度の絶対値EO に対し、法線
方向の電界強度をEH ,接線方向の電界強度をES とし
ている。また、θは中心導体10と接する絶縁層14の角度
である。
FIGS. 2 and 3 show the electric field intensity distribution along the surface of the insulating layer 14 in such a configuration. FIG. 2 is a characteristic diagram of the electric field intensity when the angle of the insulating layer 14 is changed, and FIG. 3 is a vector diagram of the electric field intensity for explaining the components of the electric field intensity. In FIG. 3, the electric field strength in the normal direction is E H and the electric field strength in the tangential direction is E S with respect to the absolute value E O of the electric field strength. Θ is the angle of the insulating layer 14 in contact with the center conductor 10.

【0017】これらの図において、絶縁層14の角度によ
り電界強度が変化することがわかる。すなわち、角度θ
が大きくなると絶対値EO が略50度以上より急激に上昇
し、これに伴いES も同様に上昇する。逆に、EH は角
度θが大きくなると小さくなり、ES とEH は角度θが
50度で交差する。また、θが50度以上ではES >EH
なり、θ=50度以下ではES <EH となる。
In these figures, it can be seen that the electric field intensity changes depending on the angle of the insulating layer 14. That is, the angle θ
Increases, the absolute value E O rises more rapidly than approximately 50 degrees or more, and E S also rises accordingly. Conversely, E H decreases as angle θ increases, and E S and E H
Cross at 50 degrees. Further, theta is the E S <E H in E S> E H next, theta = 50 degrees is 50 degrees or more.

【0018】これにより、沿面の放電進展電界であるE
S を抑えるには、角度θを50度以下にする必要があり、
この場合、破壊電圧はEH で左右されることになる。こ
のため、沿面が若干のゴミや凸凹による表面状態でもス
トリ―マが伸展することを防げ、沿面の電界強度を乱す
ことがなくなる。そして、破壊電圧は、EH で左右さ
れ、電界強度と破壊電圧を一致させることができる。こ
こで、逆に角度θを50度以上にすると、EH は下がって
見かけ上破壊電圧が上昇するように思われるが、沿面で
は放電が進展して電界強度を乱し、結果的に破壊電圧が
低下することになる。
As a result, the discharge developing electric field on the surface, E,
To suppress S , the angle θ needs to be 50 degrees or less,
In this case, the breakdown voltage depends on E H. For this reason, even if the creeping surface is slightly dusty or uneven, the streamer is prevented from extending, and the electric field strength on the creeping surface is not disturbed. The breakdown voltage depends on E H , and the electric field strength and the breakdown voltage can be matched. Here, conversely, when the angle θ is set to 50 degrees or more, the E H seems to decrease and the breakdown voltage seems to increase, but on the surface, the discharge develops and the electric field intensity is disturbed, and as a result, the breakdown voltage increases. Will decrease.

【0019】これらのことより、角度θ=50度以下にお
いては沿面の放電の進展が防げるので、許容電界強度付
近まで電界強度を上昇させることができる。つまり、絶
縁耐力を良好に維持できるので、沿面の絶縁距離を短く
でき、絶縁スペ―サ9の小形化が図れる。なお、中心導
体10の直径と接地層13の外径および電界緩和のU字溝14
bの最適形状を求めれば、沿面の電界強度を中心導体10
から接地層13まで略同等値にできて大幅な縮小化が図れ
るが、一般的には、中心導体10の電界強度が接地層13よ
り高くなるので、高電圧側の電界強度の成分の平衡を図
れば効果的な縮小化が図れる。
From these, when the angle θ is equal to or less than 50 degrees, the development of the discharge on the creeping surface can be prevented, so that the electric field strength can be increased to near the allowable electric field strength. In other words, since the dielectric strength can be maintained satisfactorily, the insulation distance on the creeping surface can be shortened, and the size of the insulating spacer 9 can be reduced. Note that the diameter of the center conductor 10, the outer diameter of the ground layer 13, and the U-shaped
If the optimum shape of b is found, the surface electric field strength
From the ground layer 13 to the ground layer 13 to achieve a significant reduction in size.However, in general, the electric field strength of the center conductor 10 becomes higher than that of the ground layer 13, so that the component of the electric field strength on the high voltage side is balanced. An effective reduction can be achieved if this is achieved.

【0020】次に、接地側に二次巻線を装着した貫通形
ブッシングを図4に示すが、中心導体15と二次巻線16を
一体で注形する絶縁層17において、中心導体15が導出す
る絶縁層17aの角度を50度以下にすることにより、沿面
の電界強度の成分を法線方向と接線方向を平衡させるこ
とができる。なお、18は接触子であり、また、19は他の
機器へ接続する接続導体である。このようなブッシング
においては、埋込み金属が大きいので絶縁層17はゴム状
等のやわらかい材料を用いることがある。この場合、比
誘電率は例えばシリコーンゴムで2〜3であるが、絶縁
層17と周囲の絶縁媒体の比誘電率が異なっているので、
沿面では等電位線が屈折して電界強度が乱れる。このよ
うな低い方の比誘電率の沿面では、電界強度の成分の平
衡を図ることにより、沿面の放電進展を防ぐことができ
る。また、接地側に二次巻線16があり、中心導体15との
電界強度分布が一般のモールドブッシングと異なる場合
においても、沿面のうちの電界強度の高い高電圧側の電
界強度を抑制して成分を平衡させれば、絶縁耐力の向上
が図れる。
Next, FIG. 4 shows a through-type bushing in which a secondary winding is mounted on the ground side. In the insulating layer 17 in which the center conductor 15 and the secondary winding 16 are integrally cast, the center conductor 15 is Derive
By setting the angle of the insulating layer 17a to 50 degrees or less,
The component of the electric field strength is balanced between the normal direction and the tangential direction.
Can be . Reference numeral 18 denotes a contact, and 19 denotes a connection conductor for connecting to another device. In such a bushing, since the buried metal is large, the insulating layer 17 may be made of a soft material such as rubber. In this case, the relative dielectric constant is, for example, 2 to 3 for silicone rubber, but since the relative dielectric constants of the insulating layer 17 and the surrounding insulating medium are different,
On the surface, the equipotential lines are refracted and the electric field strength is disturbed. On such a creeping surface having a lower relative dielectric constant, the progress of discharge on the creeping surface can be prevented by balancing the components of the electric field intensity. In addition, even when the secondary winding 16 is on the ground side and the electric field strength distribution with the center conductor 15 is different from that of a general mold bushing, the electric field strength on the high voltage side where the electric field strength is high among the creeping surfaces is suppressed. If the components are balanced, the dielectric strength can be improved.

【0021】図5は、計器用変成器の場合である。一次
巻線20と二次巻線21、および一次巻線20を導出する主回
路リ―ド線22を一括して注形し、絶縁層23を形成する場
合においても、主回路リ―ド線22の口出し部の絶縁層端
部23aの角度を50度以下にすることにより、沿面の電界
強度を抑制することができる。主回路リ―ド線22は、一
般的に通電容量が少ないことより、より線を用いた被覆
電線であり、被覆24が設けられているが、この様な被合
絶縁構造においても絶縁層端部23aの電界強度の成分を
平衡させ抑制することができる。絶縁ガスの比誘電率約
1に比べて絶縁層23および被覆24の比誘電率が大きく、
絶縁層23の沿面での等電位線の屈折が大きくなって電界
強度を乱すが、各絶縁媒体の絶縁耐力は絶縁層23や被覆
24が数10kV/mmと高いのに比べて、絶縁ガスでは大気圧
のガス圧力で 8.9kV/mmと低いため、沿面の絶縁破壊が
絶縁ガスで決まり、この絶縁層端部23aの電界強度で破
壊電圧が左右される。なお、25は、二次巻線より電圧を
検出する二次端子である。
FIG. 5 shows the case of an instrument transformer. Even when the primary winding 20 and the secondary winding 21 and the main circuit lead wire 22 leading out of the primary winding 20 are cast and the insulating layer 23 is formed, the main circuit lead wire is also used. By setting the angle of the insulating layer end 23a of the protruding portion 22 to 50 degrees or less, the electric field intensity on the creeping surface can be suppressed. The main circuit lead wire 22 is generally a covered electric wire using a stranded wire because of its small current carrying capacity, and is provided with a coating 24. The component of the electric field strength of the portion 23a can be balanced and suppressed. The relative permittivity of the insulating layer 23 and the coating 24 is higher than the relative permittivity of the insulating gas of about 1,
The refraction of equipotential lines along the surface of the insulating layer 23 increases, disturbing the electric field strength.
In comparison with 24, which is as high as several tens of kV / mm, the insulating gas is as low as 8.9 kV / mm at atmospheric gas pressure, so the insulation breakdown on the creepage surface is determined by the insulating gas. The breakdown voltage depends. Reference numeral 25 denotes a secondary terminal for detecting a voltage from the secondary winding.

【0022】他の実施例として、空気やN2ガスなどを
用いた絶縁媒体中においても、絶縁物に対して比誘電率
が小さく、また絶縁耐力が小さいので、主回路導体の口
出し部にあたる絶縁物の角度を50度以下にすれば、法線
方向と接線方向の電界強度が平衡され、電界強度を抑制
して破壊電圧の向上が図れ、効果的に縮小化を図ること
ができる。
[0022] As another example, in the insulating medium using air or N 2 gas, the dielectric constant decreased relative to the insulator, and since the dielectric strength is small, corresponds to the lead-out portion of the main circuit conductor insulation If the angle of the object is less than 50 degrees, the normal
The electric field strength in the direction and the tangential direction is balanced , the electric field strength is suppressed, the breakdown voltage is improved, and the size can be effectively reduced.

【0023】[0023]

【発明の効果】以上のように本発明によれば、中心導体
が導出される絶縁層端部の沿面における法線方向の電界
強度と接線方向の電界強度とを平衡させることで、電界
強度が抑制されて絶縁物沿面の破壊電圧を向上させるこ
とができる。
As described above, according to the present invention , the center conductor
By balancing the electric field strength in the normal direction and the electric field strength in the tangential direction on the surface of the end of the insulating layer from which the electric field is derived , the electric field intensity can be suppressed, and the breakdown voltage on the surface of the insulator can be improved.

【0024】さらに本発明によれば、中心導体と接する
絶縁層端部と中心導体の軸とのなす角度を50度以下と
したので、絶縁耐力の向上が図れる。
Furthermore, according to the present invention , it is in contact with the center conductor.
Since the angle between the end of the insulating layer and the axis of the center conductor is set to 50 degrees or less, the dielectric strength can be improved.

【図面の簡単な説明】[Brief description of the drawings]

【図1】本発明の一実施例を示す絶縁スペ―サの横断面
図。
FIG. 1 is a cross-sectional view of an insulating spacer showing one embodiment of the present invention.

【図2】[図1]の特性を説明するための図。FIG. 2 is a diagram for explaining the characteristics of FIG. 1;

【図3】[図1]の特性を説明するための図。FIG. 3 is a diagram for explaining the characteristics of FIG. 1;

【図4】本発明の他の実施例を示す貫通形ブッシングの
要部拡大断面図。
FIG. 4 is an enlarged sectional view of a main part of a through-type bushing showing another embodiment of the present invention.

【図5】本発明の他の実施例を示す計器用変成器の縦断
面図。
FIG. 5 is a longitudinal sectional view of an instrument transformer according to another embodiment of the present invention.

【図6】代表的なスイッチギヤの側面図。FIG. 6 is a side view of a typical switchgear.

【図7】[図6]の絶縁スペ―サ9の横断面図。FIG. 7 is a cross-sectional view of the insulating spacer 9 of FIG.

【符号の説明】[Explanation of symbols]

9…絶縁スペ―サ、10…中心導体、14…絶縁層 9 ... insulation spacer, 10 ... center conductor, 14 ... insulation layer

───────────────────────────────────────────────────── フロントページの続き (56)参考文献 特開 平1−309217(JP,A) (58)調査した分野(Int.Cl.7,DB名) H02B 1/20 H01B 17/26 ────────────────────────────────────────────────── (5) References JP-A-1-309217 (JP, A) (58) Fields investigated (Int. Cl. 7 , DB name) H02B 1/20 H01B 17/26

Claims (1)

(57)【特許請求の範囲】(57) [Claims] 【請求項1】 中心導体を絶縁物で注形し、前記中心導
体と接する絶縁層端部と前記中心導体の軸とのなす角度
を50度以下とし、前記中心導体が導出される前記絶縁
層端部の沿面における法線方向の電界強度と接線方向の
電界強度とが平衡するようにしたことを特徴とするモー
ルドブッシング
1. A center conductor is cast with an insulator, and said center conductor is
Angle between the end of the insulating layer in contact with the body and the axis of the central conductor
Is less than 50 degrees and the insulation from which the center conductor is led out
Meaux and the electric field strength in the normal direction of the electric field strength and the tangential direction of the creeping of the layer ends, characterized in that into a balanced
Ludo bushing .
JP01209193A 1993-01-28 1993-01-28 Mold bushing Expired - Lifetime JP3283941B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP01209193A JP3283941B2 (en) 1993-01-28 1993-01-28 Mold bushing

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP01209193A JP3283941B2 (en) 1993-01-28 1993-01-28 Mold bushing

Related Child Applications (1)

Application Number Title Priority Date Filing Date
JP2001157200A Division JP3657890B2 (en) 2001-05-25 2001-05-25 Gas insulated switchgear

Publications (2)

Publication Number Publication Date
JPH06225413A JPH06225413A (en) 1994-08-12
JP3283941B2 true JP3283941B2 (en) 2002-05-20

Family

ID=11795906

Family Applications (1)

Application Number Title Priority Date Filing Date
JP01209193A Expired - Lifetime JP3283941B2 (en) 1993-01-28 1993-01-28 Mold bushing

Country Status (1)

Country Link
JP (1) JP3283941B2 (en)

Also Published As

Publication number Publication date
JPH06225413A (en) 1994-08-12

Similar Documents

Publication Publication Date Title
US7109835B2 (en) Highly insulated inductive data couplers
US8049108B2 (en) High voltage bushing and high voltage device comprising such bushing
US2322702A (en) Shielded cable
US3588319A (en) Condenser type terminal devices employing unit insulating cylinders
US20090260843A1 (en) High voltage bushing
JP3283941B2 (en) Mold bushing
EP0798950B1 (en) High voltage noise filter and magnetron device using it
JPH1023620A (en) Electric field relief device
JP3657890B2 (en) Gas insulated switchgear
JP3585517B2 (en) Gas insulated bushing
WO2009003816A1 (en) High voltage cable connection
JP2002135959A (en) Connection structure cable termination electrical apparatus
JP3373048B2 (en) Insulated conductor
JPH0365106B2 (en)
JPS6023569B2 (en) gas insulated electrical equipment
JP3466644B2 (en) Gas insulated busbar
JP3367838B2 (en) Through-type insulation support device
AU2003301381B2 (en) Highly insulated inductive data couplers
JPH05234441A (en) Supporting insulator
JP4908132B2 (en) Insulation structure of electrical equipment and switchgear using the insulation structure
JPH05190353A (en) Electronic device
JPH08249963A (en) Insulating bushing
JPS61201410A (en) Gas insulated voltage transformer
JPH06133443A (en) Cable joint
JPS59110311A (en) Terminal connection unit for power cable

Legal Events

Date Code Title Description
FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20080301

Year of fee payment: 6

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090301

Year of fee payment: 7

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100301

Year of fee payment: 8

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100301

Year of fee payment: 8

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110301

Year of fee payment: 9

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120301

Year of fee payment: 10

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130301

Year of fee payment: 11

EXPY Cancellation because of completion of term